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1 Introduction
The celebrated Kalman filter has been applied in
many fields of science and engineering, such as

prediction and estimation applications to the
aerospace  industry, communication systems,
filtering noise from images, power system, GPS
position estimation, autonomous orbit

determination, pose regularization, robotics, control
effectiveness estimation on airplanes, applications
with time-correlated measurement errors, aircraft
state estimation, as referred in [1], [2], [3], [4], [5],
[6], [7], [8], [9]. Complex Kalman filter has been
used with success in applications with complex
signals, such tracking, oceanography, array
processing, communications, biomedicine, tracking
for Global Navigation Satellite System (GNSS)
meta-signals, power system frequency, unbalanced
grids, sensor applications as referred in [10], [11],
[12],[13], [14], [15].

It is known that a complex signal is
characterized by the following statistical properties
(a) the covariance, that captures the information
corresponding to the total power of the signal and
(b) the pseudo-covariance or complementary
covariance, that characterizes the correlations
between the real and imaginary parts of the signal,
[11]. The traditional linear state space model is
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applicable only to proper (circular) signals as it
takes into account the covariance matrix and ignores
the pseudo-covariance matrix; then the conventional
complex Kalman filter is derived. The augmented or
widely linear model is applicable to improper (non-
circular) complex signals as it takes into account
both the covariance and pseudo-covariance
matrices; then the augmented complex Kalman filter
is derived.

Traditionally, Kalman filter computes the state
estimation and prediction as well as the
corresponding estimation and prediction error
covariances using the observations. It has been
noted [16] that the computations of prediction error
covariances are independent of the observations and
as such can be calculated a-priori, i.e. before any
observation is available. Then the prediction error
covariance can be iteratively derived by the Riccati
recursion, [16].

In this paper we consider the time-invariant
augmented or widely linear model, where all the
model parameters are time constant. In this case,
the augmented complex Riccati equation appears. In
view of the importance of the real Riccati equation,
there exists considerable literature on its iterative
solutions, [1]. Following the ideas of solving the
real Riccati equation [1] and the ideas of solving the
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complex Lyapunov equation [17], we present
iterative solutions of the complex Riccati equation.

The key contributions of the paper are:

(a) the derivation of iterative solutions (per step and
doubling algorithms) for the solution of the complex
Riccati equation

(b) the determination of the steady-state augmented
complex Kalman filter parameters

(c) the derivation of the computational requirements
of the iterative algorithms

(d) the development of a method to select the faster
algorithm.

2 Augmented Riccati

Equation
The time-invariant augmented or widely linear
model arises in linear estimation concerning
complex signals and is described by the following
state space equations, [16]:

Complex

Xa(k) — FaXa(k _ 1) + Wa(k) (1)
22() = Hx*(k) + v*(k) )
where

- the 2n X 1 augmented state vector x?(k) = [;83

consists of the n dimensional state vector x(k) and

its conjugate x(k)

- the 2m X1 augmented measurement vector

z3(k) = [;EB consists of the m dimensional

measurement vector z(k) and its conjugate Z(k)

Fa= [E
A

weelh B

%] is the augmented transition matrix

is the augmented output matrix

- the augmented state noise w?(k) = [v_v(k)
w(k)

consists of the n dimensional state noise

vector w(k) and its conjugate w(k); w(k) is

Gaussian with zero mean, covariance Q and pseudo-

covariance U; w?(K) is non-circular Gaussian with

. U

zero mean and covariance Q2 = % Q]
. a v(k)
- the augmented measurement noise v@(k) = (k)
consists of the m dimensional state noise

vector v(Kk) and its conjugate V(Kk); v(k) is Gaussian
with zero mean, covariance R and pseudo-
covariance V; v3(k) is non-circular Gaussian with

. A _[R V
zero mean and covariance R? = [\7 ﬁ]
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x(0)
x(0)
of the initial state x(0) and its conjugate X(0); x(0)
is Gaussian with mean x,, covariance P, and

- the augmented initial state x2(0) = [ consists

pseudo-covariance IlIy; x2(0) is non-circular
. . X0 .
Gaussian with mean x,? = [io] and covariance
pa_ Po Ho]
0 - — — .
I P

Note that Q2 R?,P,® are Hermitian matrices.
Note also that a covariance matrix M is a Hermitian
matrix (M* = M) and a pseudo-covariance matrix N
is a symmetric matrix (NT = N); T is the transpose
and * is the conjugate transpose.

The augmented complex Kalman filter (ACKF)
computes the augmented state prediction and
estimation and the corresponding covariances, using
the augmented Kalman filter gain, which is derived
by minimizing the cost function based on the MSE
criterion, [11].

The state prediction x(k|k — 1) has covariance
matrix P(k|k —1) and pseudo-covariance matrix
MM(k|Jk —1). The augmented state prediction
x2(k|k — 1) has covariance matrix P?(klk —1) =

P(klk—1) T(klk—1)
Nklk—-1) Pklk-1JI

The state estimation x(k|k) has covariance
matrix P(k|k) and pseudo-covariance matrix
[1(k|K). The augmented state estimation x?(k|k) has
P(klk) T(klk)
M(klk) Pkl

Note that P?(klk—1)and P2(k|k)
Hermitian matrices.

The augmented Kalman filter gain is K?(k) =

Kk) G
[a(k) K(k)]'

covariance matrix P3(k|k) =

arc

For time-invariant systems, where the
augmented model parameters F? H? Q3 R? are
constant matrices, the Time Invariant Augmented
Complex Kalman Filter is derived:

Time Invariant Augmented Complex Kalman Filter
(TIACKF)

initial conditions

x2(0]—1)=x,?

P2(0]-1) = P,2

iterations k = 0,1, ...

K3(k) = P3(k|k — 1)H®"[H3P3(k|k — 1)H?®" + R3] !
x?(klk) = [1* — K2(k)H?]x?(k|k — 1) + K?(k)z?(k)
P2(k|k) = [1* — K3(k)H?*]P2(k|k — 1)

x?(k + 1|k) = F2x?(k|k)

P3(k + 1]k) = Q* + F2P3(k|k)F?"
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Comment 1. The initial conditions are the statistics
(mean, covariance) of the initial augmented state
given no measurements.

Comment 2. The existence of the inverse of the
matrices in the augmented Kalman filter gain
equation is ensured assuming that R?* is positive
definite (and hence invertible); this has the
significance that no measurement is exact.

It is evident that computations of estimation and
prediction error covariances and of the Kalman filter
gain are independent of the observations. Then the
prediction error covariance can be iteratively
derived by the Augmented Complex Riccati
equation, [16]:

Pa(k + 1]k) = Q? + F3P3(k|k — 1)F?"
—F2p3(k|k — 1)H?"
[H2P?(k|k — 1)H?" + R3] 1
H2P3(k|k — 1)F2" 3)

Note that assuming that R? is positive definite
and using the Matrix Inversion Lemma the
Augmented Complex Riccati equation is rewritten
as:

Pa3(k+ 1lk) = Q2@
+Fa[Pa (k|k — 1) + He "R THA] T FR 4)

Note that b? = H2*R2™'H2 is a Hermitian matrix.

If the signal process model is asymptotically
stable, then there exists a steady-state value P? of
the prediction error covariance matrix. This value
remains constant after the steady-state time is

reached. The steady-state prediction error
covariance matrix satisfies the Augmented
Complex Algebraic Riccati equation

pa =Qa+FaPa Fa*

—F3P3H3"[H?P3H?" + R3]~ tHP3F?" (5)

which, assuming that R? is positive definite, can be
rewritten as:

P2 = Q2 + Fa[Pal 4 HURATIHA] R (6)
Existence, localization and approximation of
complex Riccati equation have been studied in [18].
Solutions of the complex non-symmetric algebraic
Riccati equation are discussed in [19].
In the steady-state case, the Steady State
Augmented Complex Kalman Filter is derived:

Steady State Augmented Complex Kalman Filter
(SSACKF)

initial condition

x2(0]0) = x?,

iterations k = 1,2, ...

x2(k|k) = C*x?(k — 1]k — 1) + D?z?(k)
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Comment.

The steady-state coefficients

Ca — [Ia _ KaHa]Fa

Da = K2

are calculated off-line by first solving the
corresponding augmented complex Riccati equation
and then and off-line computing the steady-state
Kalman filter gain:

K? = PAH*'[H?P?H?" + R?] 1.

It is clear that the steady-state augmented
complex Kalman filter parameters are determined
via the solution of the augmented complex Riccati
equation.

3 lterative Per Step Algorithms

3.1 Direct Per Step Algorithm

The conventional solution of the complex Riccati
equation is derived by iteratively implementing the
Augmented Complex Riccati equation.

Assuming that R? is positive definite (and hence
invertible) and P2(0|—1) =0, which implies
P2(1|0) = Q?, the direct use of the Augmented
Complex Riccati equation leads to the direct per
step algorithm:

Direct Per Step Algorithm
initialization

b2 = H2*Ra"1ya

initial condition

P2(1]0) = Q*

iterations k = 1,2, ...

Pa(k + 1]k) = Q2 + Fa[Pa~ (k|k — 1) + b?] F**
until

[[P2(k + 1]k) — P?(klk— 1| < &
output

p2 = &52 Pa(k + 1]k)

3.2 Transformed Per Step Algorithm
Assuming that Q® and R? are positive definite (and
hence invertible) and using the Matrix Inversion
Lemma in the Augmented Complex Riccati
equation we get:

Pa(k+ 11k) = Q?

+Fa[Pa 7Y (k|k — 1) + HA"R " Ha] T R

= P37 I (k+1|k) = Q7"

_Qa—lFa

[P~ (k|k — 1) + Ha"Ra"'Ha 4 Fa*Qa~tFa]
1:;21*Q2;1_1

= P37 (k + 1]k) + H'Ra'H? 4+ F2"Q27'F?
=Q*' + HY'RATHA + FA Q2 ' F2
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_Qa—lFa
[P2 2 (k|k — 1) + HA"RaTIHA 4 Fa*Qa~tpa]
(@7'F?)

Then, setting

[A(klk — 1) = P27 (k|k — 1)

+H"R3TTHA + FA7Qa 7T F2

ra = Qa_l + Ha*Ra—lHa + Fa*Qa—lFa

Pa = Qa—lpa

we are able to rewrite the augmented complex
Riccati equation as:

Ak + 1]k) = I'? — d22 1 (k|k — 1)P?”

Then assuming P2(0|—1) = 0, which implies
P2(1|0) = Q?, we derive the transformed per step
algorithm:

Transformed Per Step Algorithm
initialization

ra = Qa—1 + Ha*Ra—lHa + Fa*Qa‘lFa
P2 = Qa—lFa

initial condition

L3(1]0) =T? = Q*™' + H¥'R*'H? + F"Q*'F?
iterationsk = 1,2, ...

LAk + 1]k) = ' — 22 (k|k — 1)P?"
until

LAk + 1|k) = LA(klk— D] < ¢

output

1? = lim 17 (k + 1[k)

Pa = {12 — (H¥R*H® + F'Q 'F))

3.3 Dual Direct Per Step Algorithm

We are going to derive the iterative dual direct per
step algorithm by using the duality concept [16]. In
fact, for the nx 1 complex vector x = xR + jx!,
with xR and x! its real part and imaginary part,

R
consider its dual 2nx 1 vector x4 = [XI].Then
X

In

jl
x? = ],x4, where |, = [I _]]rll ] is of dimension
n

n
2n X 2n and I, is the n X n identity matrix. Note

that the following property holds: Ji = 2]J;1 =
K
_jIn jln.

Furthermore, the dual covariance matrix is related to
the 2n X 2n augmented covariance matrix by:
P? =J,PY;

Also, the dual matrix is related to the 2m X 2n
augmented matrix by:

M? =], M1
Then we have:
F2 = J,F9J;1
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H? =], HIJt
Q* =1,Q%;
R? = J,,RYJ;,

Assume that R? and RY are positive definite (and
hence invertible). Then

b? = H¥'RA"'H?
bd = Hd' R4 HY
Then
b? = H3"Ra'H?
1\ * « 1 _

= (JuHY2"Y) UmRYm)  (OmHYRY)

—1* TR -1._ -
= Ja  HY Jrgm 11R°‘ JotmHY 5t o
— ]Hl* (Hd*Rd_ Hd) ]Hl — ]r:l* (Hd Rd_ Hd) ]Hl
=i bt
It is clear that
b? = Ji 7' bYat = JJnbd5?
and
b? = 2J; b3, = J7b3,
Also, P2(klk — 1) = J,P4(k|k — D]}

Note that F4,HY,Q4, R, bd and PI(k|k—1) are
real matrices.

Note also that Q4,RY,bd and P4(k|k — 1) are real
symmetric matrices.

Then, from the per step algorithm we get:

Pa(k + 1]k) = Q2 + Fa[Pa (k|k — 1) + b3] " F**
= JnPY(k + 115 =JaQ 5

+nFU5?

[0Pedi - D)™ 4371
UnFYaY)" = JuQYs + JnFdJ5t

2 (Peadic = D) 1t + 5570
[

=1nQ%5 .
HaF Y, (P = D) +be] TR
= 1 QY5 + 1P [ (PACGKI = D)+ bd]_l pape
= P4(k + 1|k) = Q¢

+Fd [(Pd(k|k - 1))_1 + bd]_l pa’

since F4 is a real matrix.

-1
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Assuming that P2(0|—1) = 0, which implies
P2(1]0) = Q?, we have derived the dual direct per
step algorithm is derived:

Dual Direct Per Step Algorithm

initialization
FO =] F,
Hd = ]E]lHa]n

Q! =JQy"
RY = Jo' Ry’
bd = 4RI HY
initial condition
P4(110) = J;'QJy"
iterationsk = 1,2, ...
— -1
Pd(k + 1]k) = Q4 + F4 [Pd ‘kk-1) + bd] Fd’
until
[|PdCk + 1]k) — PA(klk — 1)|| < ¢

output
pd = ]ym PA(k + 1]k)
P? = J,PJ;

3.4 Dual Transformed Per Step Algorithm
Using the duality concept, we get
b? = 2J5'b%, = J5b%n

9 = J; 0,
rd =J;ra,
since

b2 = H2*Ra"1ya
= (IHY2Y) (mRY%) " UmHYFY)
= HY g R R H
= (Hd*Rd‘lHd)]H1 = (HdTRd‘lHd)]r—ll
= J3 bRt
@2 = Q*'F? = (1,QY5)~ (nF951)
= a7 QY IR Y Pt
= 13" Q4 Pt = Jd)t
r? = Q2"+ H¥'R*'H? + F2"Q* ' F?
— Qa—l +b2+ Fa*Qa—lFa
= (1nQY5) " +Ja"b95?
+ 0nFY2Y) (02QY2) " (UnFY50)
= J77Q4 TRt + byt
+ 12 PR QY R YaF YRt
= I QY Rt + I bRt 4+ g Fe Q4T R
— ] (Qd—l +pd 4+ FdTQd_le)];l
= Ja 95!

Also
cd = 2J51c¥, = Iy
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since

c = Fa*Qa—lFa

= (InFY3) 0aQY2) " (uFYaY)

= FO QY TR Yo F YR

= J7 P Q4 TR

= Ja cd)t

Then

Lfi(1|0) = JaL2(10)],

since

L3(1]0) = Q3! + H¥'R*™'H? + F3"Q3'F2 =2

Then we define
L(klk — 1) = JL2klk — D],
and from
12k + 1]k) = I'? — ®22 ! (k|k — 1) P2
we get
LAk + 1]k) = I'? — @22 1 (k|k — 1)P?"
= (Ja'T95%) 1
— (a9 U klk — DIRY)  (aredRt)
= ]2 Tt
-1 «
— I oY, (W kIk - 1) Tl (@9) 751
= [Tt — I T (klk — 1) (04) ;!
= I (4= od ™ (k- Do)
= o LAk + 1K)

Thus
Ld(k + 1]k) = J5L2Kk + 1|K)],,

Finally, we define
Pd =3Py
and from

Pa = {12 — (H"R"IHA 4 Fa*QalFa)}
we get
Pa = {17 — (Ha"RIHA 4 Fa*QalFa)}
= P37t = [2 — (H¥'R¥'H? + FA"Q27'F?)
= Pa7' =12 — (b? + F"Q37'F?)
= Ja L5
= (bRt + 0nFY") 0nQY2) ™ OnF "))
=2 195" - (1 bRt

+ I PR QY T F )
= Ja 15t = (13 b9t + 17 FIQY T R
— ]H* (Ld _ (bd + Fde_le)) ]Hl
= P2 =, {10 (bd + Fde_le)}_l I
= InP5
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Then we derive the dual transformed per step
algorithm:

Dual Transformed Per Step Algorithm
initialization

Fd = ]ElFa]n

HY =]t HY,

Q* =J.'Q;"

RY = Jo' Ry

P2 = Qa—lFa

o9 =, 0%,

r?=Q* '+ H¥R¥'H + F¥"Q¥'F?
r4=Jar?,

b? = H¥"R*'H?

b? = J;b%,

@ = Fa*Qa—lFa

cd = Jac?n

initial condition

[2(1]0) =T? = Q2" + H*'R* 'H? 4+ F2*Q2 'F2
L4(110) = J5L2(1]0)],

iterations k = 1,2, ...

LAk + 1]K) = I — »d14 7" (k|k — 1)d”

until

L4k + 1k) — Li(klk — D < &

output

L4 = lli_{glo L(k + 1]k)

pe = {14 — (b + FiQ1'F4)}
P? = JyP;
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is a symplectic matrix.

The doubling concept is to compute the
prediction error covariance matrix at time double
the previous time. Then, we are able to derive the
direct doubling algorithm for solving the complex
Riccati equation.

Direct Doubling Algorithm

initial conditions

a?(1) = F¥*,b?(1) = H**'R®*H?,c?(1) = Q2
iterationsk = 1,2, ...

a?(k + 1) = a®(K)[I? + b?(k)c? (k)] ta?(k)
b2(k + 1) = b?(k)

+a?(K)[I* + b2 (k)c?(k)]~*b?(k)a?" (k)
cAk+1) =c*k)

+a?"(k)c(k)[1? + b?(k)c?(k)]ta?(k)
until

etk +1) —c*®Il < &

output

P = Jim (9

Note that F4,H4,Q4, R4, &9, 79 and LI(k|k — 1) are
real matrices.

Note also that Q4,RY and Ld(k|k —1) are real
symmetric matrices.

4 Iterative Doubling Algorithms

4.1 Direct Doubling Algorithm

Doubling algorithms have been part of the folklore
associated with Riccati equations in linear systems
problems for some time, [1].

After some algebra, assuming that R? is positive
definite (and hence invertible), the augmented
complex Riccati equation can be rewritten as:

[X(k + 11k) _ga [X(klk -1)

Yk +1|k) Y(klk—1)

where

Pa(k+ 1]k) = Y(k + 1|K)X 1 (k + 1]k)
33 = F3*

b2 = Ha*Ra-lHa

c@=Q2

and

ga = aa—l aa—lba ]
c@a?™ 1 23" 4 c3z2 1pa

E-ISSN: 2224-2856

Note that b?(k), c?(k) are Hermitian matrices.
Note also that b?(k)c?(k) is not a Hermitian matrix,
since b?(k)c?(k) # c?(k)b? (k).

4.2 Transformed Doubling Algorithm
Assuming that Q2 and R? are positive definite (and
hence invertible) and using the Matrix Inversion
Lemma in the Augmented Complex Riccati
equation we get:

Pa(k+ 11k) = Q?

+Fa[Pa Y (klk — 1) + H&"RA'H?] " Fa*

= P37 I (k+1]k) = Q"

_Qa—lFa

[P~ (k|k — 1) + Ha"Ra"'Ha 4 Fa*Qa~tFa]
1:;{:1*Qa_1

Then, setting
Me(klk — 1) = P2~ Y (k|k — 1)
g2 = H2*R2™1H2 4+ Fa*Qa—lFa
o® = Qa—1Fa

We are able to rewrite the augmented complex
Riccati equation as:

Ma(k + 1|k) = Q2 ' — @[3 (k[k — 1) + 2] 1a?”

After some algebra, the augmented complex Riccati
equation can be rewritten as:

[X(k + 1|k)] _ya [X(klk -1)

Yk + 1|k) Y(k|k — 1)

where
M3k + 1|k) = X(k + 1|[K)Y 1k + 1]k)
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a® = Qa—lFa

g2 = Fa*Qa—lFa + Ha*rRa " lya

V3 = Qa—l

and

Za _ Sa _ yaO(a—* yaO(a—*Ba _ O(a

O(a—* O(a—* Ba
is a symplectic matrix.

Then assuming P?(0|—1) = 0, which implies
P2(1|0) = Q?, we derive the transformed doubling
algorithm:

Transformed Doubling Algorithm

initial conditions

(1) = Q*'F?

Ba(l) — Fa*Qa_lFa + Ha*Ra_lHa

Y=

iterationsk = 1,2, ...

a?(k+1) = a®(R)[B*K) +y* ()] a? (k)

Bk + 1) = (k) — o (R)[B*(K) + y* ()] " o* (k)
Ya(kl +1) =y*(k) — AW[B*K) + y* )] e (k)
unti

ly*k+1) —-y*®Il <e

output
2 = 1lim v2(k)
pa =q2"

Note that 2(k), y?(k) are Hermitian matrices.

4.3 Dual Direct Doubling Algorithm

We are going to derive the iterative dual direct
doubling algorithm by using the duality concept,
[16]. Using the duality concept and assuming that
R® and RY are positive definite (and hence
invertible), we get:

b2 = Ha*Ra"1y2

= (ImHY7Y) OmRYm) " OmHYRY)

= Ja B T R T H Y

— ]Hl* (Hd*Rd_lHd) ]Hl — ]Hl* (HdTRd_lHd) ]r—ll

=J5 bR

It is clear that

b? = HY'R*TH = J; 'bdJ5t = JJ,bdJ5?
and

bd = HORYTTHY = 2J;1b7), = J7b,
Also,

12 = 195t

a2 (k) = Jpat(W)J;?

b2 (k) = JJnb?(K)]5?

(k) = Jnc? (W5 = 2Jnc?(W)]5*

E-ISSN: 2224-2856

442

Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis

Note that a4(k), b4(k), c4(k) are real matrices.

Then using the doubling algorithm we get:

a?(k + 1) = a®(K)[1* + b3(kK)c3 (k)] "ta?(k)

= Jnad(k+ Dt = Jhat K5

a7 4+ b 001 2nc? (017 Jnat ()5
= Jnad(k+ Dt = Jhat®);?

[alat +Jabd (0 G0J7Y] ™ Tnad (k))5

= Jnad(k+ D)t = Jha?®]5n

19+ bA0cA0] TaYnad ()5

= Jnad (019 + bAcd (0] ad ()5

S ad(k+ 1) = ad(R)[19 + bdK)cd (k)] ad(k)

b2(k + 1) = b?(k) + a?(k)

[12 + b? () ()]~ b2 (k)a®" (k)

= JJnbd(k + D5 = Jnbd ()5

+Hnad ®J;*

a9 + b (01 et (07|
b)) (Inad ()51)"

= Jnbd(R)J5?

+Hnad ®J;5*

[al9t + Jabd Q0Jr Yncd (I

b 0I5 (nad RIr")"

= bl (IRt + JJnad ()5

[19+ b4t (0] TaYabd (0Ja " (Jnad (0Ja")’
= b4 (I + JJna’ (k)

19+ b4t (W] bR (nad (0Ja ")’
= bl (5" + JJna’ (k)

[19+ b4t W] bR R (a40) T
= bl (I + JJna’ (k)

19+ b4t W] bARIR T (a%0) T
= b4 (I + JJna’ (k)

19+ b4 (R)cd00] b  (a4(0) T
= JInbd (R + JJnad(k)

19+ b4 (R)cd00] T b 0) (a4 () 205
= JInbd (R + JJnad(k)

[19 4+ b(k)cd (k)] bd (k) (ad(k)) T

= bd(k + 1) = b4(k)

+ad (k)19 + bd(k)cd(k)]_lbd(k)(ad(k))*
= bd(k + 1) = b4(k)

+ad (k)19 + bd(k)cd(k)]_lbd(k)(ad(k))T
since a4(Kk) is a real matrix
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cA(k+ 1) = c2(k) + a?" (k)c(k)

[12 + b2 (k) c? (k)] ~*a? (k)

= 2Jpcd(k+ D)t = 2, Rt

+(Jnad (0I5 1) 2 ncd ()5 1
195 + Jabd ()i 2?01 Jnad (o))
= 2J,cd ()51 + (Jnad@Jn 1) 2Jncd (05"
Dl 9t + Jabd 00t (01| Tnad (15
= 2J,cd ()71 + 2(0na? (0I5 Tncd ()5
[19 4+ b90)ct (1] T7 Ynad ()5

= 2J,cd ()51 + 2(Jna? (0J51) Tncd (k)
[19+ bR cd(R)] ad(k);?

= 2ncd®Jit + 2057 (a0 Tilacd ()
[19+ be(R) (W) adk));

= 2Jycd )5t + 230 (28(0)) 2 ncd (K)
[19 + bA(k)cd (k)] ad(K)J;?

= 20y (0)5 + 21 (29(0)) )

[19+ be(R) (W) adk)J;

= cdk+ 1) = cd(k)

+(a9 (k) " @)[19 + b (k)cd (k)] ad (k)
= cdk+1) =cd(k)

+(ad () cd @14 + bd(k)cd (k)] ad(k)
since a4 (k) is a real matrix

Thus the dual direct doubling algorithm is derived:

Dual Direct Doubling Algorithm
initial conditions

a?(1) = F*"
b3(1) = H¥'R*'H?
(1) = Q*

al(1) = J;%a? (D],

b4(1) = 2J;"b2 (D],

cd(1) = Ja' (W),

iterationsk = 1,2, ...

ad(k+ 1) = adK)[19 + bd(k)cd(k)]_lad(k)
bd(k + 1) = b4(k)

+ad(k)[14 + bd(k)cd(k)]_lbd(k)(ad(k))T
cd(k+1) = cd(k)

+(ad(k))Tcd(k)[Id + b (k)cd(k)]_lad(k)
until

[cdk+ 1) —cdR)| < ¢

output
Pd = llim cd(k)
P? = J,PY;

Note that b4(k), c4(Kk) are real symmetric matrices.
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4.4 Dual Transformed Doubling Algorithm
(1) = Q4 F
(1) = Q*'F? = (1,Q9;) JuF 5!
= 1571 R Pt
= 15714 R = g el (D)t
= JInad(DJ;?
(k) = J Ml (0I5t = Jnad(K))5?

BI(1) = F4" Q4 'R 4+ HY RI T HY
Ba(1) = Fa*Qa—lFa + ga*ra~lga
= (1aFU2") (aQ%5) JaF Y5
+ (lmHY2Y) (mRY)” TmH Y5
= 1P T R R
3T HY g TR R HY
=J; " (FI QYR + HO R HY) I
= BYDIRT = SJnB (IR
BA(K) = J; T BIRT = JaBC0IR?

vl =Q"

YO =" = (0. =5t TRt
=Y IR = Jhy)R?

Y2k = Jn 7Y 0Ta T = Py (0l

Then using the transformed doubling algorithm we

et:
@@k + 1) = @ (O[F) + v (0] (1)

= n el + DIt = ad W)

R ) P M (9) o [ M1 (9
=551 1T a B0 + YA s T el ()5
=14 1O [RAR) + YA ad ()5
= ad(k+1) =« @®[BIK) + v W] al(R)

Bk + 1) = B(K)
— @@ (W[B(K) + Y2 (] e (k)

= In7 Ak + IRt =T BRI

~(r el (011)”

) o T P €19) e [ R Gl 3

e (3 P KR 9

R CS) R Rl (19) e KR (9

e R () PR MR (S e

[8409) +v4 (9] TJn el ()

= BRI - el (k)
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[B4K) +y4 (0]l ()
= ;‘1

(Bd(k) —ad" () [B(K) + yd(k>]‘1ad(k>) 7t
> pdk+ 1) = B(k)
—ad" ()[R + v ()] Ml (k)

Yok +1) = y2(k)
— aAR[BA(K) + Y2 ()]~ 1a* (k)
= 7Yk + DIt = 1Y)
—J5 tad ()
R (9 P S RT3 el I MR CI 9 P
=TI - Tn T e (W)t
R ) P S ot (13) e i SR (9 P
=1 YA - I el ()1 Yy
(8400 +v40] Jals el (k)
= 7YAIR = T tad(k)
[B4C0) +v4 (0] ad” ()52
_oyx—1
(¥400 = 1[40 + v4 0] o 10)) 17
= yik+ 1) = yi(k)
— ad(R)[B0O) + v (0] el (K)

Note that ad(k), B4(k), y4 (k) are real matrices.

Then we derive the iterative dual transformed
doubling algorithm.

Dual Transformed Doubling Algorithm

initial conditions

(1) = Q*'F?

Ba(l) - Fa*Qa_lFa + Ha*Ra_lHa

Y=

a?(1) = Jrad(D)],

BI(D) = JnBr (D]

Y@ =2 (D),

iterations k = 1,2, ...

ad(k+ 1) = a0O[BAR) +yi(W)] ad(k)

Bi(k + 1) = BI(k) — a“T(k)[Bd(k) + vd(k)]_lad(k)
il + 1) = Y40 — oAU + VI R)] o (k)
until

[vik+1) —yiK)| <e

output

nd = Jim v (k)

P? =],y

Note that B4(k), y4(Kk) are real symmetric matrices.

E-ISSN: 2224-2856

444

Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis

5 Computational Requirements

It is established that the iterative algorithms (per
step and doubling) are algebraically equivalent.
Then it is clear that they calculate theoretically the
same Riccati equation solution.

Example. Assume the augmented model complex

parameters:
Fa
0.2 + 0.3 0.4+0.5j 0.02—0.06j 0.04—0.1j
_10.01+0.01j 0.08+0.09j 0.02-0.02j 0.14+ 0.18j
7 10.02 4+ 0.06j 0.04 + 0.1j 0.2 —0.3j 0.4 — 0.5j
0.02+0.02j 0.14—0.18) 0.01-0.01j 0.08 + 0.09j
pa o [2+3 0.4+05] 3—4j 0.6+O.1j]
3+4j 06-01j 2—0.3j 0.4—0.05j
5 2+5) 2+3j 5+09j
0 = 2-5] 8 549 1+4]
2—-3j 5-9j 5 2 —5j
5-9§ 1-—j 2+5j 8
RA = 0.5 0.2 + 0.3j
0.2 — 0.3 0.5

Using the same convergence criterion € = 1078,
all the augmented algorithms compute the same

augmented solution:
6.4828 2.5467 + 3.4481j
2.5467 — 3.4481j

3.0697 + 1.9908;j
6.4426 + 9.6689j
3.0697 — 1.9908] 6.4426 — 9.6689j 6.4828 2.5467 — 3.4481j
6.4426 — 9.6689) 1.1305—5.8535] 2.5467 + 3.4481j 10.0854

while all the dual algorithms compute the same
dual solution:

10.0854 1.1305 + 5.8535j

6.4426 + 9.66891

4.7763 4.4946 0.9954 3.1104
pd — 44946 5.6079 6.5585 2.9268
0.9954 6.5585 1.7066 —1.9479
3.1104 2.9268 —1.9479 4.4775
with P2 = ], P4J; = 2J,, P93

It is obvious that the per step algorithms may
provide the information when the steady-state time
is reached. It is also clear that the per step
algorithms are iterative algorithms and thus it is
reasonable to assume that they compute the Riccati
equation solution executing the same number of
iterations, which is denoted as s, where obviously
s > 1. It is also clear that the doubling algorithms
are iterative algorithms and thus it is reasonable to
assume that they compute the Riccati equation
solution executing the same number of iterations,
which is [log, s], due to the doubling concept. Thus,
in order to compare the iterative algorithms with
respect to their computational time, we compare
their total calculation burden, which is the per
iteration calculation burden multiplied by the
number of iterations; the calculation burden of the
initialization process and the output process are not
taken into account.

Scalar operations are involved in matrix
manipulation operations, which are needed for the
implementation of the iterative algorithms. In fact,
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real/complex matrix additions, multiplications and
inversions are required for the implementation of

the algorithms. The

calculation burdens

of

real/complex matrix operations are given in the
Appendix, using the calculation burdens of complex

matrix operations in [20].

The iteration calculation burdens of the per step
and doubling iterative algorithms are analytically
calculated in Table 1, Table 2, Table 3, Table 4,
Table 5, Table 6, Table 7 and Table 8.

Table 1. Direct per step algorithm per iteration

Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis

Table 4. Dual transformed step algorithm per
iteration calculation burden

Matrices Iteration
Operation Calculation Burden
3
Ld_l(klk— ) 7(2n)% — (2n)

6

o4 (Klk - 1)

2(2n)3 — (2n)?

oI (k[k — 1)Pd”

(2n)3 + % (2n)? — % (2n)

Ld(k+1]k) =4
—d 7 (kK — 1) Pd”

1 1
E (211)2 + E (21’1)

calculation burden
Matrices Iteration Table 5. Direct doubling algorithm per iteration
Operation Calculation Burden _calculation burden _
_ 7413 — 3902 — 5n Matrices Iteration
Pa (klk — 1) — Operation Calculation Burden
P2 (k|k — 1) + b? 2n% +n b (k)c? (k) 32n3 — 4n?
a a a
[P (klk — 1) +b2] 747~ 390"~ 5n T 1320° 5n4 7112
3 [12 + b2(k)c? (1) n - . n"+1on
— -1
Fo[P 7 (klk — 1) + b?] 320’ — 12n® (K[ + b () ()] 32n3 — 4n?
Fa[Pa " (klk — 1) + ba]_lpa* 32n® —6n% +n a*(k+1) =a*k) 32n3 — 4n?
Pak + 1K) = Q2 [1* + b2 (k)c? (k)] *a (k)
R R 2n% +n ba(k)a?" (k) 32n° — 4n?
+F [P klk—=1)+b ] F 22([12 + b2 (K)cA(K)] 1 32n3 — 6n2 +n
b? (k)a?" (k)
Table 2. Transformed per step algorithm per b2(k + 1) = b2(k) 202 +n
iteration calculation burden +a2 ([ + b2 (k)2 (k)]
Matrices Iteration b2(K)a?* (k)
Operation Calculation Burden a® (k) c?(k) 3213 — 4n?
La_l(klk ~1 74n3 — 39n% — 5n a?" (k) c@(k) 32n3 — 4n?
3 12 + b2 Qe (k)]
da2 7 (k|k — 1) 32n3 — 12n? a®* (K)c(k) 32n% — 6n2 + n

@A (k|k — D"

32n® —6n? +n

Pk+1]k) =2
—p212 7 (k|k — 1) 3"

[I* + b*(k)c? (] ~*a? (k)

2n? +n

cdk+ 1) =c?(k)

+a?" (k) (K)[1? + b2 (k)c? (k)] *a?(k)

2n®+n

Table 3. Dual direct step algorithm per iteration
calculation burden

Table 6. Transformed doubling algorithm per
iteration calculation burden

p - Matrices Iteration
Matrlc_es Itel_ratlon Operation Calculation Burden
Operation Calculation Burden B2 +v2(k) 212 +n
3 _ — —
Pa~ (k[k — 1) 7(2n) . (2n) (620 + y2(0)] 74n3 339n2 5n
1 1 2R)[BA(K) + yA(k)]~* 32n3 — 4n?
P27 (k|k — 1) + bd 7@ +5(2n) Zagk)iﬁl)( el 32?13 - 422
Z 3_ = A®[B*K) +y*®)] T (k)
[Pd_l(klk -1+ bd] ' M o (R[BAK) +yA(K)] ! 32n3 — 4n?
T @ ()[R (K) +y* (K] a? (k) 32n° —6n2 +n
Fd [Pd_l(klk —1+ bd] 2(2n)3 - (2n)? Bk+ 1) = g2k 2n +n
- —— 1 1 —o® (R[F (k) + Y2 ()] o (k)
Fd [Pd_ Klk—1) + bd] Fd (2n)3 +=(2n)? — = (2n) AR [BAK) + v (k)] ! 3203 — 4n?
. _ 2 2 (1 [B2(K) + y2 ()] To@" (k) 32n° —6n% + n
Pek + 1]k) = Q 1 , 1 Y2k + 1) = y3(k) 2n? +n
Ea [pa - 4 bt et | 23N —a*(0[B*(0) + Y ()] e ()
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Table 7. Dual direct doubling algorithm per iteration
calculation burden

Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis

Table 9. Order of calculation burdens of the per step
and doubling algorithms

[19 + bd(k)cd ()] " ad (k)

cdk+ 1) = cd(k)
+ad” () cd (1)
[19 + be(k)cd (k)] " ad(k)

1 1
E (Zn)z + E (Zn)

Table 8. dual transformed doubling algorithm per
iteration calculation burden

Matrices Iteration
Operation Calculation Burden

BIC) + (ko) ~(2n)? + 2 2n)

(600 +v400] " 7@n)” - (2n)

6
OB + v 2(2n)* — (2n)?

ad(k+ 1) = ad(k) 2(2n)3 — (2n)?

[BACK) +y4 ()] ad(k)

o« @O [BAM) +yia0] 2(2n)% - (2n)?

@ (k)

L (2n)3 +1(2n)2 — 1(Zn)
[B90) +v9 ()] el 2 2

Bk +1) =Bk

1 1
—(20)? +=(2
_adT(k)[Bd(k)+Yd(k)]_1ad(k) 2( n) +2( n)

B +yi] 2(2n)* — (2n)?

Matrices Iteration Per Step Algorithm Iterations Iteration
Operation Calculation Burden Calculation Burden
d d 3 _ 2 . 340
bidacl() 2(2n)° — (2n) direct Zn® =113333n°
I¢ + b (k)c?(k) (2n) 2366
[Id " bd(k)cd(k)]_l 14(2n)3 — 15(2n)? + 7(2n) transformed Tn3 — 88.666n3
6 S
= . 128
ad(0[1¢ + ba(k)cd(k)] 2(2n)* — (2n)? dual direct —n° = 42.666n°
dk +1 2(2n)3 — (2n)?
i gda—()[id (2n)* = (2n) dual transformed %ﬁ = 33.333n°
+ bd(k)cd(k)]_lad(k) Doubling Algorithm | Iterations Iteration
T 3 7 Calculation Burden
b4(9a’" i) 2(zn)” - (@2n) direct 3000°
ad(k) 1 1
2n) +-(2n)2 - = (2 650
[Id + bd(k)cd(k)]_lbd(k)adT(k) (2n) 2( n) 2( n) transformed Tn3 = 216.666n3
bd(k + 1) = bd(k 1 1 . [loga sl [392
+a(d(k) ) (k) E(Zn)2 + E(Zn) dual direct 2 Tn3 = 130.666n3
-1 T
[19+ bd(K)cd (k)] bi(k)al (k) dual transformed ?m = 89.333n3
ad” ()l (k) 2(2n)3 — (2n)?
T -1 3 _ 2
adT(k)Cd(k) [19+ bk c! (W] 2@2n)° — (2n) From Table 9 we get:
ad’ (k)cd(k) (2n)3 + %(Zn)z _ %(Zn) a) per step algorithms

- The transformed algorithm is faster than the
direct algorithm.

- The dual transformed algorithm is faster than
the dual direct algorithm.

- The dual direct algorithm is faster than the
transformed algorithm.

- The dual transformed algorithm is the fastest per
step algorithm.

b) doubling algorithms

- The transformed algorithm is faster than the
direct algorithm.

- The dual transformed algorithm is faster than
the dual direct algorithm.

- The dual direct algorithm is faster than the
transformed algorithm.

- The dual transformed algorithm is the fastest
doubling algorithm.

c) per step vs doubling algorithms

- For the ratio of the total calculation burden of
the direct per step algorithm divided by the total
calculation burden of the direct doubling
algorithm we derive:

340 3 340

~n .
3

3 0.377 > 1,whens > 8

ad()[Bk) + yd(k)]_ladT(k) (2n)3 +%(2n)2 - %(Zn)

yik+1) =y4(k)

1 1
~@n)?+=(2
[0 + 9] gy | 20 T2

The order of the iteration calculation burdens of
the per step and doubling iterative algorithms are
summarized in Table 9.
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S

300n3 - [log, s] ~300- [log, s] = [log, s]

- For the ratio of the total calculation burden of
the transformed per step algorithm divided by
the total calculation burden of the transformed
doubling algorithm we derive:

266 3

—n?- 266-s

n--s
2 0.4

s
= =0. 1 >
650 - [log, s] 09 [log, s] > Lwhens 238

%n3 *[log; s]

- For the ratio of the total calculation burden of the
dual direct per step algorithm divided by the total
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calculation burden of the dual direct doubling
algorithm we derive:

128 3
S s 128's = 0.327
332n3 -[log,s] 392 [log;s] ' [lo

S > 1,whens>13

g2l

- For the ratio of the total calculation burden of
the dual transformed per step algorithm divided
by the total calculation burden of the dual
transformed doubling algorithm we derive:

—nd- 100-s 0373

3 n S
T 268-[log,s] T lo

ELPEpT

S > 1,whens > 11
82 S|
Thus,

- If the convergence criterion is small/large
enough, the more/less accurate solution is
derived and the faster algorithm is the
doubling/per step algorithm.

- The dual transformed algorithm is the fastest
algorithm.

6 Conclusions
Complex Kalman filters are used to process
complex signals that are ubiquitous in many fields
of science and engineering. The augmented complex
Riccati equation appears for time-invariant
augmented or widely linear models. The solution of
the Riccati equation is prerequisite for determining
the steady-state augmented complex Kalman filter
parameters before any measurements are observed.
Iterative per step and doubling algorithms for the
solution of the complex Riccati equation are
derived.

Table 10 summarizes the complex Riccati
equation solution algorithms with respect to the
model dimension and the arithmetic they use.

Table 10. Complex Riccati equation solution

algorithms
Per Step | Dimensio Arithmetic
Algorithm n
direct n complex
transformed complex
dual direct 2n real
dual transformed 2n real
Doubling Dimensio Calculation
Algorithm n Burden
direct complex
transformed complex
dual direct 2n real
dual transformed 2n real
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The computational requirements of the iterative
algorithms were derived, enabling the selection of
the faster iterative algorithm. The main
characteristics of the derived algorithms are:

— The direct use of the Riccati recursion leads to
the direct per step algorithm for augmented
matrices.

— The use of the Matrix Inversion Lemma leads to
the transformed per step algorithm for augmented
matrices.

— The dual direct and transformed per step
algorithms use real arithmetic exploiting the dual
concept.

— The doubling algorithms wuse the doubling
concept (computation of the prediction error
covariance matrix at time double the previous
time).

— The per step algorithms may provide the
information when the steady-state time is
reached.

— The transformed algorithms are faster than the
direct algorithms.

— The dual algorithms are faster than the non-dual
(complex) algorithms.

— The dual transformed per step algorithm is the
fastest per step algorithm.

— The dual transformed doubling algorithm is the
fastest doubling algorithm.

— The speed of the doubling algorithms is
undoubtable, but they do not provide the
information when the steady-state time is
reached.

— If the convergence criterion is small/large
enough, the more/less accurate solution is
derived and the faster algorithm is the

doubling/per step algorithm.

— The doubling algorithms are faster than the per
step algorithm for a sufficiently large number of
iterations (small enough convergence criterion).

— The dual transformed algorithm is the fastest
algorithm. The advantage of the use of the dual
concept is the computational complexity
reduction, due to the fact that the dual approach
involves real matrix operations instead of
complex matrix operations.

A subject of future research is to investigate the
applicability of the presented algorithms to the
solution of the complex Riccati equation derived
from continuous-time systems and to the solution of
the complex Sylvester equation.
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APPENDIX

Calculation Burdens of Matrix Operations

Real Matrices Operations

The calculation burdens (CB) of real matrices
operations (additions, multiplications, inversions)
depend on the matrices’ dimensions and involve real
scalar additions, multiplications and divisions, the
calculation burdens of which are assumed to be

Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis

Inverse of Real General matrix
Recursive algorithm

A b
M=
Dimensions:

M nxn
A(n—Dx(n—-1)
b (n—1)x1
clx(n—1)

d1x1

1 1 1
A l+s (—A‘lb) (— cA‘l) ——A1p
s s s

equal. M1 = 1 1 ,S
Table 11 summarizes real scalar operations. In ——cA™? -
. S S
the following, r,r1, r2 are real numbers. —d—cA b
Table 11. Real scalar operations Table 15. Real General Matrix Inversion
4 re?l re?l re?l reelll CB Matrix operation R1 R2 R3 ngﬁ:;::]on
coae scalar scalar scalar scalar =
operation adds mults divs (I\‘?Xm T(N)
R1 rl+r2=r 1 0 0 1 A b ~ 5 2
R2 rl-r2=r 0 1 0 1 (Nx) - (1) (N- DN N NN
— cA™
R3 rl/r2=r 0 0 1 1 (1xN) - (NxN) (N-1N N2 2N? —N
. . .. c(A™'b) N-1 N 2N -1
Table 12 summarizes real matrices additions (1xN) - (Nx1)
. . — —_ -1
and Table 13 summarizes real matrices 21;5 +°£X1'; 1 1
multiplications. In the following R, R1, R2 are 1
generql rea} matriges. ¥ is a real symmetric matrix. | (1x1))(1x1) ! !
is the identity matrix. Lap)
S
T . .. —l(A‘lb) N N
able 12. Real Matrices Addition s
Real - (1);1) - (Nx1)
Matrices R1 R2 Cz;lalculatlon ~(cA™)
. urden s
Operation —l(cA-l) N N
I+R1=R s
(n xn) + (n X n) n n (lx}) - (1xN)
RI+R2=12 n?+n N (za)
(nxn)+ (nxn) 2 2 2 (1 cA‘1> N2 N2
S
Table 13. Real Matrices Multiplication (Nixl) - (1xN)
~ATh
MRea_ll Calculation ) (S )
atrices R1 R2 Burden (1 A_1> N2 N2
Operation X s)C A
R1-R2=R e R . 1x1) - (NxN
(nxn)-(nxn) n*(n—1) n 2n° —n Al
R1-R2=3 n’ +n n? +n . 1, s
(nxn)- (nxn) -1 I B R (;A_lb) N? N?
. o (5o
Table 14 summarizes real matrices inversions. (NxN) + (NxN)
Table 15 presents the real general matrix inversion 3NZ—N 4NZ 1 3N 1 7N 4 2N+ 1

and Table 16 presents the real symmetric matrix
inversion.

Table 14. Real Matrices Inversion

Reé.ll Calculation
Matrices
. Burden
Operation
R™1 14n3 — 15n? + 7n
(n xn) 6
r-1 7n3 —n
(n xn) 6

E-ISSN: 2224-2856

N=n-1
T(m) = T(n — 1) + f(n)
fn)=7n—1%?+2n-1)+1

=7n2 —12n+ 6,f(1) = 1
T(n)=T(h—-1)+7n?-12n+6,T(1) =1

T(1) =1
T(2) = T(1) + £(2)
T(3) = T(2) + f(3) = T(1) + £(2) + £(3)

T(n) = T(1) + £(2) + £(3) + - + £(n)
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T(n) = {T(1) — f(1)} + {f(1) + f(2) + f(3) + -+ f(n)}

=7Ziz—122i+621

i=1 i=1 i=1
7n(n +1)(2n+1) ) n(n+ 1)
2

6
14n® — 15n% 4+ 7n
+ 6n = G

Inverse of Real Symmetric matrix
Recursive algorithm

=[5 g],MzMT,AzAT

Dimensions:

M nxn
Am—1Dx(n—-1)
b (n—1)x1

bT 1x(n — 1)
d1x1

1 1 1
Al +s (—A-lb) (—bTA-l) —ZA-1p
S S S

_leA—I 1
S

S
=d—bTA™'b

M1 = ,S

Table 16. Real Symmetric Matrix Inversion

Matrix operation R1 R2 R3 Calculation
Burden
AL
(NxN) T(N)
Ab 5 2
(NxN) - (Nx1) (N-DN N N2 - N
bTAL = (A~ 1b)T
(1xN) - (NxN)
bT(A™'b)
(1xN) - (Nx1) N-1 N 2N -1
s=d-bTA b 1 .
(1x1) + (1x1)
1
s 1 1
(1x1)/(1x1)
1
3 (A™"b)
1
—Z(A™h) N N
(1x1) - (Nx1)
1
- (bTA—l)
51
— E (bTA—1)
(1x1) - (1xN)
1
(547)
leA—l N2 +N N2+ N
s 2 )
(Nx1) - (1xN)
symmetric
1
s (gA’lb)
(leA—l) N2 +N N2 +N
s 2 5
(1x1) - (NxN)
symmetric
AL
+s
L
(;A b) N2 +N N2 + N
(l bTA*1> 2 2
s
(NxN) + (NxN)
symmetric
2 2
3N 2+N IN? 4 3N 1 7N +27N+2
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N=n-1

T(n) = T(n— 1) + f(n)

) 7n—1%*+7n—1)+2 7n® —7n+2
n)= =

2 2
T(n) =T(h—1) + 7

) =1

nZ—7n+2
— T =1

T(1) =1
T(2) = T(1) + f(2)
T(3) = T(2) + f(3) = T(1) + f(2) + £(3)

T(n) = T(1) + £2) + £(3) + -+ f(n)
T(n) = {T(1) — £(1)} + {£(1) + £(2) + £(3) + - + £(n)}

n n

1 n
=E 7212—7Zi+221
i=1 i=1 i=1 5
1(_n(n+1)@2n+1 nn+1 7n° —n
B ARSI N N L

2

Complex Matrices Operations
The calculation burdens of complex matrix
operations (additions, multiplications and inverses)
depend on the matrices’ dimensions and involve
complex scalar operations (additions,
multiplications, divisions). The complex scalar
operations involve real scalar operations (additions,
multiplications, divisions) the calculation burdens of
which are assumed to be equal.

Table 17 summarizes complex scalar
operations. In the following c,cl,c2 are complex
numbers.

Table 17. Complex scalar operations

complex real real real
code scalar scalar scalar scalar CB

operation adds mults divs
C1 cl+c2=c 2 0 0 2
C2 cl-c2=c 2 4 0 6
C3 cl+c2=r 1 0 0 1
C4 r+cl=c 1 0 0 1
C5 r-cl=c 0 2 0 2
C6 cl-c2=r 1 2 0 3
Cc7 c'c=r 1 2 0 3
C8 cl/r=c 0 0 2 2
C9 cl/c2=c 3 6 2 11
Cl0 1/cl=c 2 1 2 5

Table 18 summarizes complex matrices
additions and Table 19 summarizes augmented
complex matrices additions. Table 20 summarizes
complex matrices multiplications and Table 21
summarizes  augmented  complex  matrices
multiplications.In the following, C, C1, C2 are n X
n general complex matrices; H, H1, H2 are n X n
complex Hermitian matrices; S, S1, S2 are n X n
complex symmetric matrices; I is the n X n identity
matrix.
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Also, A2 A123,A22 are 2n X 2n augmented
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Table 21. Augmented Complex Matrices

complex matrices of the form [Q Q], Multiplication
C2 C1 Complex
A%,A13,A25 are 2nXx2n special augmented Augmented "
H S code Matrices operatio times total CB
complex matrix of the form A2 = |= =|[; I? is the inlicati n
s Sk Multiplicatio
2n X 2n identity matrix. n
M | AL A2 M ! 32n3 — 4n?
. .o, . = a
Table 18. Complex Matrices Addition A A2 2
Complex Calculation MI 4
code Matrices R1 c1 Burden M7 | Al A2 3 ) 32n3% — 6n?
Operation =A2 +n
Al 1+C1=C n 0 n A6 1
A2 Cl1+C2=C n? 2n? M1 2
n?+n a.pa _ pa 3 2
A3 Cl1+C2=H > n2 M8 | A1?- A% =A M3 2 32n°> — 12n
B - ) A2 2
A4 H1+H2=H n 5 n M5 1
2
A5 S1+S2=S5 ntn n? +n A12-A12 el 1 8n3 — 4n?
22+ Wl —a M3 2 +2n
_ n"-+n 2
A6 C1+C2=S 5 n“ +n A2 5
Table 22 summarizes complex matrices

Table 19. Augmented Complex Matrices Addition

Complex Calculation
code Matrices operation | times Burden
Operation
A7 12 4+ A12 = A® Al 1 n
A8 | A12 4+ A22 = A2 A4 1 2n% +n

Table 20. Complex Matrices Multiplication

(i-C2=C | 1 n?(n—1)
c-S=C 5 o
M1 Ss.c=c - e 8n 2n
S-S=C
R1 n(n—1)
z _
cl (n2n>(n—1)
M2 Cl-C2=H . 4n3 — n2
) (n _n>n
2
Cc7 n?
Cl-H=C C1 n?(n—1)
H-C=C C2 n?(n—1) 3_gn2
M3 S-H=C - 8n 6n
n?+n
Cl ( 5 )(n—l)
H-C=5 n?+n
M4 C-H=S C2 ( 3 )(n—l) 4n3 +n? — 3n
n?+n
Cs ( ! )
— 12
ci n(n—1)
+n(n —2)
n(n—1)(n—-2)
“H= C2
M5 H-H=C +n(n—1) 8n3 — 4n? + 2n
C4 n
C5 2n(n—1)
R2 n
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inversions. Table 23 presents the complex general
matrix inversion and Table 24 presents the complex
Hermitian matrix inversion.

Table 22. Complex General Matrices Inversion

Complex Calculation
Matrices
! Burden
Operation
c* [ 60n®—42n? +12n
(n X n) 6
H? 26n° — 24n* + 4n
(nxn) 6

Complex General Matrix Inversion
Recursive algorithm

_JA b
M= [c d]
Dimensions:
M nxn
An—1Dx(n-1)
b(n—-1)x1
clx(n—1)
d1x1

1 1 1
Al+s (—A'lb) (— cA‘l) ——A"1p

M1 = S S S s

—lCA_l l

s s
=d-cA™ b
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Table 23. Complex General Matrix Inversion
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Table 24. Complex Hermitian Matrix Inversion

Matrix operation oper times total CB Matrix operation operation times total CB
At At
(NxN) TN (NxN) TN
A"'b Cl (N-DN 2 A™'b Cl (N - 1N 2
(NxN) - (Nx1) 2 N2 8N" —2N (NxN) - (Nx1) 2 NZ SNT-2N
cA? Cl (N—-1DN N2 — 2N bHA~L = (A~1h)H
(1xN) - (NxN) C2 N? (1xN) - (NxN)
c(A™h) Cl N—1 bH(A~1b) C3 N—1
Real 8N — 2 Real 4N -1
(1xN) - (Nx1) 2 N (1xN) - (Nx1) c6 N
s=d—cA™b s=d—b"A"1b
real C1 1 2 real R1 1 1
(1x1) + (1x1) (1x1) + (1x1)
1 1
S C10 1 5 S
(1x1)/(1x1) Real R3 1 1
1 1x1) /(1x1
;(A_lb) ( i( )/(x1)
_ -1
1, 1) N 6N ;@)
—-=(A"b) 1 Cs
s L N 2N
(1x1) - (Nx1) S
1 1x1) - (Nx1
L )
1 S0 = [c ()]
) c2 N 6N S . )
1 1
(1x1) - (1xN) _;(bHA—1) - [; (A_lb)]
1 1 (1x1) - (1xN)
a1 a1
(a0) (Gen) 2 N2 6N (1 A'b) (1 ba-t) o NZ—N
(Nx1) - (1xN) s s 2 3N2
1 1 Hermitian c6 N
S A-1 o1 Nx1) - (1xN
s(a7b) (Sea) . N2 N2 Q¥eD) (1t
(1x1) - (NxN) s (—A‘lb) (— bHA-l) NZ 4N
1 1 s NS (o] N2 +N
Al +s{-A""b)(=cA? 2 2 Hermitian 2
s s Cl N 2N .
(1x1) - (NxN)
(NxN) + (NxN) 1 1 Rl N N2
30N2 + 16N + 5 A+ (—A‘lb) (—bTA—l)
S - N2 —-N
Hermitian Cl N?2
N=n-1 (NxN) + (NxN) 2
2
T(n) — T(n _ 1) + f(n) 13N“+ 5N +1

f(n) =30(n—1)?+16(n—1)+5=30n>—44n+ 19

f(1) =5

T(n) = T(n— 1) + 30n% — 44n + 19,T(1) =5

T(1) =1
T(2) = T(1) + f(2)

T(3) =T(2) +f(3) = T(1) +f(2) + f(3)

T(n) = T(1) + £(2) + £(3) + - + £(n)
T(n) = {T(1) — £(1)} + {£(1) + £(2) + £(3) + - + £(n)}

= 3OZi2—44Zi+1921

i+ D@Ent1D) | n(+ 1)
nn+1)2n+1 n(n+1
0 — 44

=10n% — 7n? + 2n

Complex Hermitian Matrix Inversion

+ 19n

N=n-1

Then

T(n) = T(n— 1) + f(n)
with

fn) =13(n—1)2+5n—-1)+1=13n2-21n+9

f)=1

T(n) =T(n—1) +13n?-21n+9,T(1) =1

T(1) =1
T(2) =T(1) + £(2)

T(3) =T(2) +f(3) = T(1) + f(2) + f(3)

T(n) = T() + f(2) + f(3) + --- + f(n)

T(n) = {T(1) — f(1} + {f(1) + f(2) + £f(3) + --- + f(n)}

=13Ziz—2121+921

i=1 i=1 =1
n(n+1)(2n+ 1) 1 n(n+ 1)

Recursive algorithm i=
2

M=[£{ 3],M=MH,A=AH =13

6
B 26n3 — 24n? + 4n
Dimensions: +9n = 6
Mnxn, A (n — 1x(n — 1),b (n — 1)x1,b" 1x(n — 1),d 1x1

1 1 1
Al+s (—A—lb) (—bHA-l) —ZA1p
S S S

_leA—l l
S

s
s=d—bHA™1p

Finally, Table 25 presents special augmented
complex matrix inversion and Table 26 presents
augmented complex matrix inversion.

M=
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Table 25. Special Augmented Complex Matrix

Inversion
('\ZAOaTrFiJ(':Zi Calculation
Operation Burden
a-1_[H S -
= [§ H]
(2n x 2n)
74n3 — 39n% — 5n
a‘l — h S f
§% 7= [5 H]

h =[H - SH™'§]*
s=—[H—SH'S]"'sH*

26n% — 24n? + 4n

-1
6
SH™! 8n°% — 6n?
SH™!S 4n3 — n?
H-SH™'S n?
[H — SH-15] 26n3 — 24n? + 4n
6
—[H—SH™1S]"1sH! 4n3 +n? —3n

Table 26. Augmented Complex Matrix Inversion

Complex

C3 =[C1—-C2Cc1tc2]?

C4=-C3C2C1t

Matrices Calgﬁli?;on
Operation
—1
e [%2 el
(2n x 2n) 1 1321% — 54n2 + 12n
A= [g_z %] 3

60n3 —42n? + 12n

Cc1t
6
cz2c1t 8n3 — 2n?
cz2c171c2 8n3 — 2n?
Cl-C2c171c2 2n?

3 =[C1-cCc2c17tc2]?

60n3 —42n? + 12n
6

4=-C3C2C17!

<l
w

8n3 — 2n?
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