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Abstract: Optimal control problems for degenerate two-dimensional diffusion processes are considered. The
processes could serve as models for wear processes. The objective is to make the controlled process leave the
continuation region through a given part of the boundary. Explicit and exact solutions are obtained for important
processes such as the geometric Brownian motion and the Ornstein-Uhlenbeck process.
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1 Introduction
Let (X(t), Y (t)) be the controlled two-dimensional
process defined by

dX(t) = f [X(t), Y (t)]dt, (1)
dY (t) = b[Y (t)]u(t)dt+m[Y (t)]dt

+ {v[Y (t)]}1/2dW (t), (2)
where {W (t), t ≥ 0} is a standard Brownian motion.
The functions m(·) ∈ R and v(·) > 0 are such
that the uncontrolled process (X0(t), Y0(t)) obtained
by setting u(t) ≡ 0 in Eq. (2) is a (degenerate)
two-dimensional diffusion process.

Assume that (X(0), Y (0)) = (x, y) ∈ C ⊂ R2.
We define the first-passage time

τ(x, y) = inf{t > 0 : (X(t), Y (t)) ∈ D ⊂ R2},
(3)

where D = Cc; that is, D is the complement of C in
R2.

If the function f(·, ·) in Eq. (1) is such that it
is always positive in the region C, then the above
process could be an appropriate model for the wear
X(t) of a certain device at time t. Indeed, in reality,
wear should increase with time. We assume that
the wear depends on a variable Y (t) that evolves
according to a diffusion process; [1].

The aim is to find the control u∗(t) that minimizes
the expected value of the cost function

J(x, y) =

∫ τ(x,y)

0

1

2
q0u

2(t)dt+K[X(τ), Y (τ)],

(4)

where q0 is a positive constant and K(·, ·) is the
terminal cost function.

This type of problem, when the final time is a
first-passage time, is called an LQG homing problem.
Such problems have been treated extensively by the
author; see, for instance, [2] and, [3]. Other papers
on this topic are, [4], [5] and, [6]. In general, the
optimizer seeks to minimize or maximize the time
spent by the controlled process in the continuation
region C. Here, we are interested in the place where
the controlled process will leave C.

The current paper is more realistic than other
papers published on the optimal control of wear
processes because the controlled process is defined in
such a way that wear is strictly increasing with time,
and the final time is a random variable, rather than
being fixed.

To solve our problem, we shall use dynamic
programming. We define the value function

F (x, y) = inf
u(t), 0≤t<τ(x)

E[J(x, y)]. (5)

We find that the optimal control can be expressed as
follows:

u∗(x, y) = −b(y)

q0
Fy(x, y), (6)

where Fy(x, y) = ∂F (x, y)/∂y.
Remark. We wrote u(t) for the control variable in
Eq. (2), as most authors do. Actually, it would be
more accurate to write u[X(t), Y (t)].
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Next, assume that there exists a positive constant
θ such that

v(y) = θb2(y)/q0. (7)
Then, we can show ([7]  or  [8]) that the function

Φ(x, y) := e−F (x,y)/θ (8)

satisfies the linear partial differential equation (PDE)

1

2
v(y)Φyy +m(y)Φy + f(x, y)Φx = 0, (9)

and is subject to the boundary condition

Φ(x, y) = e−K(x,y)/θ if (x, y) ∈ D. (10)

Moreover, we can write that

Φ(x, y) = E
[
e−K[X0(T ),Y0(T )]/θ

]
, (11)

where T (= T (x, y)) is the same as τ(x, y), but for
the uncontrolled process (X0(t), Y0(t)). Hence, if the
relation in Eq. (7) holds, it is possible to determine
the optimal control by computing a mathematical
expectation for the uncontrolled process.

In the next section, the function F (x, y) will
be computed explicitly for important diffusion
processes, such as the Ornstein-Uhlenbeck process,
from which the optimal control follows at once my
making use of Eq. (6).

2 Optimal Control Problems
Case 1. Suppose first that Eq. (2) is given by

dY (t) = b0u(t)dt− αY (t)dt+ σdW (t), (12)

where b0, α and σ are positive constants. Then, if
u(t) ≡ 0, {Y (t), t ≥ 0} is an Ornstein-Uhlenbeck
process, which is one of the most important diffusion
processes. Notice that Eq. (7) is satisfied by taking
θ = σ2 q0/b

2
0.

Let

τ(x, y) = inf{t > 0 : Y (t)−X(t) = k1 or k2},
(13)

where x ≥ 0, y > 0 and 0 ≤ k1 < y − x < k2.
Suppose that the function f [X(t), Y (t)] in Eq. (1)

is given by

f [X(t), Y (t)] = αY (t). (14)

Moreover, we choose

K[X(τ), Y (τ)] =

{
1 if Y (τ)−X(τ) = k1,
0 if Y (τ)−X(τ) = k2.

(15)

That is, the aim is to make Y (t) − X(t) leave
the interval (k1, k2) at k2. Since Y (0) = y is
assumed to be positive, Y (t) is always positive in the
continuation region C := {(x, y) ∈ R2 : 0 ≤ k1 <
y − x < k2}. It follows that X(t) will be strictly
increasing in C.

To obtain the function Φ(x, y) defined in Eq. (8),
we must solve the PDE

1

2
σ2Φyy − αyΦy + αyΦx = 0, (16)

subject to the boundary conditions

Φ(x, y) =

{
e−1/θ if y − x = k1,
1 if y − x = k2.

(17)

Let z := y − x. We shall try to find a solution of
the form

Φ(x, y) = Ψ(z). (18)

This is an application of the method of similarity
solutions, and z is called the similarity variable.

Equation (16) simplifies to the ordinary
differential equation (ODE)

1

2
σ2Ψ′′(z) = 0. (19)

Hence, we may write that

Ψ(z) = c1z + c0. (20)

The solution that satisfies the boundary conditions
Ψ(k1) = e−1/θ and Ψ(k2) = 1 is

Ψ(z) =
(z − k2)e

−1/θ − z + k1
k1 − k2

for k1 ≤ z ≤ k2.

(21)
We can now state the following proposition.

Proposition 2.1. The value function in the problem
considered above is given by

F (x, y) =

−θ ln

(
(y − x)

(
e−1/θ − 1

)
− k2e

−1/θ + k1

k1 − k2

)
(22)

for k1 ≤ y − x ≤ k2. Furthermore, from Eq. (6), the
optimal control is

u∗(x, y) =

−b0
q0

θ
(
e−1/θ − 1

)
k2e−1/θ − k1 − (y − x)

(
e−1/θ − 1

) (23)

for k1 < y − x < k2, where θ = σ2 q0/b
2
0.
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In the special case when k1 = 0 and σ = q0 =
b0 = k2 = 1, the value function is given by

F (x, y) = − ln
[(
1− e−1

)
(y − x) + e−1

]
(24)

and the optimal control becomes

u∗(x, y) =

(
1− e−1

)
e−1 + (y − x) (1− e−1)

(25)

for 0 < y − x < 1. This function is shown in
Figure 1 when x = 0. We see that the optimal control
decreases as y increases from 0 to 1, which is logical
since the optimizer wants the controlled process to
leave the continuation region C through the straight
line y − x = 1.

Figure 1: Function u∗(0, y) in Case 1 for y ∈ [0, 1]
when k1 = 0 and σ = q0 = b0 = k2 = 1.

Case 2. Suppose next that

dX(t) = f0X(t)/Y (t)dt, (26)
dY (t) = b0Y

1/2(t)u(t)dt+ σY 1/2(t)dW (t),

(27)

where f0 ̸= 0, and b0 and σ are positive constants.
This time the uncontrolled process {Y (t), t ≥ 0} is
a limit case of a Cox-Ingersoll-Ross process, which
is used in financial mathematics as a model for the
evolution of interest rates, or a particular squared
Bessel process (if σ = 2). Equation (7) is satisfied
with θ = σ2 q0/b

2
0, as in Case 1.

We define the first-passage time

τ(x, y) = inf{t > 0 : X(t)/Y (t) = k1 or k2},
(28)

where x > 0, y > 0 and 0 < k1 < x/y < k2. Then
X(t) will increase with time if f0 > 0, as it should in
the case of a wear process.
Remark. If X(t) represents the wear of a device
at time t, then f0 must be positive, whereas f0 is
negative if X(t) is rather the remaining lifetime of
the device.

The terminal cost function is given by

K[X(τ), Y (τ)] =

{
1 if X(τ)/Y (τ) = k1,
0 if X(τ)/Y (τ) = k2.

(29)
The function Φ(x, y) is a solution of the PDE

1

2
σ2yΦyy + f0

x

y
Φx = 0, (30)

subject to the boundary condition

Φ(x, y) =

{
e−1/θ if x/y = k1,
1 if x/y = k2.

(31)

We assume that

Φ(x, y) = Ψ(z), (32)

where the similarity variable is z := x/y.
Equation (30) is then reduced to the ODE

1

2
σ2z2Ψ′′(z) + σ2zΨ′(z) + f0zΨ

′(z) = 0 (33)

and the boundary conditions are

Ψ(z) =

{
e−1/θ if z = k1,
1 if z = k2.

(34)

Since z > 0 in the continuation region C, we may
write that

1

2
σ2zΨ′′(z) + (σ2 + f0)Ψ

′(z) = 0. (35)

If
κ := σ2 + f0 = 0, (36)

then the solution is the same as in Case 1. When κ is
different from zero, we find that the general solution
of Eq. (35) is

Ψ(z) = c1 + c2z
∆, (37)

where
∆ := −

(
2
f0
σ2

+ 1

)
. (38)

Proposition 2.2. The value function in Case 2 is given
by

F (x, y) = −θ ln[Ψ(x/y)], (39)
where the function Ψ(·) is defined in Eq. (37) and
the constants c1 and c2 are determined by using the
boundary conditions in Eq. (34).

Moreover, the optimal control is

u∗(x, y) = −
b0
√
y

q0
Fy(x, y) (40)

for k1 < x/y < k2.
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Assume that b0 = q0 = σ = 1, so that θ = 1, and
f0 = 1 as well. Then, κ = 2 and ∆ = −3. If k1 = 1
and k2 = 2, we find that

F (x, y) = ln(7)− ln
[
8− e−1 +

8(e−1 − 1)y3

x3

]
(41)

for 1 ≤ x/y ≤ 2. Furthermore, the optimal control is

u∗(x, y) =
24y5/2 (1− e−1)

(x3 − 8y3)e−1 + 8(y3 − x3)
. (42)

The function F (x, y) is presented in Figure 2 in
terms of x/y ∈ [1, 2], and the optimal control u∗(1, y)
is displayed in Figure 3 for y ∈ [0.5, 1].

Figure 2: Value function F (x, y) in Case 2 for x/y ∈
[1, 2] when q0 = b0 = f0 = σ = k1 = 1 and k2 = 2.

Figure 3: Optimal control u∗(1, y) in Case 2 for y ∈
[0.5, 1] when q0 = b0 = f0 = σ = k1 = 1 and
k2 = 2.

Case 3. Finally, we consider the process defined by

dX(t) = f0Y
2(t)dt, (43)

dY (t) = b0Y (t)u(t)dt+ µY (t)dt+ σY (t)dW (t),

(44)

where f0 ̸= 0, b0 and σ are positive constants, and
µ ∈ R. We assume that (X(0), Y (0)) = (x, y), with

x and y positive. The relation in Eq. (7) is satisfied if
θ = σ2 q0/b

2
0, as in the previous cases.

In the above case, the uncontrolled process
{Y (t), t ≥ 0} is a geometric Brownianmotion, which
is very important in financial mathematics. Since this
process is always positive (when Y (0) > 0), the
variable X(t) will increase with t if u(t) ≡ 0.

The first-passage time τ(x, y) is defined by

τ(x, y) = inf{t > 0 : X(t)/Y 2(t) = k1 or k2},
(45)

where 0 < k1 < x/y2 < k2, and the terminal cost
function is

K[X(τ), Y (τ)] =

{
1 if X(τ)/Y 2(τ) = k1,
0 if X(τ)/Y 2(τ) = k2.

(46)
For this model, we can generalize the cost function

defined in Eq. (4) to

J(x, y) =

∫ τ(x,y)

0

{
1

2
q0u

2(t) + λ

}
dt

+ K[X(τ), Y (τ)], (47)

where λ ∈ R. Then, the aim is also to make the
controlled process leave the continuation region C as
rapidly as possible (if λ > 0) or remain in C as long
as possible (if λ < 0).

The function Φ(x, y) defined in Eq. (8) is now
given by

Φ(x, y) = E

[
exp

(
−λT +K[X(T ), Y (T )]

θ

)]
.

(48)
It is a solution of the PDE

1

2
σ2y2Φyy + µyΦy + f0y

2Φx = βΦ, (49)

where β := λ/θ, and the boundary conditions are

Φ(x, y) =

{
e−1/θ if x/y2 = k1,
1 if x/y2 = k2.

(50)

Let z := x/y2 and define Ψ(z) = Φ(x, y), as
above. The function Ψ satisfies the ODE

2σ2z2Ψ′′(z) + [(3σ2 − 2µ)z + f0]Ψ
′(z) = βΨ(z).

(51)
The boundary conditions are the same as in the
previous cases:

Ψ(z) =

{
e−1/θ if z = k1,
1 if z = k2.

(52)

The general solution of Eq. (51) is in terms of the
Kummer functions M(·, ·, ·) and U(·, ·, ·)          (9],
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p

Ψ(z) = z−
γ−4µ

8σ2 + 1

4

×
[
c1M

(
γ − 4µ

8σ2
+

1

4
,

γ

4σ2
+ 1,

f0
2σ2z

)
+ c2U

(
γ − 4µ

8σ2
+

1

4
,

γ

4σ2
+ 1,

f0
2σ2z

)]
, (53)

where

γ := 2
√

σ4 + 4(2β − µ)σ2 + 4µ2. (54)

Proposition 2.3. Wemay write that the value function
in Case 3 is

F (x, y) = −θ ln[Ψ(x/y2)], (55)

where Ψ(·) is defined in Eq. (53). The constants c1
and c2 are deduced from the boundary conditions in
Eq. (52). Furthermore, the optimal control is given
by

u∗(x, y) = −b0y

q0
Fy(x, y) (56)

for k1 < x/y2 < k2.

Let us take b0 = q0 = f0 = µ = 1, σ =
√
2 and

λ = 8. Then θ = 2, β = 4 and the value function
F (x, y) can be expressed as elementary functions:

Ψ(z) = c1 (1 + 4z) + c2ze
1/(4z). (57)

Let k1 = 1 and k2 = 2. We find that

c1 =
2e−5/8 − 1

10e−1/8 − 9
(58)

and

c2 =
e−1/4 (5− 9e−1/2)

10e−1/8 − 9
. (59)

Proceeding as above, we can obtain the value function
F (x, y) and the optimal control u∗(x, y) explicitly.

Now, when λ = 0 (as in Cases 1 and 2), the
function Ψ(z) (denoted by Ψ0(z)) becomes

Ψ0(z) = d1 + d2Ei1
(
− 1

4z

)
, (60)

where Ei1(z) is an exponential integral function
defined by

Ei1(z) =
∫ ∞

1

e−wz

w
dw. (61)

The constants d1 and d2 for which the boundary
conditions are satisfied are

d1 =
Ei1(−1/8)e−1/2 − Ei1(−1/4)

Ei1(−1/8)− Ei1(−1/4)
(62)

and

d2 =
1− e−1/2

Ei1(−1/8)− Ei1(−1/4)
. (63)

From Ψ0(z), we can now compute the corresponding
value function F0(x, y) and the optimal control
u∗0(x, y).

The value functions F (x, y) and F0(x, y) and the
optimal controls u∗(x, y) and u∗0(x, y) are shown
respectively in Figure 4 and Figure 5.

Figure 4: Functions F (x, y) (solid line) and F0(x, y)
in Case 3 for x/y2 ∈ [1, 2] when b0 = q0 = f0 =
µ = 1, σ =

√
2 and λ = 8.

Figure 5: Functions u∗(1, y) (solid line) and u∗0(1, y)
in Case 3 for y ∈ [(

√
2)−1, 1] when b0 = q0 = f0 =

µ = 1, σ =
√
2 and λ = 8.

If we replace µ = 1 by µ = −1, we find that
the general solution of Eq. (51) is given in terms of
modified Bessel functions:

Ψ(z) = e1/(8z)
{
c1 I√5/2[1/(8z)]

+ c2K√
5/2[1/(8z)]

}
. (64)

The value function F (x, y) and the optimal control
u∗(x, y) are presented respectively in Fig.6 & Fig.7,
together  with  the  corresponding  functions  when
µ = 1. We see that although the value functions are

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2024.19.37 Mario Lefebvre

E-ISSN: 2224-2856 357 Volume 19, 2024



rather similar, the optimal controls are quite different.

Figure 6: Functions F (x, y) when µ = 1 (solid line)
and µ = −1 in Case 3 for x/y2 ∈ [1, 2] when b0 =
q0 = f0 = 1, σ =

√
2 and λ = 8.

Figure 7: Functions u∗(1, y) when µ = 1 (solid line)
and µ = −1 in Case 3 for y ∈ [(

√
2)−1, 1] when

b0 = q0 = f0 = 1, σ =
√
2 and λ = 8.

3 Conclusion
In this paper, we obtained explicit and exact solutions
to optimal control problems for two-dimensional
diffusion processes that could be used as models for
the wear (or the remaining lifetime) of a device.
These problems are particular LQG homing problems
which are very difficult to solve, especially in two or
more dimensions.

Using a result due to Whittle, it was possible
to transform the control problems into purely
probabilistic problems. Indeed, when the relation
in Eq. (7) holds, it is possible to reduce the
non-linear PDE satisfied by the value function to
a linear PDE. This linear PDE is in fact the
Kolmogorov backward equation satisfied by a certain
mathematical expectation for the corresponding
uncontrolled process.

Solving the Kolmogorov backward equation,
subject to the appropriate boundary conditions, is in

itself a difficult problem. Here, the linear PDE was
solved explicitly in three important cases by making
use of the method of similarity solutions.

When the relation in Eq. (7) does not hold, we can
try other methods to obtain at least an approximate
expression for the value function. We can also
compute a numerical solution in any particular case.
Another possibility is to calculate bounds for the
value function and the corresponding optimal control,
as was done in, [10].

We could try to solve particular problems when
there is more than one explanatory variable Y (t).
Finally, we could consider discrete-time versions of
the problem treated in this paper.
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