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Abstract: - Discrete-event systems which are modelled by timed-arc Petri nets are considered. A
supervisory controller design approach for such systems for enforcing some desired properties is
proposed. For the representation of the state of the system, the proposed design approach uses
stretching. The designed controller enforces L̂-boundedness (for any given bound vector L̂) and
reversibility simultaneously, whenever it is possible to design such a controller. Furthermore, ∆-liveness
is also enforced, where ∆ is the largest possible subset of the set of transitions for which it is possible to
design such a controller. Furthermore, the designed controller is maximally permissive in the sense that
no transitions are disabled unnecessarily and the reachability set of the controlled system is the largest
possible set in which boundedness and reversibility can be enforced simultaneously. To demonstrate the
proposed approach, an example controller design is also presented for an automated manufacturing system.
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1 Introduction

Many discrete-event systems (DES) can be mod-
elled using Petri nets, [1], [2]. Early models of Petri
nets did not include the notion of time. However,
later it became apparent that this notion is needed
to appropriately model many DES, and timed
Petri nets (TPNs) were introduced to describe the
evolution of these systems throughout time, [3],
[4], [5], [6], [7], [8], [9]. A TPN, besides the basic
elements of an untimed Petri net, also includes
certain time-delays. In a Petri net time-delays can
be included in the transitions, [10], [11], [12], or in
the places, [13]. In a Petri net model, transitions
and places respectively represent the events and
the resources. Therefore, the time needed for an
event to occur may be represented by a time-
delay in the corresponding transition and the time
needed for a resource to become available may be
represented by a time-delay in the corresponding
place. Thus, when both events and resources may
require certain times, one may need a TPN model
where both the transitions and the places are

timed, [14]. However, as discussed in [15], even
this formalism may not be sufficient. To overcome
this problem, rather than transitions and places,
time-delays can be included in the arcs, [16]. A
Petri net in which arcs are timed is called a timed-
arc Petri net (TAPN), [15].

The representation of the state of any dynamic
system is necessary in order to simulate it or to
design a controller for it. The marking vector is
sufficient to represent the state of an untimed
Petri net. However, this is not sufficient for a
TPN, [16]. To overcome this difficulty, the method
of stretching was first introduced for Petri nets in
which the transitions are timed, [17], and then
for Petri nets in which the places are timed, [18].
Petri nets in which both the transitions and places
are timed are then considered in [14]. Finally, the
method of stretching was introduced for TAPNs
in [15].

Supervisory control is needed for DES to avoid
undesirable behaviour, such as deadlock, [19], or
to enforce desirable behaviour, such as bounded-
ness, reversibility, and/or liveness, [20]. Controller
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design to avoid deadlock for various types of
TPNs were considered in [10], [13], [15], and to
enforce some desirable properties were considered
in [21], [22], [23]. In the present work, we consider
supervisory controller design in TAPNs in order
to enforce boundedness, reversibility, and liveness.
As in previous works, we assume that a suitable
time unit can be found which divides (at least
approximately) all the process delays. This unit
is then taken as the unit of time and all the time-
delays are thus become an integer. Furthermore,
the time variable, denoted by t, is also taken as
integer and the initial time is assumed to be t = 0.

We present the necessary preliminaries in Sec-
tion 2. The proposed supervisory controller design
approach is presented in Section 3. An example
of an automated manufacturing system and con-
troller design for it are presented in Section 4.
Finally, some concluding remarks are included in
Section 5.

Throughout the paper, Z denotes the set of
non-negative, and Z+ denotes the set of positive
integers. For two vectors with the same dimension,
x and y, x ≥ y (x ≤ y) indicates that each
element of x is greater (less) than or equal to
the corresponding element of y. For a vector x,
xT denotes its transpose. The number of elements
of a set Ω is denoted by |Ω| and its jth element
(j = 1, . . . , |Ω|) is denoted by [Ω]j .

2 Preliminaries
2.1 Timed-Arc Petri Nets
As presented in [15], A TAPN is a tuple H =
(Π,Θ, A,B, S0,DN ,DO), where Π denotes the
set of places, Θ denotes the set of transitions,
A : Π × Θ → Z is the matrix which indicates
the weights of the arcs from places to transitions,
B : Π × Θ → Z is the matrix which indicates
the weights of arcs from transitions to places (as
usual, a zero entry in A or B means there is no arc
between the corresponding place and transition),
S0 : Π → Z indicates the initial number of
tokens at each place. DN : AN → Z indicates
the time-delays of the input arcs, where AN :=
{(π, θ) | A(π, θ) > 0} is the set of input arcs, and
DO : AO → Z+ indicates the time-delays of the
output arcs, where AO := {(θ, π) | B(π, θ) > 0} is
the set of output arcs. Note that, the time-delay of
an input arc may be zero or positive, however, the

time-delay of an output arc must be positive. This
is because, in a Petri net places usually correspond
to resources and transitions usually correspond to
events. While a resource may be readily available
for any event, the execution of any event always
takes some time.

A TAPN can be shown graphically as in Fig. 1.
In all the figures, circles correspond to places,
bars correspond to transitions, and the arrows
correspond to arcs. “w = . . .” next to an arc
specifies the weight of that arc and “τ = . . .”
specifies the time-delay of that arc. To simplify
graphics, however, a unity weight is not explicitly
shown. Similarly, a unit time-delay for an output
arc and a zero time-delay for an input arc are also
not explicitly shown. Finally, the tokens present
in a place at the initial time are shown by dots
inside the corresponding circle.

Therefore, for the TAPN shown in Fig. 1, we
have Π = {π1, π2, π3}, Θ = {θ1, θ2, θ3},

A =

 1 1 0
0 0 1
0 0 1

 , B =

 0 0 2
1 0 0
0 1 0

 ,

S0 =
[
2 0 0

]T
,

AN = {(π1, θ1), (π1, θ2), (π2, θ3), (π3, θ3)}, AO =
{(θ1, π2), (θ2, π3), (θ3, π1)}, DN = {0, 2, 3, 2}, and
DO = {2, 1, 3}.
2.2 Arc Stretched Petri Nets
To simplify the representation of the state of a
TAPN, the method of arc stretching was first
introduced in [15]. In this method, a so-called
arc stretched Petri net (ASPN) is defined for any
given TAPN. To construct the ASPN, let us first
decompose AN and AO into, respectively, A1

N

and A2
N and A1

O and A2
O, where A1

N := {a ∈
AN | DN (a) = 0}, A2

N := {a ∈ AN | DN (a) ≥ 1},
A1

O := {a ∈ AO | DO(a) = 1}, A2
O := {a ∈

AO | DO(a) ≥ 2}. Then, the ASPN is constructed
as follows:

I) for any a = (π, θ) ∈ A2
N ,

i) DN (a) new places πa
1 , πa

2 , . . ., πa
DN (a),

and DN (a) new transitions, θa1 , θa2 , . . .,
θaDN (a), are defined.

ii) arc a, which goes from π to θ, now goes
from π to θa1 ; the time-delay of a becomes
zero; its weight remains the same.

iii) DN (a) new input arcs, from πa
1 to θa2 ,

. . ., from πa
DN (a)−1 to θaDN (a), and from
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Fig. 1. Example TAPN.

πa
DN (a) to θ, are defined each having unit

weight and zero time-delay.
iv) DN (a) new output arcs, from θa1 to πa

1 ,
. . ., from θaDN (a)−1 to πa

DN (a)−1, and from
θaDN (a) to πa

DN (a), are defined each having
unit weight and unit time-delay.

II) for any a = (θ, π) ∈ A2
O,

i) DO(a) − 1 new places πa
1 , πa

2 , . . .,
πa
DO(a)−1, and DO(a)−1 new transitions,

θa1 , θa2 , . . ., θaDO(a)−1, are defined.
ii) arc a, which goes from θ to π, now goes

from θaDO(a)−1 to π; the time-delay of a
becomes unity; its weight remains the
same.

iii) DO(a)−1 new input arcs, from πa
1 to θa1 ,

from πa
2 to θa2 , . . ., and from πa

DO(a)−1 to
θaDO(a)−1, are defined each having unit
weight and zero time-delay.

iv) DO(a)−1 new output arcs, from θ to πa
1 ,

from θa1 to πa
2 , . . ., and from θaDO(a)−2 to

πa
DO(a)−1, are defined each having unit

weight and unit time-delay.
Usig the above procedure, for the TAPN shown

in Fig. 1, the ASPN shown in Fig. 2 is constructed.
In the ASPN, firing of θa1 , for any a = (π, θ) ∈ A2

N ,
is equivalent to the firing of θ. Furthermore, θa2 ,
. . ., θaDN (a), and θ fires immediately as it becomes
enabled. Moreover, for any a = (θ, π) ∈ A2

O,
θa1 , θa2 , . . ., θaDO(a)−1 also fires immediately as it
becomes enabled. We let Θ̃ denote the set of those
transitions which are to fire immediately as they
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Fig. 2. ASPN for the Example TAPN.

become enabled. The number of tokens initially
present in a place in the original Petri net is not
changed, but the initial number of tokens in any
one of the newly introduced places is defined as
zero.

The ASPN is a tuple Ĥ = (Π̂, Θ̂, Θ̃, Â, B̂, Ŝ0),
where Π̂ consist of all the places in Π and
the places which are introduced by the above
procedure; Θ̂, consist of all the transitions in Θ
and the transitions which are introduced by the
above procedure; Θ̃ ⊂ Θ̂ is the set of transitions
which are to fire immediately as they become
enabled. The elements of the input matrix, Â,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2024.19.17 Altuğ İftar
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are given as

Â(π, θ) =



A(π, θ), if π ∈ Π
1, if π = πa

l and θ = θal+1 for
some a ∈ A2

N with
DN (a) ≥ 2 and
l = 1, . . . ,DN (a)− 1

1, if π = πa
DN (a) and θ = θ̃

for some a = (π̃, θ̃) ∈ A2
N

1, if π = πa
l and θ = θal for

some a ∈ A2
O and

l = 1, . . . ,DO(a)− 1
0, otherwise

and the elements of the output matrix, B̂, are
given as

B̂(π, θ) =



B(π, θ), if (θ, π) ∈ A1
O

B(π, θ̃), if π ∈ Π and θ = θaDO(a)−1

for some a = (θ̃, π) ∈ A2
O

1, if π = πa
1 and θ = θ̃

for some a = (θ̃, π̃) ∈ A2
O

1, if π = πa
l+1 and θ = θal for

some a ∈ A2
O with

DO(a) ≥ 3 and
l = 1, . . . ,DO(a)− 2

1, if π = πa
l and θ = θal for

some a ∈ A2
N and

l = 1, . . . ,DN (a)
0, otherwise

Finally, the initial marking vector, Ŝ0, is given as

Ŝ0(π) =

{
S0(π), if π ∈ Π
0, otherwise

Note that, since all the input arcs of ASPN have
zero time-delay and all the output arcs have
unit time-delay, there is no need for any explicit
information about the time-delays in Ĥ.

In general, the number of places, transitions,
and arcs of the ASPN is more than the number of
places, transitions, and arcs of the original TAPN.
However, the state of the ASPN at any time t ∈
Z is solely and uniquely given by the marking
vector Ŝ(t) at time t. Also, the state of the original
TAPN can be defined using the state of the ASPN.
Furthermore, starting with Ŝ(0) = Ŝ0, the state
of the ASPN evolves according to the equation

Ŝ(t+ 1) = Ŝ(t) +
∑

θ∈f(t)

[
B̂(θ)− Â(θ)

]
(1)

where f(t) denotes the set of transitions that fire
at time t and Â(θ) and B̂(θ) denote the columns
of respectively Â and B̂, that correspond to the
transition θ. The set of transitions f(t), however,
can fire at time t, only if f(t) ∈ E(Ŝ(t)), where

E(σ) :=

f ⊂ Θ̂ | σ ≥
∑
θ∈f

Â(θ)

 . (2)

is the set of sets of simultaneously enabled transi-
tions at state σ. Furthermore, the set of enabled
transitions at state σ is given as:

ϵ(σ) :=
{
θ ∈ Θ̂ | σ ≥ Â(θ)

}
. (3)

2.3 Boundedness, Reversibility, and Liveness
The set of all reachable states. Σ(H), of a
TAPN H from its initial state S0 is called as its
reachability set. As mentioned above, it is rather
complicated to describe the state of a TAPN,
which makes the description of its reachability
set also complicated. However, the state of the
ASPN Ĥ, can simply be described by its marking
vector. Thus, the reachability set, Σ(Ĥ), of the
ASPN Ĥ can easily be described as the set of all
the markings Ŝ, such that there exists a sequence
of enabled transitions which lead from the initial
marking Ŝ0 to Ŝ. Moreover, there is a one-to-one
correspondence between the states of Ĥ and of
H, thus, between Σ(Ĥ) and Σ(H), [15].

Most desirable properties for a system mod-
elled by a TAPN are boundedness, reversibility,
and liveness. For a bound vector L : Π → Z, a
TAPN H is said to be L-bounded if S(π) ≤ L(π),
∀π ∈ Π, for all markings S corresponding to every
state in Σ(H). H is said to be bounded if it is
L-bounded for some bounded L. H is said to
be reversible if for every state S ∈ Σ(H), there
exists a sequence of enabled transitions which lead
from S to the initial state. θ ∈ Θ is said to be
live if for every state S ∈ Σ(H), there exists a
sequence of enabled transitions which lead from
S to S′ ∈ Σ(H) such that θ is enabled at S′. For
∆ ⊂ Θ, H is said to be ∆-live if every θ ∈ ∆ is
live. Finally, H is said to be live if it is Θ-live.

3 Supervisory Controller Design
A supervisory controller design approach is pre-
sented in this section in order to enforce bound-
edness, reversibility and liveness in a system mod-
elled by a TAPN. Our approach is to first design a
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controller for the ASPN, since it is much easier to
represent the state of the TAPN using its ASPN.
Once a controller which enforces boundedness,
reversibility and liveness in the ASPN Ĥ is ob-
tained, this controller also enforces boundedness,
reversibility and liveness in the original TAPN
H, since, due to the one-to-one correspondence
between the states of the ASPN Ĥ and of the
original TAPN H,

• H is bounded if and only if Ĥ is bounded.
• H is reversible if and only if Ĥ is reversible.
• H is live if and only if Ĥ is live.

In order to design a controller for the ASPN,
we first determine its bounded reachability set,
ΣB, for a given bound vector L̂ : Π̂ → Z. ΣB is
the largest subset of Σ(Ĥ) such that any Ŝ ∈ ΣB

is bounded by L̂ (i.e., Ŝ(π) ≤ L̂(π), ∀π ∈ Π̂)
and can be reached from Ŝ0 by passing through
only states which are bounded by L̂. We note
that, for any Petri net, ΣB always has finitely
many elements, even though Σ(Ĥ) may have
infinitely many elements for an unbounded Petri
net, [20]. Algorithm 1, which is borrowed from
[23], constructs ΣB. The inputs to this algorithm
are the ASPN definition Ĥ and the bound vector
L̂. The function Ẽ(σ), used in Algorithm 1,
returns the set of sets of simultaneously enabled
transitions at state σ, excluding those sets which
do not include any enabled transition which must
fire immediately as it becomes enabled (thus any
θ ∈ Θ̃ always fires immediately as it becomes
enabled). Thus:

Ẽ(σ) := E(σ) \
{
f ∈ E(σ) | θ /∈ f

for some θ ∈ ϵ(σ) ∩ Θ̃
}

, (4)

where E(·) is given by (2) and ϵ(·) is given by (3).
Furthermore, the function

ν(σ, f) := σ +
∑
θ∈f

[
B̂(θ)− Â(θ)

]
(5)

returns the next state, as given by (1), when f
fires at σ. If Ŝ0(π) > L̂(π), for some π ∈ Π̂,
i.e., if Ĥ is not L̂-bounded at the initial time,
Algorithm 1 returns an empty set for ΣB. In this
case, no controller can enforce L̂-boundedness.

Following the construction of ΣB (assuming
ΣB ̸= ∅), Algorithm 2, which is also borrowed

Algorithm 1 : Algorithm to construct ΣB

Inputs: Ĥ = (Π̂, Θ̂, Θ̃, Â, B̂, Ŝ0) and L̂
Output: ΣB

if Ŝ0 ≤ L̂ then
ΣB = Σ1 = {Ŝ0}
loop

Σ2 = ∅
for j = 1 to |Σ1| do

σ = [Σ1]j
Φ = Ẽ(σ)
for k = 1 to |Φ| do

ϕ = [Φ]k, σ̂ = ν(σ, ϕ)
if σ̂ /∈ (Σ2 ∪ ΣB) and σ̂ ≤ L̂ then

Σ2 ← Σ2 ∪ {σ̂}
end if

end for
end for
if Σ2 == ∅ then

exit loop
end if
ΣB ← ΣB ∪ Σ2

Σ1 = Σ2

end loop
else

ΣB = ∅
end if
return ΣB

from [23], constructs the bounded reversible reach-
ability set, ΣS . ΣS is the largest subset of ΣB

such that for any Ŝ ∈ ΣS either Ŝ = Ŝ0 or Ŝ
can be reached from Ŝ0 and Ŝ0 can be reached
from Ŝ without passing through any markings
outside ΣS . The inputs to Algorithm 2 are the
ASPN definition Ĥ and the bounded reachability
set ΣB, as constructed by Algorithm 1. Besides
ΣS , this algorithm also returns the set of all live
transitions, ∆̂. Here, functions Ẽ and ν are as in
Algorithm 1 and the function ϵ(σ), which is given
by (3), returns the set of enabled transitions at
state σ.

To enforce L̂-boundedness and reversibility
simultaneously for the ASPN, a controller must
keep the state of the ASPN within the bounded
reversible reachability set, ΣS . Such a controller
can be described as:

γ(σ, f) :=

{
1 , if ν(σ, f) ∈ ΣS

0 , otherwise , (6)
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Algorithm 2 : Algorithm to determine ΣS and ∆̂

Inputs: Ĥ = (Π̂, Θ̂, Θ̃, Â, B̂, Ŝ0) and ΣB

Outputs: ΣS and ∆̂
ΣX = ΣB , ∆̂ = ∅
Start: Σ′ = ΣX \ {Ŝ0} , ΣS = {Ŝ0}
loop
Σ = Σ′ , Flg = 0
for j = 1 to |Σ| do

σ̄ = [Σ]j , Φ = Ẽ(σ̄)
for k = 1 to |Φ| do
ϕ = [Φ]k , σ̂ = ν(σ̄, ϕ)
if σ̂ ∈ ΣS then
ΣS ← ΣS ∪ {σ̄} , Σ′ ← Σ′ \ {σ̄} ,
Flg = 1, go to Break

end if
end for
Break: continue

end for
if Flg == 0 then

exit loop
end if

end loop
if ΣS == {Ŝ0} then

go to Finish
end if
ΣR = ∅ , Σa = {Ŝ0}
loop
Σb = ∅ , ΣR ← ΣR ∪ Σa

for j = 1 to |Σa| do
σ̄ = [Σa]j , Φ = Ẽ(σ̄)
for k = 1 to |Φ| do
ϕ = [Φ]k, σ̂ = ν(σ̄, ϕ)
if σ̂ ∈ ΣS and σ̂ /∈ ΣR ∪ Σb then
Σb ← Σb ∪ {σ̂}

end if
end for

end for
if Σb == ∅ then

exit loop
end if
Σa = Σb

end loop
if ΣS ̸= ΣR then
ΣX = ΣR, go to Start

end if
for j = 1 to |ΣS | do
σ̄ = [ΣS ]j , ∆1 = ϵ(σ̄)
for k = 1 to |∆1| do
θ = [∆1]k
if ν(σ̄, {θ}) ∈ ΣS then
∆̂← ∆̂ ∪ {θ}

end if
end for

end for
Finish: return ΣS , ∆̂

for any σ ∈ ΣS and for any f ∈ Ẽ(σ). Here, the
controller (6) disables the firing of f at state σ
if γ(σ, f) = 0 and does not disable the firing of
f at state σ if γ(σ, f) = 1. This controller also
enforces ∆̂-liveness, where ∆̂ is as returned by
Algorithm 2. Thus, if ∆̂ = Θ̂, then controller (6)
enforces L̂-boundedness, reversibility, and liveness
simultaneously. Otherwise, ∆̂ is the largest subset
of Θ̂ such that a controller exists which enforces L̂-
boundedness, reversibility, and ∆̂-liveness simul-
taneously.

4 Example
We consider an automated manufacturing system
example which is a modified version of the ex-
ample presented in [14]. The system consists of
three machines and three stores. Machines 1 and
2 obtain parts put on one of the two transporters
at store 1, work on them and send them to stores
2 and 3, respectively. Machine 3 obtain one part
from store 2 and one part from store 3, produce
the final product and return the transporters to
store 1. Machine 1 can receive a part from store
1 with no time-delay. It can deliver its product to
store 2 in two time units. Machine 2 can receive
a part from store 1 within two time units and
can deliver its product to store 3 in one time
unit. Machine 3 needs 3 time units to receive a
product from store 2 and 2 time units to receive
a product from store 3. It can deliver the end
product and return both transporters to store 1
in 3 time units.

A TAPN model of this system is shown in
Fig. 1, where π1, π2, and π3, represent stores
1, 2, and 3, respectively, and θ1, θ2, and θ3,
represent processing by the machines 1, 2, and 3,
respectively. The ASPN for this TAPN is shown
in Fig. 2.

Our aim is to design a controller to enforce L̂-
boundedness for L̂(π) = 2, ∀π ∈ Π̂, reversibility,
and liveness simultaneously. Algorithm 1 returns
the bounded reachability set, ΣB , which consists
of 62 states (including the initial state Ŝ0 = σ0).
Algorithm 2 then eliminates 24 of these states,
since it is not possible to reach to Ŝ0 from any
one of these states. The remaining 38 states,
which form the bounded reversible reachability
set ΣS , are shown in Table 1, where the or-
dering of the places is as follows: π1, π

(θ1,π2)
1 ,
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Table 1. Bounded reversible reachability set, ΣS .

σ0 =
[
2 0 0 0 0 0 0 0 0 0 0 0 0

]T
σ1 =

[
1 1 0 0 0 0 0 0 0 0 0 0 0

]T
σ2 =

[
1 0 0 0 0 0 1 0 0 0 0 0 0

]T
σ3 =

[
0 1 0 0 0 0 1 0 0 0 0 0 0

]T
σ4 =

[
1 0 1 0 0 0 0 0 0 0 0 0 0

]T
σ6 =

[
0 0 1 0 0 0 1 0 0 0 0 0 0

]T
σ7 =

[
1 0 0 0 0 0 0 1 0 0 0 0 0

]T
σ8 =

[
0 1 0 0 0 0 0 1 0 0 0 0 0

]T
σ10 =

[
0 0 1 0 0 0 0 1 0 0 0 0 0

]T
σ11 =

[
1 0 0 1 0 0 0 0 0 0 0 0 0

]T
σ13 =

[
0 0 0 1 0 0 1 0 0 0 0 0 0

]T
σ16 =

[
0 0 0 1 0 0 0 1 0 0 0 0 0

]T
σ17 =

[
1 0 0 0 0 0 0 0 1 0 0 0 0

]T
σ18 =

[
0 1 0 0 0 0 0 0 1 0 0 0 0

]T
σ20 =

[
0 0 1 0 0 0 0 0 1 0 0 0 0

]T
σ22 =

[
0 0 0 1 0 0 0 0 1 0 0 0 0

]T
σ23 =

[
1 0 0 0 1 0 0 0 0 0 0 0 0

]T
σ25 =

[
0 0 0 0 1 0 1 0 0 0 0 0 0

]T
σ27 =

[
0 0 0 0 1 0 0 1 0 0 0 0 0

]T
σ29 =

[
0 0 0 0 1 0 0 0 1 0 0 0 0

]T
σ30 =

[
1 0 0 0 0 0 0 0 0 1 0 0 0

]T
σ31 =

[
0 1 0 0 0 0 0 0 0 1 0 0 0

]T
σ33 =

[
0 0 1 0 0 0 0 0 0 1 0 0 0

]T
σ35 =

[
0 0 0 1 0 0 0 0 0 1 0 0 0

]T
σ38 =

[
0 0 0 0 1 0 0 0 0 1 0 0 0

]T
σ39 =

[
1 0 0 0 0 1 0 0 0 0 0 0 0

]T
σ41 =

[
0 0 0 0 0 1 1 0 0 0 0 0 0

]T
σ43 =

[
0 0 0 0 0 1 0 1 0 0 0 0 0

]T
σ45 =

[
0 0 0 0 0 1 0 0 1 0 0 0 0

]T
σ47 =

[
0 0 0 0 0 1 0 0 0 1 0 0 0

]T
σ48 =

[
1 0 0 0 0 0 0 0 0 0 1 0 0

]T
σ49 =

[
0 1 0 0 0 0 0 0 0 0 1 0 0

]T
σ51 =

[
0 0 1 0 0 0 0 0 0 0 1 0 0

]T
σ53 =

[
0 0 0 1 0 0 0 0 0 0 1 0 0

]T
σ55 =

[
0 0 0 0 1 0 0 0 0 0 1 0 0

]T
σ57 =

[
0 0 0 0 0 1 0 0 0 0 1 0 0

]T
σ60 =

[
0 0 0 0 0 0 0 0 0 0 0 1 0

]T
σ61 =

[
0 0 0 0 0 0 0 0 0 0 0 0 1

]T

π2, π(π2,θ3)
1 , π(π2,θ3)

2 , π(π2,θ3)
3 , π(π1,θ2)

1 , π(π1,θ2)
2 , π3,

π
(π3,θ3)
1 , π(π3,θ3)

2 , π(θ3,π1)
1 , π(θ3,π1)

2 . Algorithm 2 also
returns ∆̂ = Θ̂, which means that as long as the
states are restricted to ΣS , all the transitions are
live.

The controller described by (6) then disables
θ1 at states σ1, σ4, σ11, σ23, and σ39 and disables
θ
(π1,θ2)
1 at states σ2, σ7, σ17, σ30, and σ48, since

firing θ1 at states σ1, σ4, σ11, σ23, or σ39 or firing
θ
(π1,θ2)
1 at states σ2, σ7, σ17, σ30, or σ48 leads to

a state not in ΣS . Since firing θ1 in the ASPN is

equivalent to firing θ1 in the original TAPN and
firing θ

(π1,θ2)
1 in the ASPN is equivalent to firing θ2

in the original TAPN, a controller which disables
θ1 at states σ1, σ4, σ11, σ23, and σ39 and disables
θ2 at states σ2, σ7, σ17, σ30, and σ48, enforces
boundedness, reversibility and liveness simultane-
ously in the original TAPN. This controller also
avoids deadlock, since deadlock can not occur in
a live Petri net, [24].

5 Conclusions
Supervisory controller design to enforce some de-
sired properties, namely boundedness, reversibil-
ity, and liveness in DES modelled by TAPNs has
been considered. Since it is very complicated to
represent the state of a TAPN, the approach of
stretching has been used to obtain the ASPN
of the given TAPN. Since it is much easier to
represent the state of the ASPN and there is a one-
to-one corresponce between the states of the two
Petri nets, an approach to design a controller first
for the ASPN and then obtain a controller for the
original TAPN is proposed. Algorithms to design
such a controller have been presented. These
algorithms terminate in finite time. Algorithm 1’s
computational complexity is proportional to the
size of the bounded reachability set, ΣB . Algo-
rithm 2’s computational complexity is no more
than the square of the size of ΣB . Therefore, the
computational complexity of the overall design
approach is no more than the square of the size
of ΣB.

For a given bound vector L̂, the designed
controller, (6), enforces L̂-boundedness and re-
versibility simultaneously, whenever it is pos-
sible to design such a controller. Furthermore,
the designed controller also enforces ∆-liveness,
where ∆ is the largest possible such subset of
Θ. Thus, boundedness, reversibility, and liveness
are enforced simultaneously whenever possible.
Furthermore, the designed controller is maximally
permissive in the sense that no transitions are
disabled unnecessarily and the reachability set of
the controlled system is the largest possible set
in which boundedness and reversibility can be
enforced simultaneously.

We have used the so-called behavioral ap-
proach, [24], [25], in the controller design. Al-
though behavioral approach is more tedious than
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the so-called structural approach, [26], [27], it
can guarantee the design of maximally permissive
controllers; whereas the structural approach, in
general, produces conservative controllers, [26].

DES are getting more complicated each day,
[28], [29]. Some of such systems are so complicated
that it may not be possible to design a central-
ized controller for them. Therefore, as a future
study, the present approach can be extended to
decentralized supervisory controller design, which
would be possible along the lines of [30].
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