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1  Introduction 
In the last few decades, state estimation of nonlinear 
systems has emerged as a vital research focus for a 
broad community of researchers, [1], [2], [3], 
particularly in the control systems field, [4], [5], [6], 
where state measurements are essential for 
designing robust and effective control strategies. 
Despite significant advancements, designing a state 
observer for a general class of nonlinear systems 
remains a challenging and open topic. 

A review of the literature reveals that 
established observer design techniques can be 
categorized into two distinct approaches. The first 
involves applying a coordinate transformation to the 
observation error dynamical system, thus converting 
it into a linear form, [7]. This transformation 
facilitates the implementation of well-known 
techniques applicable to linear systems; however, it 
is often constrained by the complexities of 
establishing such transformations. In contrast, the 
second approach does not require any state 
transformation, directly utilizing the system 
dynamics in the observer design, [8]. The most 

widely adopted strategy in this context is predicated 
on solving a Riccati-like equation for specific 
classes of nonlinear systems that satisfy the 
Lipschitz continuity condition, [9], [10], [11], [12]. 
Notably, most existing results are grounded in the 
principle that the linear component of the 
observation error dynamics predominates over the 
nonlinear component.  This approach leverages the 
Lipschitz property of nonlinearity, allowing for the 
substitution of the nonlinear term with a linear 
positive term, thereby simplifying the observer 
design process, [13], [14]. However, for nonlinear 
systems characterized by large Lipschitz constants, 
this methodology may become ineffective, as the 
associated Riccati-like equations may no longer be 
solvable. To expand the class of nonlinear systems 
that can be considered and surmounting the 
drawbacks of the aforementioned techniques, a 
more general condition for observer design is 
introduced, referred to as the one-sided Lipschitz 
continuity condition. Up to date, many interesting 
observation schemes for this class of system have 
been developed; readers can refer to [15], [16]. 
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Over the last three centuries, fractional-order 
calculus has made substantial contributions to the 
mathematical literature. Its fundamental concept lies 
in generalizing the traditional definitions of 
derivatives and integrals, [17]. With these powerful 
tools, dynamical systems modeling, analysis, and 
control have undergone considerable development 
in various scientific fields, including viscoelastic 
[18], electromagnetism [19], biology [20], 
mechanics [21], robotics [22], aerodynamics [23], 
renewable energy [24], and many others. 
Nevertheless, the design of observers for fractional-
order systems, particularly those with one-sided 
Lipschitz conditions, remains an underexplored 
area, with few existing results in the current 
literature [25], [26]. 

Motivated by the aforementioned discussion, 
the primary contribution of this paper is the 
development of a novel NMI-based observer for 
fractional-order one-sided Lipschitz nonlinear 
systems. Utilizing the one-sided Lipschitz property 
and quadratic inner boundness, along with the 
fractional-order extension of the Lyapunov direct 
method, we derive sufficient conditions for the 
observer’s existence and the asymptotic 
convergence of the observation error, expressed in 
the form of an NMI. 

The rest of this paper is organized as follows: 
Section 2 introduces the foundational concepts and 
pertinent results related to fractional-order calculus. 
In Section 3, the observation problem for fractional-
order one-sided Lipschitz systems is 
comprehensively detailed. The primary 
contributions and main results are presented in 
Section 4. To validate the efficacy of the proposed 
observation technique, simulation results for a 
fractional-order nonlinear system are provided in 
Section 5. Finally, conclusions are drawn in Section 
6. 
 
 
2  Preliminaries 
Fractional calculus is concerned with the integrals 
and derivatives of orders that might have real or 
complex values. One of the fundamental notions of 
fractional-order calculus is the Riemann-Liouville 
fractional integral, which is stated in Definition 1. 
 

Definition 1, [27]. The orderαthorder Riemann-
Liouville fractional integral of a continuous function 
𝑓(𝑡)on the left half-axis of the real numbers is 
defined by: 

𝐼𝑡
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫  

𝑡

𝑡0

𝑓(𝜏)

(𝑡−𝜏)1−𝛼 𝑑𝜏            (1) 
 

WhereΓ(. ) is the gamma function. 
 
Definition 2, [27]. The Riemann-Liouville 
fractional derivative of order 𝛼 ∈ ℝ+of a function 
𝑓(𝑡) is defined by: 

𝑅𝐿𝐷𝑡
𝛼𝑓(𝑡) = (

d

d𝑡
)

𝑛
𝐼𝑛−𝛼𝑓(𝑡)              (2) 

 

Where n − 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ 
 
Definition 3, [27]. The Caputo fractional 
Derivatives of order 𝛼 ∈ 𝐑+of a function 𝑓(𝑡) is 
defined as follows: 

𝑡0

𝐶 𝐷𝑡
𝛼𝑓(𝑡) = 𝐼𝑛−𝛼𝑓(𝑛)(𝑡)              (3) 

 

It is the one most frequently used in engineering 
problems and the one used in this paper. 

 
Lemma 1, [28]. Let𝑓 ∈ 𝐑𝑛 be a derivable functions 
vector. Then for any given time instant ≥ 𝑡0: 

1

2
𝐶𝐷𝑡

𝛼𝑓2(𝑡) ≤ 𝑓(𝑡) 𝐶𝐷𝑡
𝛼𝑓(𝑡)       (4) 

 
Theorem 1, [29]. Let𝑥 = 0 be an equilibrium point 
for the Caputo fractional non-autonomous system 

𝐷𝛼𝑥(𝑡) = ℎ(𝑥, 𝑡)                 (5) 
 

where ℎ(𝑥, 𝑡) satisfies the Lipschitz condition with 
𝑙 > 0 as Lipschitz constant and 𝛼 ∈ (0,1).  
 
Assume that there exists a Lyapunov 
functional𝑉(𝑡, 𝑥)satisfying: 

𝛼1 ∥ 𝑥 ∥𝑎1≤ 𝑉(𝑡, 𝑥) ≤ 𝛼2 ∥ 𝑥 ∥𝑎1𝑎2

𝐷𝛽𝑉(𝑡, 𝑥) ≤ −𝛼3 ∥ 𝑥 ∥𝑎1𝑎2
        (6) 

where 𝛽 ∈ (0,1), 𝛼1, 𝛼2, 𝛼3, 𝑎1, 𝑎2 are positive 
constants and ||. || denotes an arbitrary norm. Then 
the equilibrium point of the system (.) is Miattag-
Leffler stable. 
 
Lemma 2, [30]. Consider a given matrix 𝜁 =

[
𝜁11 𝜁12

𝜁21 𝜁22
] knowing that 𝜁11

𝑇 = 𝜁11 and 𝜁22
𝑇 = 𝜁22 In 

this case, the criteria set out below are equivalent: 
1 𝜁 < 0 
2 𝜁11 < 0, 𝜁22 − 𝜁12

𝑇 𝜁11
1 𝜁12 < 0 

3 𝜁22 < 0, 𝜁11 − 𝜁12
𝑇 𝜁22

1 𝜁12 < 0 
 
 

3  Problem Statement 
In this study, we are interested in the class of 
fractional-order nonlinear systems, modeled by: 

{
𝐷𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) + Φ(𝑥(𝑡), 𝑢)
𝑦(𝑡) = 𝐶𝑥(𝑡)

        (7) 
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Where 𝑥 ∈ 𝐑𝑛 is the state vector, 𝑦 ∈ 𝐑𝑚 is the 
output, 𝑢 ∈ 𝐑𝑝 denotes the input, 𝐴 ∈ 𝐑𝑛×𝑛, 𝐶 ∈
𝐑𝑚×𝑛, and Φ(𝑥, 𝑢) represents a one-sided Lipschitz 
nonlinear functions vector. 

Before proceeding with our problem statement, 
we require definitions of Lipschitz and one-sided 
Lipschitz nonlinear functions. 
 
Definition 4. The function Φ(𝑥, 𝑢) is said to be 
locally Lipschitz with respect to 𝑥 in a region 𝔻 if 
there exists a constant 𝑙 ≥ 0 such that the following 
condition holds: 

∥ Φ(𝑥, 𝑢) − Φ(𝑦, 𝑢) ∥≤ 𝑙 ∥ 𝑥 − 𝑦 ∥, ∀𝑥, 𝑦 ∈ 𝔻 
(8) 

 
Where 𝑙 is the Lipschitz constant and 𝑢 is an 
admissible control law. If 𝔻 = ℝ𝑛,then Φ(𝑥, 𝑢) is 
said to be globally Lipschitz. 
 
Definition 5. The function Φ(𝑥, 𝑢) is said to be one-
sided Lipschitz if ∀𝑥, 𝑦 ∈ 𝔻, there exists a constant 
𝜌 ∈ ℝ satisfiying: 
 

< 𝛷(𝑥, 𝑢‾) − Φ(𝑦, 𝑢‾), 𝑥 − 𝑦 >≤ 𝜌 ∥ 𝑥 − 𝑦 ∥2   (9) 
 
Where 𝜌 is called the one-sided Lipschitz constant 
and it corresponds to the Jacobian’s logarithmic 
matrix norm: 

𝜌 = lim
𝑡→∞

 sup [𝜇 (
∂Φ

∂𝑥
)] , ∀𝑥 ∈ 𝔻          (10) 

 
Definition 6. The function Φ(𝑥, 𝑢) is quadratically 
inner bounded in 𝔻 if there exsit 𝛽, 𝛾 ∈ ℝ such that 
the following inequality holds ∀𝑥, 𝑦 ∈ 𝔻. 
(Φ(𝑥, 𝑢‾) − Φ(𝑦, 𝑢‾))𝑇(Φ(𝑥, 𝑢‾) − Φ(𝑥, 𝑢‾)) ⩽

𝛽 ∥ 𝑥 − 𝑦 ∥2+ 𝛾⟨𝑥 − 𝑦, Φ(𝑥, 𝑢‾) − Φ(𝑦, 𝑢‾)⟩
     (11) 

 
Assuming that the defined system includes 

certain states that cannot be directly measured, this 
research aims to devise a fractional-order observer 
that provides an accurate estimate of the full state 
vector. To overcome this latter challenge, we 
consider the observation scheme as follows: 

𝐷𝛼𝑥̂(𝑡) = 𝐴𝑥̂(𝑡) + Φ(𝑥̂, 𝑢) + 𝐿(𝑦 − 𝐶𝑥̂)     (12) 
 
Then the observation error system dynamics for 
𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) are provided by: 

𝐷𝛼𝑥̃(𝑡) = (𝐴 − 𝐿𝐶)𝑥̃(𝑡) + ΔΦ        (13) 
Where ΔΦ = Φ(𝑥, 𝑢) − Φ(𝑥̂, 𝑢). 
 

Here, the observer gain 𝐿 should be designed in 
such a way as to guarantee the asymptotic 
convergence of the error system trajectories toward 
the origin. 

 

4  Main Results 
In this section, a sufficient condition for the 
existence and asymptotic convergence of the 
proposed observer is established. The following 
theorem summarizes our main findings: 
 
Theorem 2. Assuming that system (7) satisfies the 
conditions (10) and (11) with constants 𝜎, 𝜌 and 𝜂, 
and if there exist scalars 𝑐, 𝜎 > 0 such that the 
following Riccati-like inequality has a symmetric 
positive definite solution 𝑃: 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝜀𝑃2 + 2 (𝜌 +
2𝛽

𝜀
+

(2𝛾−𝜀)2

4𝜀
) 𝐼𝑛 

−𝜎𝐶𝑇𝐶 < 0
   (14) 

 
And the observer holds the form (13), with: 

𝐿 =
𝜎

2
𝑃−1𝐶𝑇                              (15) 

 
Then it can be assured that observer error 
dynamicsare asymptotically stable. 
 
Proof: Examining the following Lyapunov 
functional candidate: 

𝑉(𝑡, 𝑥̃) = 𝑥̃𝑇(𝑡)𝑃𝑥̃(𝑡)            (16) 
 
Applying the fractional derivative of order𝛼to 
expression (19) and referencing Lemma 1 yields: 

𝐷𝛼𝑉 ≤ 2𝑥̃𝑇𝑃(𝐷𝛼𝑥̃)               (17) 
 
By substituting Equation (14) into Equation (17), we 
obtain: 

𝐷𝛼𝑉 ≤ 𝑥̃𝑇((𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶))𝑥̃(𝑡)

+2𝑥̃𝑇𝑃ΔΦ
   (18) 

 
The following property holds for all scalar values of 
𝜖 >  0: 

2𝑥̃𝑇𝑃ΔΦ ≤ 𝜀𝑥̃𝑇𝑃2𝑥̃ +
1

𝜀
ΔΦ𝑇ΔΦ           (19) 

 
Since Φ(𝑥, 𝑢) is quadratically inner bounded, it 
follows from (-) that one can derive: 

2𝑥‾𝑇𝑃ΔΦ ≤ 𝜖𝑥‾𝑇𝑃2𝑥‾ +
1

𝜀
(2(𝛽𝑥‾𝑇𝑥‾ + 𝛾𝑥‾𝑇ΔΦ) − ΔΦ𝑇ΔΦ)

        (20) 

 
From the one sided Lipschitz definition, it is evident 
that: 

𝜌𝑥‾𝑇𝑥 − 𝑥‾𝑇ΔΦ ≥ 0        (21) 
 

On the basis of inequalities (20) and (21), we 
can express equation (18) in the following 
reformulated form: 
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𝐷𝛼𝑉≤[ 𝑥̃𝑇

ΔΦ𝑇]
𝑇

×

[
(𝐴−𝐿𝐶)𝑇𝑃+𝑃(𝐴−𝐿𝐶)+𝜖𝑃2+(𝜌+

2𝛽

𝜀
)𝐼𝑛 (

2𝛾−𝜀

2𝜀
)𝐼𝑛

(
2𝛾−𝜀

2𝜀
)𝐼𝑛 −

1

𝜀
𝐼𝑛

]

×[
𝑥̃

ΔΦ
]

      (22) 

 
To achieve 𝐷𝛼𝑉 ≤ −𝛼3 ∥ 𝑥 ∥𝑎1𝑎2, the following 
condition should be accomplished: 

[
(𝐴−𝐿𝐶)𝑇𝑃+𝑃(𝐴−𝐿𝐶)+𝜖𝑃2+(𝜌+

2𝛽

𝜀
)𝐼𝑛 (

2𝛾−𝜀

2𝜀
)𝐼𝑛

(
2𝛾−𝜀

2𝜀
)𝐼𝑛 −

1

𝜀
𝐼𝑛

]

<0
    (23) 

 
By referring to Lemma 2  the condition in (23) can 
be expressed as : 

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) + 𝜖𝑃2 +

(𝜌 +
2𝛽

𝜀
+

(2𝛾−𝜀)2

4𝜀
) 𝐼𝑛 < 0                          (24) 

 
Let 𝐿 =

𝜎

2
𝑃−1𝐶𝑇, thenconditions (24), (14) are 

equivalent. 
 
 
5  Simulation Results 
This section presents a numerical simulation 
example demonstrating the effectiveness of the 
fractional-order observer design technique 
introduced in Section 3. We consider the simulation 
example provided in [31]. Consider a fractional-
order nonlinear dynamical system represented by Eq 
(1), defined as follows: 

𝐴 = [
−3 1
0 −6

] ;  𝐶 = [1  0]                    (25) 
 

Φ(𝑥, 𝑢) = [
sin(𝑥1) − 2𝑥1

−2𝑥2 + cos (𝑥2)
]             (26) 

 
By applying the mean value theorem one can derive: 

ΔΦ𝑇 𝑥̃(𝑡) ≤ −‖𝑥̃(𝑡)‖;                (27) 
 

ΔΦ𝑇ΔΦ ≤ 9‖𝑥̃(𝑡)‖2;               (28) 
 

Consequently, the system’s nonlinearity 
satisfies the one-sided Lipschitz continuity 
condition (.) and the quadratic inner boundness(.), 
with 𝜌 = −1, 𝛽 = 9 , and 𝛾 = 0. In turn, Theorem 

2 can be examined to design a full-state observer for 
this system. By setting 𝜎 = 10 and utilizing the 
YALMIP toolbox, the resolution of the NMI (−) 
provides the following result: 

𝑃 = [
1.7229 0.2195
0.2195 2.6591

] = 𝑃𝑇 > 0      (29) 
 
Thus, the observer gain matrix: 
 

𝐿 = [
2.9329

−0.2421
]                             (30) 

 
The system’s initial conditions are selected as 

𝑥0 = [2, −1], whereas the designed observer is 
initialized with zero initial conditions. 

 

 
Fig. 1: Actual state 𝑥1 and its estimation time 
history  
 

 
Fig. 2: Actual state 𝑥2 and its estimation time 
evolution 
 

 
Fig. 3: The observation error time evolution 
 

The observation results of the system states 𝑥1 
and 𝑥2 are illustrated in Figure 1 and Figure 2, 
respectively.The proposed observer demonstrates 
significant effectiveness in accurately reconstructing 
the system's full state vector, which. This 
effectiveness is further corroborated by the 
observation error time history Figure 3, which 
exhibits asymptotic convergence to zero. 
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6  Conclusion 
An innovative NMI-based observer design for a 
broader class of nonlinear systems is presented in 
this study. Leveraging the one-sided Lipschitz 
condition and the quadratic inner-boundedness 
property, combined with the fractional-order 
extension of Lyapunov's direct method, sufficient 
conditions for the applicability of the proposed 
observer are established. The stability analysis 
ensures that the observation error converges 
asymptotically to the origin. The effectiveness of the 
proposed technique is validated through the state 
estimation of a fractional-order nonlinear system. 
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