
The interest to environmental monitoring has grown in
recent decades due to climate change and serious natural
disasters. However, to provide a reliable monitoring a large
amount of data is required for environmental scientist to
be able to provide useful information about the behavior of
physical variables in question, provide forecasting of such
behaviors, and emit or validate recommendations that will
lead to new legislation [1]–[3]. The collection of data is often
performed manually at a local scale, which sometimes is a
difficult task due to extreme environmental events. Also, harsh
whether may affect the sensing stations causing a significant
data loss.

The wireless sensor networks (WNS) are well suited for
environmental data acquisition [4]–[7] and allow the imple-
mentation of distributed methods, which are known to be more
robust than centralized approaches. The robustness can also be
improved using the unbiased finite impulse response (UFIR)
filtering approach, which is effective in harsh environments,
where electromagnetic interference, damaged sensors, or the
landscape itself cause the network to suffer from faulty links
and missing data. In many cases, optimal estimation is required
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along with adequate sensor fusing [8]–[11] to be robust against
missing data, model errors (mismodeling), and incomplete
information about noise statistics.

On the other hand, the restrictions of WSN caused by
limited battery life and processing power put a stress on the
development of the algorithms to ensure that these limited
resources are exploited efficiently. In this sense, distributed
filtering helps to improve battery life by minimizing the com-
putational burden while performing real time estimation [12],
[13]. Under the distributed filtering approach, each node is
tasked to estimate Q and a consensus protocol is implemented
to average the estimates, measurements, or information [14],

so that all nodes agree in a common value called the group
decision value [15].

The low computational burden and optimal estimation make
the Kalman filter (KF) a very popular sensor fusion technique
[16]. Based on the KF approach, many authors have addressed
the consensus problem in WSNs. A KF-based structure pro-
posed in [17] requires each node to locally aggregate data and
the covariance matrices taken from the neighbors and, in a
posterior step, compute estimates using a KF with a consensus
term. In [18], the KF has been developed as a fusion technique
for local estimation and a consensus matrix. In [19], a KF-
based algorithm has been presented to address an issue with
missing data. Let us notice that the KF optimality is guaranteed
only under the complete knowledge of the Gaussian noise
statistics, adequate process modeling, and initial conditions
[20]–[23]. Otherwise, the performance of the KF may drasti-
cally degrade and become unacceptable for real world WSN
applications [24], [25].

It has been proven in [26]–[29] that a better robustness can
be achieved by using filters operating on finite data horizons.
Under such an assumption, a moving average estimator has
been designed in [30] for weak observability. A consensus
finite-horizon H∞ approach was developed in [31] under
missing data. In [32], an unbiased finite impulse response
(UFIR) filter was developed for consensus on measurements.
Although this filter has demonstrated a better robustness than
the KF for WSN, it was designed under the condition that
all of the sensors measure the same state at the same time.
In [24], the UFIR structure has been developed for consensus
on estimates, but the consensus factor was obtained through
a previous analysis and without a mathematical background.
In [33], a distributed UFIR (dUFIR) filter has been developed

Distributed UFIR Filtering with  Applications to Environmental 
Monitoring 

MIGUEL VAZQUEZ-OLGUIN, YURIY S. SHMALIY, OSCAR IBARRA-MANZANO,  
SANDRA MARQUEZ-FIGUEROA 

Dept. of Electronics Engineering, Universidad de Guanajuato Salamanca, MEXICO 

Abstract—Environmental monitoring requires an analysis of large and reliable amount of data collected through node 
stations distributed over a very wide area. Equipments used in such stations are often expensive that limits 
the amount of sensing stations to be deployed. The technology known as Wireless Sensor Networks (WNS) is 
a viable option to deliver low-cost sensor information. However, electromagnetic interference, damaged 
sensors, and the landscape itself often cause the network to suffer from faulty links as well as missing and 
corrupted data. Therefore robust estimators are required to mitigate such effects. In this sense, the unbiased finite 
impulse response (UFIR) filter is used as a robust estimator for applications over WSN, especially when 
the process statistics are unknown. In this paper, we investigate the robustness of the distributed UFIR (dUFIR) filter 
with optimal consensus on estimates against missing and incorrect data. The dUFIR algorithm is tested in 
two different scenarios of very unstable WSN using real data. It is shown that the dUFIR filter is more suitable 
for real life applications requiring the robustness against missing and corrupted measurements under the 
unknown noise statistics.  
Key-Words: WSN, robust estimation, distributed estimation, missing data, environmental monitoring. 
Received: March 8, 2020. Revised: October 2, 2020. Accepted: November 4, 2020. Published: December 11 , 2020.

 

1. Introduction

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2020.16.20

Miguel Vazquez-Olguin, Yuriy S. Shmaliy, 
Oscar Ibarra-Manzano, Sandra Marquez-Figueroa

E-ISSN: 2224-3488 185 Volume 16, 2020



and tested over WSN for a rapid maneuvering object to show
a better performance than the KF and H∞ filter.

Let us notice that in real life the whether monitoring often
suffers from missing or false data and uncertain noise. The
issue is illustrated in Fig 1, where the real temperature data
are taken from a whether station. In the first 300 samples, one
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Fig. 1. Missing data and uncertain (colored) noise in temperature measure-
ment data taken from [34].

watches for noisy measurements with missing data and around
k = 400, the sensor generates incorrect measurement of −1C.

The issue of missing data can be addressed using the KF and
UFIR approaches. In [35], an extended KF was modified with
this aim and in [25] a UFIR filter was developed, proving to be
more robust in uncertain noise environments. For WSN, a KF
was developed in [36] to address intermittent observations and,
in [37], a UFIR filter developed under delayed and missing
data. A version of the dUFIR filter with a prediction option
was developed and tested in [38] to provide a better robustness.
However, the data reconstruction capabilities of the algorithm
were not shown under the missing data.

Consider dynamics of a quantity Q measured over a dis-
tributed WSN and represent it with the following discrete K-
states space equations,

xk = Fkxk−1 +Bkwk , (1)

ȳ
(i)
k = H

(i)
k (Fkxk−1) , (2)

y
(i)
k = γk(H

(i)
k xk + v

(i)
k ) + (1− γk)ȳ

(i)
k , (3)

yk = Hkxx + vk , (4)

where xk ∈ RK , uk ∈ RM , Fk ∈ RK×K , Ek ∈ RK×M ,
and Bk ∈ RK×L. The ith, i ∈ [1, n], is a part of the WSN
regarded as an undirected graph G = (V, E), where each vertex
v(i) ∈ V is a node and each link is an edge of a set E , for
i ∈ I = {1, . . . , n} and n = |V| with J inclusive neighbors.

Each node measures xk by y
(i)
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T
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torily white Gaussian, uncorrelated, and with the covariances
Qk = E{wkwTk } ∈ RL×L, Rk = diag[R

(1)
k

T
. . . R

(n)
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T
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RJp×Jp, and R(i)
k = E{v(i)k v

(i)T

k }. A binary variable γk serves
as an indicator of whether a measurement exist (γk = 1) or
not (γk = 0), in which case the measurement prediction ȳ

(i)
k

(2) is used by substituting xk−1 with the estimate.

To obtain optimum estimates and achieve a consensus on
estimates, we formulate the distributed estimate as

x̂ck = x̂k + λoptk Σk , (5)

where the centralized and individual estimates, x̂k and x̂
(i)
k

respectively, are obtained through

x̂k = Km,kYm,k , (6)

x̂
(i)
k = K

(i)
m,kY
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m,k (7)

and Σk =
J∑
j

(x̂
(j)
k − x̂

(i)
k ) is a consensus protocol that

minimizes the disagreement between the first-order neighbors
[17]. A consensus factor λoptk is chosen such that the root
mean squared error (RMSE) is minimized by

λoptk = arg min
λk

{trP (λk)} (8)

with P (λk) = E{(x − x̂ic)(x − x̂ic)T } as the relevant error
covariance.

To determine gains Km,k and K(i)
m,k, we express the model

equations (1)–(4) in the extended state space form over horizon
N as described in [24], [39],

Xm,k = Am,kxm +Dm,kWm,k , (9)
Ym,k = Cm,kxm +Mm,kWm,k + Vm,k , (10)
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, and the extended matrices

are
Am,k = [ I FTm+1 . . . (Fm+1

k )T ]T , (12)
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...
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(i)
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M
(i)
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m,kDm,k, where

C̄m,k = diag(Hm Hm+1 . . . Hk ) , (14)

C̄
(i)
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m H
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Fgr =

 FrFr−1 . . . Fg , g < r + 1
I , g = r + 1
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. (16)

2. Dufir Filter for Wsn Under 
    Missing Data 

2.1. Predictive Distributed UFIR Filter 

2.2. Batch Distributed UFIR Filter Design 
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Referring to [24], equation (5) can now be rewritten as

x̂ck = Km,kYm,k+Jλoptk Km,kYm,k−Jλoptk K
(i)
m,kY

(i)
m,k . (17)

Since we are interested in a robust UFIR filter that ignores
the initial values, the unbiasedness condition must hold for the
distributed, centralized and individual estimates,

E{x̂ck} = E{x̂k} = E{x̂(i)k } = E{xk} (18)

where
xk = Fm+1

k xm + D̄m,kWm,k (19)

with D̄m,k = [Fm+1
k Bm Fm+2

k Bm+1 . . . FkBk−1 Bk]. The
corresponding gains are defined by

Km,k = GkC
T
m,k , (20)

K
(i)
m,k = G

(i)
k C

(i)T

m,k , (21)

where Gk = (CTm,kCm,k)−1 and G(i)
k = (C

(i)T

m,kC
(i)
m,k)−1.

In real world applications, the nodes of the WSN may be
unable to implement equation (17) due to large-dimension
matrices and operations involved into the limited memory
resources of the smart sensors. Therefore, below we develop
an iterative form of (17) which fits better with the WSNs
resources.

The final expression of (8) is obtained by following [38].
The batch form of λoptk is

λoptk =− 1

J
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T
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where

R̄m,k = E{vm,kvTm,k} = diag(Rm . . . Rk) ,

R̄
(i)
m,k = E{v(i)m,kv

(i)T

m,k } = diag(R(i)
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(i)
k ) ,
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(i)
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T

m,k } = diag(R̃(i)
m . . . R̃

(i)
k ) .

If, for some particular application, the network and the process
dynamics are both time invariant, λoptk is also time invariant,
to mean that equation (22) can be computed beforehand and
embedded into the nodes.

An iterative algorithm for the centralized estimates x̂k can
be derived following the procedure described in [39], including
a variable l that starts at l = k − N + K + 1 and ending in
l = k. The recursions are given by

Gl = [HT
l Hl + (AlGl−1A

T
l )−1]−1 , (23)

x̂l = Alx̂l−1 , (24)

x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l ) . (25)

The initial values Gl−1 and x̂l−1 are computed at s = k −
N +K in batch forms as

Gs = (CTm,sCm,s)
−1 , (26)

x̂cs = GsC
T
m,sYm,s . (27)

The individual estimates x̂(i)k are provided by

G
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l )−1]−1 , (28)
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(i)−

l = Alx̂
(i)
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l −H

(i)
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with the initial values

G(i)
s = (C(i)T

m,s C
(i)
m,s)

−1 , (31)

x̂(i)s = G(i)
s C(i)T

m,s Y
(i)
m,s . (32)

A pseudo code of the designed iterative dUFIR algorithm
with consensus on estimates is listed as Algorithm 1.

Algorithm 1: Iterative dUFIR Filtering Algorithm

Data: yk, R(i)
k , Rk, λoptk

Result: x̂k
1 begin
2 for k = N − 1 :∞ do
3 m = k −N + 1, s = m+K − 1;
4 Gs = (HTm,sHm,s)−1;

5 G
(i)
s = (H(i)T

m,sH(i)
m,s)−1;

6 if γk = 0 then
7 y

(j)
k = H

(j)
k Fkx̂

(j)
k−1;

8 end if
9 x̃s = GsHTm,sYm,s;

10 x̃
(i)
s = G

(i)
s H(i)T

m,s Y
(i)
m,s;

11 for l = s+ 1 : k do
12 x̂−l = Flx̂l−1;

13 x̂
(i)−

l = Flx̂
(i)
l−1;

14 Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1;

15 G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1;

16 x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l );

17 x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l );
18 end for
19 x̂ck = (I + Jλoptk )x̃k − Jλoptk x̃

(i)
k ;

20 end for
21 end
22 † First data y0, y1,..., yN−1 must be available.

We consider temperature measurements provided in 2007
at the Grand-St-Bernard pass at 2400 m between Switzerland
and Italy as part of the Sensorscope project, which aims to
develop a large-scale distributed environmental measurement
system centered on a wireless sensor network. Measurements
were recorded individually by low-cost sensing stations and

2.3. Optimum λk

2.4. Iterative Distributed UFIR filter 

3. Applications to Environment Monitoring 
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are available from [34]. In this work, we consider only the
stations shown in Fig. 4 and Fig. 7, depicted as red dots.
Measurements were performed each two seconds during two
months. For each sensor, the average of the measurements was
computed each hour along with the error variance. In Fig 2, we
show the resulting standard deviations for each sensor, where
stations 2 and 9 demonstrate large temperature deviations for
unknown reasons.
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Fig. 2. Temperature standard deviations observed in the stations.

The individual one-hour average temperature measurements
are sketched in Fig. 3. Here, we observe similar behaviors
in all stations. However, some stations present large gaps of
information and a very unstable performance. It is important
to notice that stations 2, 20 and 9 also conduct incorrect
measurements of −1◦C that cannot be regarded as missing
data.
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Fig. 3. Temperature measurements conducted by 11 stations.

To apply the dUFIR algorithm, we use model (1)–(4) with
the following matrices [25],

A =

[
1 τ
0 1

]
, H(i) =

[
1 0

]
,

where τ = 1 and B = I . As stated by (22), to compute
λoptk we need individual variances of the sensors, but this
information is not available in the data set. Furthermore, it is
unclear if all sensors are of the same manufacturer. In Fig 2, we
observe that the standard deviation behave similarly for eleven
sensors and we take the average and determine an estimated
variance for each sensor. The results are shown in table I and
the optimum horizon was measured to be Nopt = 37 [27].

To test the algorithm, we simulate a WSN for a maximum
link distance of 350 m. The resulting topology is sketched
in Fig. 4. The estimation results by Algorithm 1 are shown
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Fig. 4. Simulated WSN connections between sensing stations for a link
distance of 350m.

in Fig. 5 for three sensing stations. Here, noise reduction is
observed in all stations and yet large gaps are bridged over in
the 2nd station (Fig. 5 b) and 9th station (Fig. 5 c).

A key difference between the 9th and 2nd stations is
observed in the range of 540 < k < 780. While measurements
are completely lost in the 2nd station, a false measurement of
−1◦C is recorded in the 9th station. The algorithm employs
the prediction option only when missing data are detected and
it considers a wrong measurements of −1◦C as true. However,
due to the distributive nature of the dUFIR filter, the estimates
of the 9th station do not get away from the remaining stations.
This can be seen in Fig. 6a, where we show estimates of all of
the stations. In Fig. 6b, the estimate variances are considered
as an indicator of disagreements between the nodes. It can
also be seen that much less disagreements are observed when
the measurements are correct.

Performance of the dUFIR Algorithm 1 depends on the
amount of redundant available information. When the number
of the links decreases, the disagreements and the estimation
errors increase. In Fig. 7, we consider the same base stations
but with a restriction link range of 200 m. In this case, a
smaller number of the links are available and the 9th station

3.1. Tuning dUFIR Algorithm 

3.2. Network with 350 m Link Range 

3.3. Network with 200 m Link Range 
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TABLE I
INDIVIDUAL VARIANCES FOR EACH STATION.

Station 10 11 12 13 14 15 2 20 3 8 9
Variance 0.13 0.17 0.18 0.2 0.13 0.17 0.15 0.15 0.16 0.11 0.19

a)

b)

c)
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Fig. 5. Temperature measurements and estimates: a) 10th station, b) 9th
station, and c) 2nd station.
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Fig. 6. Temperature measurements and estimates: a) all stations and b)
disagreement between estimates.
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Fig. 7. Simulated network links between the sensing stations for the range
of of 200 m.
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Fig. 8. Temperature measurements and estimates: a) all stations and b)
disagreement between the estimates.

has a single link rather than three links in the previous case
(Fig 4). Due to a lack of the redundant information and an
inability to process wrong data as missing, estimates by the 9th
station deviate from those by other stations (Fig 8a). Here, one
can also see the effect of the 9th station on the performance
of the 13th station. Under such circumstances, the consensus
and prediction capabilities of the Algorithm 1 are not able
to compensate incorrect data in the 9th station that results in
growing disagreement between the estimates (Fig. 8b).
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In this paper, we have applied the developed dUFIR filtering
algorithm to real temperature measurements with missing
and incorrect data. We have discussed the dUFIR filter per-
formance in two feasible scenarios of different numbers of
the links and confirmed that under the allowed minimum
three links the dUFIR filter produces acceptable estimates and
provides a good data reconstruction. Given that the dUFIR
filter does not require any information about the process
statistics, it thus better suites the real life WSN architectures,
where the noise statistics are either unavailable or known very
approximately. This can be stated as a great advantage against
the KF-based algorithms.
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