
Fareeha Transform Performance In Solving Fractional Differential
Telegraph Equations Combining Adomian Decomposition Method

NGUYEN MINH TUAN1 ID , SANOE KOONPRASERT1,3 ID ,
PHAYUNG MEESAD2 ID

1Department of Mathematics, Faculty of Applied Science,
King Mongkut’s University of Technology North Bangkok,

1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800,
THAILAND

2Information Technology and Management Department,
King Mongkut’s University of Technology North Bangkok,

1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800,
THAILAND

3Centre of Excellence in Mathematics,
CHE, Si Ayutthaya Road, Bangkok 10400,

THAILAND
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successful in solving fractional telegraph differential equations.
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1 Introduction
Transformation is conveniently applied to perform
solutions of differential equations with constant-
coefficient equations, and usually combines other
suited methods for the coefficients containing poly-
nomial coefficients, for example, Laplace transform
is a powerful technique applied in solving mathemat-
ics and physics equations, especially in mechanics,
[1]. The application of Fourier and Laplace trans-
formation is varied such as managing the transfer
of electrical circuits, recognition systems, chemical
components, and computer programs, [2]. In recent
years, Fourier and Laplace transform has been used
more in analyzing and controlling digital signal pro-
cessing, [3]. The newfangled types of transforms
produced based on Fourier and Laplace transforms
to supply the needs of sciences have performed the
reliable approaches to solve particular problems, for
example, the Sumudu transform, [4]. Sumudu trans-
formation has been used in combination with homo-
topy analysis to solve the delay Fractional differential
Bagley-Torvik equation that does not need to calcu-
late the fractional derivative or integration terms, easy

and straightforward to get the exact solutions, [5].
The Sumudu transform created a new double inte-
gral Laplace-Sumudu transformation that has demon-
strated efficiency in solving the nonhomogeneous lin-
ear and nonlinear partial differential equations, [6].
Another transform such as the ELzaki transform de-
rived from the Fourier integral transform is a conve-
nient mathematical tool for solving differential equa-
tions, [7]. Elzaki transform is effective enough to
find the solution to the linear system expressed by an
ordinary differential equation associated with initial
or external disturbance condition, [8]. The associa-
tion of ELzaki transforms and the homotopy pertur-
bation method makes the Elzaki transform homotopy
perturbation method (ETHPM) used in physics and
engineering to solve linear and nonlinear differential
equations, [9].

Aboodh transform illustrated the main properties
to facilitate solving ordinary and partial differen-
tial equations, [10]. Aboodh transform connected
the new iterative method to perform a new approxi-
mate analytical method to solve fractional differential
equations in a biological population model, [11]. The
new alpha-integral Laplace transform supported the
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general features of the Laplace transform for the clas-
sical sense definition and theory, [12]. HY integral
transform, [13], is applied to solve Laguerre and Her-
mite differential equations by converting Lagoerre
and Hermite differential equations to first-order dif-
ferential equations. HY integral transform is useful in
finding Newtons law of cooling, [14], and expanded
for solving exponential growth and decay problems,
[15].

Another variation, the Mohand transform, is cre-
ated to efficiently apply in finding solutions of par-
tial differential equations, [16]. The Mohand trans-
form comes along with the Adomian decomposition
method to make the new path to solve the nonlinear
fractional evolution equations useful in mathemati-
cal models and engineering projects, [17]. Based on
the mathematical Fourier integral transform, the Sawi
transform was created providing the main properties
to demonstrate the fundamental properties for solv-
ing differential equations, [18]. The establishment
of the new transformation called the Kamal trans-
form supported new applications for ordinary and
partial differential equations, [19]. The duality rela-
tions make the Kamal transform visualize the full im-
portant sightseeing to other transformations, such as
Laplace, LaplaceCarson, Aboodh, Sumudu, Elzaki,
Mohand, and Sawi transforms, [20].

Attaining solutions of dynamical systems by us-
ing Laplace-Carson, fractional order associated with
the terms in the differential equations were demon-
strated to get the exact solution, [21]. Another per-
formance of Laplace-Carson is to raise the develop-
ment of the gradient flow of a viscoplastic medium,
[22]. A Laplace-typed transform called G_Trasform
established is applied to engineering problems, [23].
Anuj transforms illustrated new properties of linear-
ity, scaling, translation, convolution, and application
in solving ordinary differential equations, [21, 24].
The differential equations performance was signifi-
cantly solved by using Laplace transform, [25], and
ELzaki Transform, [26]. Another useful and effective
application of the Anuj transform is to find the solu-
tion of Volterra integral equations, [27]. The general
form of the transform can be seen in Table 1.

In this paper, the Fareeha transform will be ex-
tended for fractional differential derivative defined as
the following, [28]:

G f (u(t)) = F(sn) =
∫ ∞

0
u(t)e−sntdt. (1)

where t > 0,sn > 0,n= 2k+1,k = 0,1,2, · · · . The Fa-
reeha transform has been built for the general form of
some following specific cases shown in Table 2. The
inverse Fareeha transform is defined as the following:

u(t) = G−1
f F(sn). (2)

Table 1: Demographic performance of recent trans-
forms.

Cases of transform Transform
sm ∫ ∞

0 u(t)e−sntdt
m = 0,n = 1 Laplace transform
m = n =−1 Sumudu transform

m = 1,n =−1 Elzaki transform
m =−1,n = 1 Aboodh transform

m = 0,n = α−1, α-Integral Laplace-
α ∈ R+

0 Transform
m = 1,n = 2 HY integral transform
m = 2,n = 1 Mohand transform

m =−2,n =−1 Sawi transform
m = 0,n =−1 Kamal transform
m = α,n =−1 G_transform
m = 2,n =−1 Anuj transform
m = 1,n = 1 LaplaceCarson transform

In this paper, the Fareeha transform will be consid-
ered to solve the general fractional telegraph equation
of the form

Dα
t u(x, t)+L [u(x, t)]+N [u(x, t)] = q(x, t) . (3)

subject to the initial and boundary conditions

u(x,0) = g(x),ut(x,0) = h(x),0 < x < 1,
t > 0,1 < α ≤ 2. (4)

and Dα
t u(x, t) represents Caputo derivative in terms

of t of order α , L [u(x, t)] ,N [u(x, t)] respectively
perform the linear and nonlinear terms of function
u(x, t).

2 Basic Functions Using Fareeha
Transform

Definition 1 (Gamma function). (Shown in [29])
Given a value z ∈ C, and Re(z) > 0, the integration
presented as following is valid

Γ(z) =
∫ ∞

0
tz−1e−tdt. (5)

We collect some particular results related to the
gamma function:

Γ(z+1) = zΓ(z), Γ(n+1) = n!. (6)

Definition 2 (Caputo’s Fractional Derivatives). (See
in [30], chapter 2) Given a continuous function
y = f (x), and an arbitrary value m−1 < α ≤ m, the
Caputo’s fractional derivative of order α is defined
by:

C
a Dα

x f (x) =
1

Γ(m−α)

∫ x

a
(x− s)m−α−1 f (m)(s)ds.

(7)
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In this section, we will expand the transform for
the polynomial-coefficient functions and fractional
derivatives that are performed in Table 2.

Proposition 1. Using the Fareeha transform, we ap-
ply some basic function derivatives, [28]:

G f (u′) = F(sn) = snF(sn)−u(0). (8)

G f (u′′) = F(sn) = s2nF(sn)− snu(0)−u′(0). (9)

G f (u′′′) = s3nF(sn)− s2nu(0)− snu′(0)−u′′(0).
(10)

G f (u(k)(t)) = sknG f (u(t))−
k−1

∑
m=0

s(k−m−1)n f (m)(0).

(11)

Proposition 2. Fareeha transform of the function
f (t) = tα :

G f (tα) =
Γ(α +1)
s(α+1)n . (12)

Proof.
Using Fareeha’s definition, [28], Equation (1), and
Gamma function (5), we have

G f (tα) =
∫ ∞

0
tαe−sntdt, (substituting u = snt)

=
1

s(α+1)n

∫ ∞

0
uαe−udu =

Γ(α +1)
s(α+1)n . (13)

Proposition 3. Now, we will extend the Fareeha
transform for the Caputo derivative which is a main
point applied to this work:

G f
[C

0 Dα
t u(t)

]
= snαF(sn)−

m−1

∑
k=0

sn(α−k−1)u(k) (0) .

(14)

Proof.
Using convolution property of f (t) and g(t) in Table
2,

f ∗g =
∫ t

0
f (u)g(t −u)du. (15)

From definition 2 of the Caputo derivative, we have

C
0 Dα

t u(t) =
1

Γ(m−α)

∫ t

0
(t − τ)m−α−1 x(m) (τ)dτ

=
1

Γ(m−α)
tm−α−1 ∗ x(m) (t) . (16)

Using Fareeha definition, [28], Equation (11), we

Table 2: The Fareeha transform of basic functions.
Functions u(t) F(sn)(s) =

∫ ∞
0 u(t)e−sntdt

1 s−n

t s−2n

eat 1
sn−a

tα Γ(α+1)
s(α+1)n

sinat a
s2n+a2

t sinat 2asn

(s2n+a2)2

cosat sn

s2n+a2

t cosat s2n−a2

(s2n+a2)2

sinhat a
s2n−a2

coshat sn

s2n−a2

t sinhat 2asn

s2n−a2

t coshat s2n+a2

s2n−a2

eat sinωt ω
(sn−a2)2+ω2

eat cosωt sn−a
(sn−a2)2+ω2

eat sinhωt ω
(sn−a2)2−ω2

eat coshωt sn−a
(sn−a2)2−ω2

sin t cos t 1
s2n+4

u(t)∗ v(t) U(sn)×V (sn)
(convolution of u(t) and v(t),

have

G f
[C

0 Dα
t u(t)

]
=

1
Γ(m−α)

G f
(
tm−α−1)×G f

(
x(m) (t)

)
=

1
Γ(m−α)

Γ(m−α)

s(m−α)n

×

[
snmF(sn)−

m−1

∑
k=0

sn(m−k−1)u(k) (0)

]

=
1

s(m−α)n

×

[
snmF(sn)−

m−1

∑
k=0

sn(m−k−1)u(k) (0)

]

= snαF(sn)−
m−1

∑
k=0

sn(α−k−1)u(k) (0) .

(17)

3 Methodology
In this section, we will combine the transform of
the fractional derivative using Proposition 3 and the
Adomian decomposition method for solving the fac-
tional differential telegraph equations. First, we re-
mind the Adomian decomposition method deployed
in this work
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3.1 Adomian decomposition method
The Adomian decomposition method is an effective
procedure for finding the analytic solutions intro-
duced to solve linear and nonlinear differential equa-
tions, [31]. The Adomain decomposition method
was summarized to determine the exact solutions of
Bratu-type equations, [32], and has been used in most
system theories to simplify the disjoint state spaces.
The differential equations, [33], have been developed
enormously and expanded in some models of real life
such as the circuit model, Spring-mass system, dif-
fusion system, and population model, [25]. In this
paper, the newfangled Fareeha transform, [28], com-
bines the Adomian decomposition method to perform
the effectiveness of the transform for solving frac-
tional telegraph equations. The Adomain decompo-
sition method, [34], expresses a function u(x) in the
form of

u(x) =
∞

∑
n=0

un(x), (18)

where the term un(x) be iteratively defined. Espe-
cially, the nonlinear term N(u) can be decomposition
into an infinite series of polynomials in the form of

N(u) =
∞

∑
n=0

An(u0,u1,u2, · · · ,un), (19)

where An be the so-called Adomian polynomial terms
of u0,u1, ...,un defined by

An =
1
n!

dn

dλ n [F(
n

∑
i=0

λ iui)]λ=0,n = 0,1,2, · · · (20)

where the terms are determined as the following

A0 = F(u0),

A1 = u1F ′(u0),

A2 = u2F ′(u0)+
1
2

u2
1F ′′(u0),

A3 = u3F ′(u0)+u1u2F ′′(u0)+
1
3

u3
1F ′′′(u0 ,

A4 = u4F ′(u0)+(u1u3 +
1
2

u2
2)F

′′(u0)

+
1
2

u2
1u2F ′′′(u0)+

1
24

u4
1F(4)u0,

· · ·

3.2 Using Fareeha transform for the
fractional telegraph equations

In this section, we deploy the Fareeha transform
for general fractional telegraph equations as the
following:

Dα
t u(x, t)+L [u(x, t)]+N [u(x, t)] = q(x, t) ,

(21)

satisfy the condition

u(x,0) = g(x),ut(x,0) = h(x),0 < α ≤ 2. (22)

Step 1: Taking Fareeha transform for the equa-
tion (21), and using property (14) including condition
(22):

G f [D
α
t u(x, t)+L [u(x, t)]+N [u(x, t)]] =G f [q(x, t)] .

(23)
Step 2: Simplify the equation in the form:

u(x, t) = G−1
f

{
g(x)s−n +h(x)s−2n +

1
snα G f [q(x, t)]

}
+G−1

f

{
1

snα G f {−L [u(x, t)]−N [u(x, t)]}
}
.

(24)

Step 3: Setting u(x, t) = ∑∞
k=0 uk (x, t) ,N(u) =

−L [u(x, t)−N [u(x, t)] then calculate the terms:

u0 = G−1
f

{
g(x)s−n +h(x)s−2n +

1
snα G f [q(x, t)]

}
uk+1 = G−1

f

{
1

snα G f (Ak)

}
,k = 0,1,2, · · ·

where Ak is the Adomian terms given by the Equation
(20).
Step 4: The analytic solution is depicted in the form
that could approach to the exact solution:

u(x, t) = u0 (x, t)+u1 (x, t)+u2 (x, t)+ · · · (25)

4 Application
The Fareeha transform seems well suited to solutions
of ordinary differential equations when they are lin-
early combined with constant coefficients, and when
initial conditions create the solutions. We will apply
the Fareeha transform for the fractional differential
telegraph equations using the Adomian decomposi-
tion method. We consider the first example as the
following

Example 4.1. Consider the fractional hyperbolic tele-
graph equation as follows, [35]:

Dα
t u(x, t) = u(x, t)−2ut(x, t)−uxx(x, t), (26)

u(x,0) = ex,ut (x,0) =−2ex,0 < α ≤ 2. (27)

Taking Fareeha transform on both sides from
Equation (26), using equation (14) including condi-
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tion (27)

G f [D
α
t u(x, t)] = G f

[
u(x, t)−2ut(x, t)−uxx(x, t)

]
snαF(x,sn)−sn(α−1)ex +2exsn(α−2)

= G f [u(x, t)−2ut(x, t)−uxx(x, t)] .

F(x,sn) =
ex(sn(α−1)−2sn(α−2))

snα

+
1

snα G f

[
u(x, t)−2ut(x, t)−uxx(x, t)

]
.

(28)

Simplify the equations (28) and taking converse
Laplace on both sides, we can get

u(x, t) = G−1
f

[
ex(s−n −2s−2n)

+
1

snα G f [u(x, t)−2ut(x, t)−uxx(x, t)]
]

= G−1
f

[
ex(s−n)−2s−2n)

]
+G−1

f

{
1

snα G f [u(x, t)−2ut(x, t)−uxx(x, t)]
}
.

(29)

Taking F [u] = u−2ut −uxx, and setting the terms of
ADM F [u] = ∑∞

k=0 Ak, where

Ak =
1
k!

dk

dλ k

[
F

(
k

∑
i=0

λ iui

)]
λ=0

;k = 0,1,2,3, · · ·

(30)

Assume the solution u(x, t) = ∑∞
i=0 uk(x, t), so

∞

∑
i=0

uk(x, t) = G−1
f

[
ex(s−n)−2s−2n)

]
+G−1

f

{
1

snα G f [Ak]

}
,k = 0,1,2,3, · · ·

(31)

Construct the recursion form of the Adomian decom-
position method (29), we calculate the terms as fol-
lows:

u0 = G−1
f

[
ex(s−n −2s−2n)

]
= ex (1−2t) (32)

uk+1 = G−1
f

{
1

snα G f [Ak]

}
,k = 0,1,2,3, · · · (33)

Using (32), we can find the term A0 as follows:

A0 =
1
0!

d0

dλ 0

[
F

(
0

∑
i=0

λ 0u0

)]
λ=0

= u0 −2u0t −u0xx

= ex (1−2t)−2(−2ex)− ex (1−2t) = 4ex.
(34)

From equation (33), we evaluate the terms of solution
u1 using (34) as follows

u1 = G−1
f

[
1

snα G f (A0)

]
= G−1

f

[
1

snα G f (4ex)

]
= 4ex tα

Γ(α +1)
. (35)

Now we calculate the term A1 using equation (35)

A1 =
1
1!

d1

dλ 1

[
F

(
1

∑
i=0

λ 1ui

)]
λ=0

= F(u1)

= u1 −2u1t −u1xx =−8ex αtα−1

Γ(α +1)
. (36)

From equation (36), A1, we can find the value of u2

u2 = G−1
f

[
1
sn G f (A1)

]
= G−1

f

[
1

snα G f

(
−8ex αtα−1

Γ(α +1)

)]
=−8exG−1

f

[
1

snα G f

(
αtα−1

Γ(α +1)

)]
=−8ex t2α−1

Γ(2α −1)
.

(37)

Using equation (37), u2, we can calculate A2:

A2 =
1
2!

d2

dλ 2

[
F

(
2

∑
i=0

λ 2uixx

)]
λ=0

=
1
2!

d2

dλ 2

[
λ 0u0 +λu1 +λ 2u2

]
λ=0

=
1
2

2F [u2] = u2 −2u2t −u2xx = 16ex t2α−2

Γ(2α −1)
.

(38)

Using equation (38), A2, we can calculate u3:

u3 = G−1
f

[
1

snα G f (A2)

]
=

16ex

Γ(2α −1)
G−1

f

[
1

snα G f
(
t2α−2)]

=
16ex

Γ(2α −1)
G−1

f

[
1

snα

(
Γ(2α −1)
s(2α−1)n

)]
=

16ex

Γ(3α −1)
t3α−2.

(39)

The solution collected using (25) is performed as fol-
lows

u(x, t) = ex (1−2t)+4ex tα

Γ(α +1)
−8ex t2α−1

Γ(2α)

+
16ex

Γ(3α −1)
t3α−2 + · · ·

= ex
[

1−2t +4
tα

Γ(α +1)
−8

t2α−1

Γ(2α)

+
16

Γ(3α −1)
t3α−2 + · · ·

]
, (40)
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when α = 2, the solution (40) becomes as the follow-
ing

u(x, t) = ex

[
1−2t +

(2t)2

2!
− (2t)3

3!
+

(2t)4

4!
−·· ·

]
= ex−2t . (41)

and their graphs have been depicted in Fig. 1, and
Fig. 2, respectively (Appendix). The comparison of
the solutions by different values of α is shown in Ta-
ble 3 (Appendix).
Example 4.2. Consider a non-linear time-fractional
hyperbolic telegraph equation, [35]:

Dα
t u(x, t) = uxx(x, t)+ut(x, t)−u2(x, t)+ xu(x, t).ux(x, t),

(42)
u(x,0) = x;ut (x,0) = x,0 < α ≤ 2. (43)

Let F [u] = uxx(x, t) + ut(x, t) − u2(x, t) +
xu(x, t).ux(x, t), and taking Fareeha transform on
both sides of equation (42), using equation (14)
consisting of condition (43)

G f [D
α
t u(x, t)] = G f [N(u)] (44)

snαF(x,sn)− sn(α−1)x− sn(α−2)x = G f [N(u)]. (45)

Simplify equation (45) and collect the terms F(sn),
we have

F(x,sn) = s−nα [x(sn(α−1)− sn(α−2))]+ s−nαG f [N(u)].
(46)

Deriving the solution by dividing snα on both sides of
equation (46) by inverse Fareeha transform

u(x, t) = G−1
f

{
s−nα [x(sn(α−1)− sn(α−2))]

}
+G−1

f

{
1

snα G f [N(u)]
}
. (47)

Adopting N(u) = ∑∞
k=0 Ak, u(x, t) = ∑∞

k=0 uk (x, t),
where

Ak =
1
k!

dk

dλ k

[
F

(
k

∑
i=0

λ iui

)]
λ=0

;n = 0,1,2, · · ·

(48)

the equation (47) could be rewritten as follows

∞

∑
k=0

uk (x, t) = G−1
f

{
s−nα [x(sn(α−1)− sn(α−2))]

}
+G−1

f

{
1

snα G f [N(u)]
}
, (49)

and we calculate the iterative form of ADM using
equation (47) as the following

u0 = G−1
f

[
s−nα [x(sn(α−1)− sn(α−2))]

]
= x(1+ t) .

(50)

uk+1 = G−1
f

{
1

snα G f [Ak]

}
,k = 0,1,2, · · · (51)

We can calculate the terms A0 using equation (50) as
follows

A0 =
1
0!

d0

dλ 0

[
F

(
0

∑
i=0

λ 0u0

)]
λ=0

= u0xx +u0t −u2
0 + xu0.u0x

= x− [x(1+ t)]2 + x2 (1+ t)(1+ t) = x. (52)

Considering the terms uk from equation (51), and
equation (52) as follows:

u1 = G−1
f

[
1

snα G f (A0)

]
= G−1

f

[
1

snα G f (x)
]
= x

tα

Γ(α +1)
.

(53)

Using equation (52), u1, we can calculate A1

A1 =
1
1!

d1

dλ 1

[
F

(
1

∑
i=0

λ 1uixx

)]
λ=0

=
d

dλ
[
λ 0u0 +λu1

]
λ=0

= u1xx +u1t −u2
1 + xu1.u1x.

= x
αtα−1

Γ(α +1)
− x2 t2α

(Γ(α +1))2 + x2 tα

Γ(α +1)
tα

Γ(α +1)

= x
αtα−1

Γ(α +1)
. (54)

Using equation (54), A1, we can calculate u2

u2 = G−1
f

[
1
sn G f (A1)

]
= G−1

f

[
1

snα G f

(
x

αtα−1

Γ(α +1)

)]
=

xα
Γ(α +1)

G−1
f

[
1

snα

(
Γ(α)

sαn

)]
= x

t2α−1

Γ(2α −1)
.

(55)

Using equation (55), u2, we calculate A2:

A2 =
1
2!

d2

dλ 2

[
F

(
2

∑
i=0

λ 2uixx

)]
λ=0

=
1
2!

d2

dλ 2

[
λ 0u0 +λu1 +λ 2u2

]
λ=0

= u2xx +u2t −u2
2 + xu2.u2x = x

t2α−2

Γ(2α −1)
. (56)
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Now, we can calculate u3 using equation (56)

u3 = G−1
f

[
1

snα G f (A2)

]
=

x
Γ(2α −1)

G−1
f

[
1

snα G f
(
t2α−2)]

= x
αΓ(α)

Γ(α +1)
(2α −1)
Γ(2α)

G−1
f

[
1

snα

(
Γ(2α −1)
s(2α−1)n

)]
=

xt3α−2

Γ(3α −1)
. (57)

Solution collected using equation (25) is performed
as follows

u(x, t) = u0 (x, t)+u1 (x, t)+u2 (x, t)+u3 (x, t)+ · · ·

= x(1+ t)+
xtα

Γ(α +1)
+

xt2α−1

Γ(2α)

+
xt3α−2

Γ(3α −1)
+ · · · (58)

When α = 2, the solution from equation (58) be-
comes

u(x, t) = x
[

1+ t +
t2

2!
+

t3

3!
+

t4

4!
+ · · ·

]
= xet . (59)

and their graphs has been respectively portrayed in
Fig. 3, and Fig. 4 (Appendix). The comparison of
different values of α is shown in Table 4 (Appendix).
Example 4.3. Taking into account 2D time-fractional
telegraph equation given as follows, [35]:

D2α
t u(x,y, t)+3Dα

t u(x,y, t)+2u(x,y, t) = uxx(x,y, t)
+uyy(x,y, t), (60)

satisfy the initial conditions

u(x,y,0) = ex+y;ut (x,y,0) =−3ex+y,0 < α ≤ 1.
(61)

Let F [u] =−3Dα
t u−2u+uxx+uyy, and apply the

Fareeha transform on both sides of equation (60) in-
cluding (61)

G f
[
D2α

t u(x,y, t)
]
= G f [N(u)].

s2nαF (x,y,sn)− sn(2α−1)u(x,y,0)− sn(2α−2)ut (x,y,0)
= G f [N(u)]. (62)

Taking inverse Fareeha transform from equation (62),
we have

u(x,y, t) = G−1
f

{
sn(2α−1)u(x,y,0)− sn(2α−2)ut (x,y,0)

}
+G−1

f

{
1

s2nα G f [N(u)]
}
. (63)

By setting N(u) = ∑∞
k=0 Ak, and u(x,y, t) =

∑∞
k=0 uk(x,y, t), where

Ak =
1
k!

dk

dλ k

[
F

(
k

∑
i=0

λ iui

)]
λ=0

,k = 0,1,2,3, · · ·

(64)

the equation (65) is rewritten as follows
∞

∑
k=0

uk(x,y, t) = G−1
f

{
sn(2α−1)u(x,y,0)− sn(2α−2)ut (x,y,0)

}
+G−1

f

{
1

s2nα G f [N(u)]
}
. (65)

Using equation (65), and setting reiterated terms as
the following

u0 = G−1
f

[
sn(2α−1)u(x,y,0)− sn(2α−2)ut (x,y,0)

]
.

= u(x,y,0)+ tut (x,y,0) = ex+y (1−3t) (66)

ur+1 = G−1
f

{
s−2nαG f [−3Dα

t u−2u+uxx +uyy]
}
,

r = 1,2, · · · (67)

We calculate the terms of ADM, A0

A0 =
1
0!

d0

dλ 0

[
F

(
0

∑
i=0

λ 0u0

)]
λ=0

=−3Dα
t u0 −2u0 +u0xx +u0yy =−3Dα

t u0. (68)

Using an equation (68), we calculate the term u1

u1 = G−1
f

[
1

s2nα G f (A0)

]
= G−1

f

[
1

s2nα G f (−3Dα
t u0)

]
=−3G−1

f

[
1

s2nα snαG f [u0]− sn(α−1)u0 (x,y,0)
]

=−3G−1
f

[
1

s2nα ex+y
[

snα
(

1
sn −

3
s2n

)
− sn(α−1)

]]
=−3G−1

f

[
1

s2nα − 3
s(2−α)n

ex+y
]

=−3G−1
f

[
1

s2nα G f (Dα
t u0)

]
=−3G−1

f

{
s−2nα

(
− 3

s(2−α)n
ex+y

)}
= 9ex+y tα+1

Γ(α +2)
. (69)

Using equation (69), we can calculate the term A1

A1 =
1
1!

d1

dλ 1

[
F

(
1

∑
i=0

λ 1uixx

)]
λ=0

=
d

dλ
[
λ 0u0 +λu1

]
λ=0

=−3Dα
t u1 −2u1 +u1xx +u1yy. (70)
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Using equation (69), and equation (70), we have

u2 = G−1
f

[
1

s2nα G f (A1)

]
= G−1

f

[
1

s2nα G f (−3Dα
t u1 −2u1 +u1xx +u1yy)

]
=−3G−1

f

[
1

s2nα

(
snαG f [u1]− sn(α−1)u1 (x,y,0)

)]
=−3G−1

f

[
1

s2nα snαG f

(
9ex+y tα+1

Γ(α)

)]
=−27ex+yt2α+1

Γ(2α +2)
. (71)

Using equation (71), we have

A2 =
1
2!

d2

dλ 2

[
F

(
2

∑
i=0

λ 2uixx

)]
λ=0

=
1
2!

d2

dλ 2

[
λ 0u0 +λu1 +λ 2u2

]
λ=0

=−3Dα
t u2 −2u2 +u2xx +u2yy. (72)

u3 = G−1
f

[
1

snα G f (A2)

]
= G−1

f

[
1

snα G f (−3Dα
t u2 −2u2 +u2xx +u2yy)

]
= G−1

f

[
1

snα G f (−3Dα
t u2)

]
= G−1

f

[
1

snα G f (−3Dα
t u2)

]
=−3G−1

f

[
1

snα (sαnG f [u2]− sα−1u2 (x,y,0))
]

=−3G−1
f

[
1

snα − 27ex+y

s(α+2)n

]
=

81ex+yt3α+1

Γ(3α +2)
.

(73)

So the solution is collected as the following

u(x,y, t) = ex+y
[

1−3t +
9tα+1

Γ(α +2)

− 27t2α+1

Γ(2α +2)
+

81t3α+1

Γ(3α +2)
· · ·
]
. (74)

When α = 1, the solution from the equation (74)
shown as follows

u(x,y, t) = ex+y

[
1−3t +

(3t)2

2!
− (3t)3

3!
+ · · ·

]
= ex+y−3t .

(75)

and the solutions have been respectively shown in
Fig. 7, and Fig. 8 (Appendix). The comparison of
the solutions of arbitrary values of α is shown in Ta-
ble 5 (Appendix).

Example 4.4. To perform the effectiveness of the
Fareeha transform, we take into account the space-
differential telegraph equation as follows, [36]:

Dα
x u(x, t) = utt(x, t)+ut(x, t)+u(x, t), (76)

u(0, t) = e−t ,ux (0, t) = e−t ,0 < α ≤ 2, t ≥ 0. (77)

Considering F [u] = utt + ut + u, taking Fareeha
transform on both sides equation (76), using equation
(14) including equation (77):

G f (D
α
x u(x, t)) = G f [N(u)]. (78)

snαF(x,sn)− sn(α−1)e−t − sn(α−2)e−t = G f [N(u)].

F(x,sn) =
[sn(α−1)− sn(α−2)]e−t

snα +
1

snα G f [(N(u)].
(79)

Taking inverse Fareeha transform of equation (79) by
snα , and we have

u(x, t) = G−1
f

{
[sn(α−1)− sn(α−2)]e−t

snα +
1

snα G f [N(u)]

}

= G−1
f

{
[sn(α−1)− sn(α−2)]e−t

snα

}
.

+G−1
f

{
1

snα G f [N(u)]
}

(80)

Setting N(u)=∑∞
k=0 Ak, u(x, t)=∑∞

k=0 uk(x, t), where

Ak =
1
n!

dk

dλ k

[
F

(
k

∑
i=0

λ iui

)]
λ=0

;k = 0,1,2,3, · · ·

(81)

and the equation (80) is rewritten as follows

∞

∑
k=0

uk(x, t) = G−1
f

{
[sn(α−1)− sn(α−2)]e−t

snα

}

+G−1
f

{
1

snα G f [N(u)]
}
. (82)

Now, we will establish repeated terms of ADM using
(82)

u0 = G−1
f

[
(sn(α−1)− sn(α−2))e−t

snα

]
= e−t + xe−t = e−t (1+ x) . (83)

uk+1 = G−1
f

{
1

snα G f (utt +ut +u)
}
= G−1

f

{
1

snα G f (An)

}
.

(84)
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Using equation (83), we evaluate A0 as follows

A0 =
1
0!

d0

dλ 0

[
F

(
0

∑
i=0

λ 0u0

)]
λ=0

= u0tt +u0t +u0

= (1+ x)e−t +(1+ x)(−e−t)+(1+ x)e−t = (1+ x)e−t .
(85)

Based on equation (85), and equation (84), we can
calculate the terms of the solution as follows:

u1 = G−1
f

[
1

snα G f (A0)

]
= G−1

f

[
1

snα G f
(
(1+ x)e−t)]

= e−tG−1
f

[
1

snα (
1
sn +

1
s2n )

]
= e−t

[
xα

Γ(α +1)
+

xα+1

Γ(α)

]
.

(86)

The following steps are to calculate the rest of ADM
and solution, for example, using equation (86), we
can calculate A1

A1 =
1
1!

d1

dλ 1

[
F

(
1

∑
i=0

λ 1uixx

)]
λ=0

=
d

dλ
[
λ 0u0 +λu1

]
λ=0

= u1tt +u1t +u1 = e−t
[

xα

Γ(α +1)
+

xα+1

Γ(α)

]
.

(87)

Using equation (87), we calculate u2

u2 = G−1
f

[
1
sn G f (A1)

]
= G−1

f

[
1

snα G f

(
e−t
[

xα

Γ(α +1)
+

xα+1

(α +1)!

])]
= e−tG−1

f

[
1

snα

(
1

s(α+1)n +
1

s(α+2)n

)]
= e−t

[
x2α

Γ(2α +1)
+

x2α+1

Γ(2α +2)

]
. (88)

From equation (88), we can calculate A2

A2 =
1
2!

d2

dλ 2

[
F

(
2

∑
i=0

λ 2uixx

)]
λ=0

=
1
2!

d2

dλ 2

[
λ 0u0 +λu1 +λ 2u2

]
λ=0

= u2tt +u2t +u2 = e−t
[

x2α

Γ(2α +1)
+

x2α+1

Γ(2α +2)

]
.

(89)

Using equation (89), we can find the term u3

u3 = G−1
f

[
1

snα G f (A2)

]
= e−tG−1

f

[
1

snα G f

(
e−t
[

x2α

Γ(2α +1)
+

x2α+1

Γ(2α +2)

])]
= e−tG−1

f

[
1

snα

(
1

s(2α+1)n +
1

s(2α+2)n

)]
= e−t

[
1

s(3α+1)n +
1

s(3α+2)n

]
= e−t

[
x3α

Γ(3α +1)
+

x3α+1

Γ(3α +2)

]
. (90)

Then the solution was derived using (25) as follows

u(x, t) = e−t
[

1+ x+
xα

Γ(α +1)

+
xα+1

Γ(2α +2)
+

x2α

Γ(2α +1)
+

x2α+1

Γ(2α +2)

+
x3α

Γ(3α +1)
+

x3α+1

Γ(2α +2)
+ · · ·

]
. (91)

When α = 2 the solution gained from equation (91)
as the following

u(x, t) = ex−t . (92)

and the solutions have been respectively depicted us-
ing the Matlab application in Fig. 5 and Fig. 6 (Ap-
pendix). The comparison of the solutions by different
values of α is shown in Table 6 (Appendix).

5 Conclusion
In this paper, some extensive properties for the Fa-
reeha transform have been created, especially the
fractional derivative in the Caputo sense. Fareeha
transform has also performed successfully by solv-
ing time-fractional telegraph equations. To show the
effectiveness of the transform, a space-fractional tele-
graph equation was conducted briefly to get the an-
alytic solution. Using series expansion, the close
forms have been derived that approach exact solu-
tions played an essential role in physics [37], and
their graphs have been performed to show the nec-
essary role of the methods. Like other Laplace-typed
transforms, the inverse Fareeha transform is derived
from the direct Fareeha transform summarized in Ta-
ble 2. The transform is conducted by taking Fareeha
transform for fractional terms and other linear and
nonlinear terms are included in Adomian decomposi-
tion method terms. In general, the Fareeha transform
has effectively contributed to finding the solution to
fractional telegraph equations.
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Figure 1: 2D solution depict example 4.1.

Figure 2: 3D solution example 4.1, α = 2.

Table 3: Solutions of example 4.1 for x=0.5.
t α = 1.1 α = 1.2 α = 1.5 α = 1.7 α = 2

0.0 1.6487 1.6487 1.6487 1.6487 1.6487
0.1 2.1974 1.7374 1.4350 1.3896 1.3499
0.2 3.1172 2.1464 1.3112 1.1994 1.1052
0.3 4.2396 2.7909 1.2724 1.0576 0.9048
0.4 5.5136 3.6384 1.3328 0.9644 0.7408
0.5 6.9118 4.6687 1.5085 0.9274 0.6065
0.6 8.4166 5.8679 1.8152 0.9581 0.4966
0.7 10.0155 7.2254 2.2686 1.0707 0.4066
0.8 11.6991 8.7328 2.8836 1.2814 0.3329
0.9 13.4600 10.3831 3.6745 1.6077 0.2725
1.0 15.2923 12.1706 4.6550 2.0685 0.2231

Figure 3: 2D solution depict example 4.2.

Figure 4: 3D solution example 4.2, α = 2.

Table 4: Solutions of example 4.2 for x=0.5.
t α = 1.1 α = 1.2 α = 1.5 α = 1.7 α = 2

0.0 0.5000 0.5000 0.5000 0.5000 0.5000
0.1 0.5808 0.5788 0.5779 0.5751 0.5526
0.2 0.6685 0.6616 0.6567 0.6521 0.6107
0.3 0.7597 0.7470 0.7350 0.7285 0.6749
0.4 0.8535 0.8348 0.8125 0.8038 0.7459
0.5 0.9494 0.9246 0.8896 0.8778 0.8244
0.6 1.0472 1.0163 0.9664 0.9504 0.9111
0.7 1.1465 1.1099 1.0432 1.0217 1.0069
0.8 1.2472 1.2052 1.1204 1.0918 1.1128
0.9 1.3493 1.3023 1.1981 1.1610 1.2298
1.0 1.4525 1.4010 1.2766 1.2294 1.3591

APPENDIX
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Figure 5: 2D solution depict example 4.3.

Figure 6: 3D solution example 4.3, α = 2.

Table 5: Solutions of example 4.3 for x=0.5,y=0.5.
t α = 1.1 α = 1.2 α = 1.5 α = 1.7 α = 2

0.0 0.2500 0.2500 0.2500 0.2500 0.2500
0.1 0.1826 0.1805 0.1771 0.1760 0.2763
0.2 0.1303 0.1235 0.1107 0.1063 0.3054
0.3 0.0912 0.0774 0.0514 0.0416 0.3375
0.4 0.0634 0.0399 -0.0033 -0.0199 0.3730
0.5 0.0461 0.0081 -0.0582 -0.0829 0.4122
0.6 0.0396 -0.0201 -0.1198 -0.1551 0.4555
0.7 0.0459 -0.0465 -0.1965 -0.2476 0.5034
0.8 0.0684 -0.0715 -0.2983 -0.3747 0.5564
0.9 0.1125 -0.0944 -0.4363 -0.5542 0.6149
1.0 0.1854 -0.1130 -0.6228 -0.8074 0.6796

Figure 7: 2D solution depict example 4.4.

Figure 8: 3D solution example 4.4, α = 1.

Table 6: Solutions of example 4.4 for t=0.5.
x α = 1.1 α = 1.2 α = 1.5 α = 1.7 α = 2

0.0 0.6065 0.6065 0.6065 0.6065 0.6065
0.1 0.7098 0.6986 0.6796 0.6737 0.6703
0.2 0.8129 0.7932 0.7573 0.7449 0.7408
0.3 0.9125 0.8845 0.8327 0.8144 0.8187
0.4 1.0087 0.9715 0.9026 0.8785 0.9048
0.5 1.1022 1.0540 0.9649 0.9344 1.0000
0.6 1.1938 1.1323 1.0181 0.9795 1.1052
0.7 1.2848 1.2072 1.0611 1.0118 1.2214
0.8 1.3765 1.2795 1.0934 1.0297 1.3499
0.9 1.4703 1.3505 1.1147 1.0317 1.4918
1.0 1.5679 1.4214 1.1250 1.0166 1.6487
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