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Abstract: -In visual object tracking, the estimation of the trajectory of a moving object is a widely studied 
problem. In the object tracking process, there are usually variations between the real position of the objet in the 
scene and the estimated position, that is, the object is not exactly followed throughout its trajectory. These 
variations can be considered as color measurement noise (CMN) caused by the object and the camera frame 
movement. In this paper, we treat such differences as Gauss-Markov coloring measurement noise. We use 
Finite Impulse Response filters and Kalman filter with a recursive strategy in tracking: predict and update. To 
demonstrate the best performance, tests were carried out with simulated trajectories and with benchmarks from 
a database available online. The OUFIR and UFIR algorithms showed favorable results with high precision and 
accuracy in the object tracking task.  
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1 Introduction 
The visual object tracking is a topic widely studied 
by various researchers, mainly due to multiple 
practical applications such as video surveillance and 
security, autonomous vehicle navigation, robotics, 
etc. [1] [2] [3]. Visual object tracking is a topic of 
interest in signal and image processing, in which the 
coordinates of the frame sequences are considered 
input data for the trajectory estimation [3] [4] [5]. 

Visual object tracking can be defined as the 
process of estimating the object trajectory in the 
image plane as it moves around a scene [5] [6]. 
However, during the tracking process the object is 
not followed exactly. There are variations in the 
estimated, that is, there is a discrepancy between the 
real position and the estimated position. These 
variations can be considered as colored 
measurement noise (CMN) which is not white [7]. 
An example of differences between real and 
estimated position is shown in Fig. 1 for the 
“Human2” benchmark [8], where a desirable frame 
is shown red and estimation errors in yellow, in this 
case, the target is the person dressed in blue.  

It has been demonstrated that the use of a motion 
model and state estimators is a effective in avoiding 
large tracking errors [7] [9] [10] [11] [12] [13] [14]. 
  

 
Fig. 1 Example Human tracking in a video sequence 

In various investigations, it has been shown that 
if the model is correctly specified in the state space, 
it can represent the object dynamics for different 
movements with great precision [7] [9] [10] [11] 
[12] [13] [14]. 
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For that reason, in this paper, we use the Kalman 
filter (KF), Optimal Finite Impulse Response 
(OFIR), Unbiased FIR (UFIR), and Optimal 
Unbiased FIR (OUFIR) are used in object tracking 
process to stabilize the bounding box trajectory. The 
state estimation method was developed is two steps: 
predict and update. 

The FIR and Kalman filters are tested on 
simulated trajectories and benchmark data available 
on [8]. Based on these tests, we show that FIR and 
KF algorithms showed favorable results on 
simulated data with low data and process noise 
values, but with larger values, OUFIR and UFIR 
produced lower errors than KF and OFIR. Whereas, 
the results using the benchmark data showed a better 
performance of OUFIR. 
 
2 Image processing 
In order to carry the visual object, it is necessary to 
identify the object to be tracked. Image processing 
operations look for the best object recognition in 
tracking task, which involves finding the correct 
features to differentiate the target from other objects 
and the scene background. The image is divided into 
regions and the discontinuities are known as the 
boundaries between the regions [15] [16] [17]. 

An image can be described through its 
properties. To do this, it is necessary to calculate the 
mathematical properties of an image or region and 
use them as a basis for further classification [16]. 
Therefore, shape parameter extraction is necessary 
for image representation. One of the most 
commonly used shape parameters in object tracking 
is bounding box. 
 
2.1 Bounding box 
The Bounding box is a rectangular box that enclose 
an object in an image or scene. It can be represented 
by the coordinates of the upper left and lower right 
corners of the box [18]. When using the bounding 
box (BB) as a shape parameter in target tracking, 
information about the position of objects is 
contained in an array of the minimum and maximum 
vertices of the box that encloses the detected object 
within the scene. The distribution of pixels within a 
frame starts at the upper left corner and ends at the 
lower right corner [19]. The bounding box matrix is 
distributed over n rows and 4 columns, the rows 
represent the number of recognized objects and the 
columns contain the measurements for each 
bounding box located as follows:  

BoundingBox=(Xc, Yc, Xw, Yh)  ( 1) 

Where Xc, Yc, Xw, and Yh are the coordinates of 4 
corners of the bounding box: corners, weight, and 

height. The algorithm to generate the bounding box 
in the tracking process must predict the four 
coordinates, X corner, Y corner, width, and height, 
for each bounding box. 

In the tracking process there may be errors in the 
position estimation, an effective method to reduce 
them is to apply a filtering method. A filtering 
method us used to predict the coordinates of a point 
of bounding box. The aim of using prediction and 
correction methods is to mitigate the noise present 
in the object tracking process, the CMN.  The 
prediction indicates the posterior position of the 
bounding box based on its previous position. The 
update is a correction step. It includes the new 
tracking model measurement and helps improve 
filtering [20] [21]. 
 

3 Tracking performance evaluation 
The performance of tracking algorithms can be 
evaluated using metrics called precision and 
accuracy. Accuracy is the percentage of correct 
object detections, and the accuracy can be measured 
from the F-score which is an option metric to 
measure accuracy. 
 
3.1 Precision 
The precision is calculated from the other 
parameter, intersection over union (IoU). The 
equations for calculating precision and IoU are (2) 
and (3), respectively. The variables used in the 
calculation of the precision are obtained from the 
comparison of the IoU result with an established 
threshold [22]. 

IoU= 
IA

(TBB- PBB)-IA
 (2) 

Where IA is the intersection area of the true 
bounding box (TBB) and the estimated/predicted 
bounding box (PBB). The IoU value is calculated in 
each position of the bounding boxes. 

Precision= 
∑ TP

( ∑ TP + ∑ FP )
 (3) 

Where TP is true-positive, and FP is false-
positive.  

To determine the correct object detection of the 
target, a threshold value of IoU must be established. 
IoU is generally set to 0.5 [22]. Assuming the IoU 
threshold is 0.5, if the value is greater or equal to 
0.5, the detection is classified as True Positive (TP). 
If IoU value is less than 0.5 it is considered as a 
wrong detection and classified as False Positive 
(FP). The IoU threshold can be set to a value of 0.5 
or more, such as 0.75. 0.9, 0.95, or 1.  
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3.2 Accuracy 
One metric to measure the accuracy in object 
tracking model is F-score [23] [24]. The F-score use 
the precision and recall and it can provide important 
information about the model performing at various 
threshold values. Recall can be calculated as the 
number of correct detected objects divided by the 
total number of detections in the ground truth. This 
metric is based on the bounding box overlap 
obtained between the algorithm and the real 
trajectory to calculate the accuracy with which the 
algorithm operates on an object displacement 
sequence, the F-score is computed by equation (4). 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 
4 State-space model 
We consider a moving object represented in 
discrete-time state-space with the following state 
and observation equations (5) and (6). 

𝑥n=Fn𝑥n−1+𝐸nun+ Bwn ( 5) 
𝑦n=Cnxn+vn ( 6) 

Where xn ∈  ℝk is the state vector, 𝑦n∈ ℝM is 
the vector of observation. 𝐹 is the model of the state 
transition, which is applied to project the previous 
state xn−1 to xn. E is the input control model, un is 
the input control, 𝐵 is the noise matrix. 𝐶 is the 
observation model. 𝑤𝑛 ∈ ℝ𝑃 is the process noise 
vn ∈ ℝM is the colored Gauss-Markov noise with 
white Gaussian with zero mean wn~N(0, Qn) ∈ 
ℝPand vn~N(0, Rn) ∈ ℝM have the covariances 𝑄𝑛 
and 𝑅𝑛, and the property E{wnvk

T}=0 for all n and k. 
Under the assumption that the two noise sequences 
and the initial state are uncorrelated and 
independent of each testing instant [25]. 
 
5 Kalman filter 
The Kalman filter uses the equation of state of the 
linear system to estimate the state of the system 
through observation of input and output. The KF 
requires knowledge of the system parameters, initial 
values, and measurement sequences. The KF can 
estimate the state sequences of the system iteratively 
[26].  

The Kalman filter calculate the optimal state 
estimate by recursively combining previous 
estimates with new observations. It consists of two 
steps: predict, where the optimal state 𝑥n

− previous 
to observing 𝑦n is calculated and update, where after 
observing 𝑦n the optimal posterior state x̂k is 
calculated. Additionally, it computes the prior 
estimation error ϵn

 −=xn − 𝑥n
−,  the posterior 

estimation ϵn=xn − 𝑥n, a priori estimate error 
covariance Pn

 −=E {ϵn
−ϵn

−T }, and posterior estimate 
error covariance Pn=E {ϵnϵn

T }. 
The a priori error covariance matrix is produced 

in the predict step. Since the process noise wn is 
assumed white Gaussian with zero mean, the a 
priori state estimate is given by (7), and the a priori 
error covariance matrix is estimated by (8). 

𝑥n
−=F 𝑥̂n−1+𝐸nun ( 7) 

Then, in the update stage, the current a priori 
predictions are combined with the current state 
observation to redefine the state estimate and the 
matrix of error covariance. The current observation 
is used to improve the estimation, and it is called a 
posteriori estimation of the state.  

The measurement yn is corrupted by the noise vn. 
Since vn is assumed white with zero mean, this 
becomes (9), and the measurement residual (10). 

𝑦n=C 𝑥̂n −1 ( 9) 
zn=𝑦n − Cn 𝑥̂

− (10) 

The residual covariance matrix is given by: 

Sn=CnPn
 −Cn

T+Rn (11) 

The optimal Kalman gain:  

Kn=Pn
 −Cn

TSn
 −1 (12) 

A posteriori state estimate: 

x̂n=x̂n
−

+Kn(zn − C x̂n
−

)   (13) 

A posteriori error covariance matrix: 

P𝑛=(I − KnC)P𝑛
 −  (14) 

A pseudo-code of the Kalman filter is listed as 
Algorithm 1.  

Algorithm 1: Kalman Filter 
 Data: 𝑦n,un, 𝑥0, P0,Qn, Rn 
 Result: 𝑥n, Pn 
 Begin 
   for n= 1,2, … do 

     𝑥𝑛
− = 𝐹 𝑥𝑛−1 + 𝐸𝑛𝑢𝑛 

     𝑃𝑛
− = 𝐹𝑛𝑃𝑛−1𝐹𝑛

𝑇 + 𝐵𝑛𝑄𝑛𝐵𝑛
𝑇 

 

    Sn=CnPn
 −Cn

T+Rn 
Kn=Pn

 −Cn
TSn

 −1 
𝑥𝑛 = 𝑥𝑛

− + Kn(𝑦𝑘 − 𝐶𝑛𝑥̂𝑛
−) 

Pn=(I − KnC)Pn
 − 

   end for 
  End 

 

  

Pn
 −=FnPn−1F+BnQnBn

T ( 8) 
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6 Optimal Finite Impulse Response 
(OFIR) 
For faster processing, the OFIR algorithm is used in 
its iterative form. Its iterative computation on 
horizon [m, k] for given 𝑥𝑚 and 𝑃𝑚 provided by 
Kalman filter (Algorithm 1) if we change the 
auxiliary time-index i from m +1 to n and take 
output when i =n. The iterative form for the OFIR 
filter has been developed and tested in [27] [28].    

The pseudo-code of the a posterior iterative 
OFIR filter is listed as Algorithm 2. Given 𝑥𝑚 and 
𝑃𝑚, this algorithm is iteratively updates 𝑥𝑖 values 
from i = m +1 to i = n using optimal recursions of 
KF (Algorithm 1) and obtains 𝑥𝑛 and Pn,  when i = 
n. The number of iterations can be limited by 
optimal horizon length, Nopt of the Unbiased Finite 
Impulse Response (UFIR) filter. 

Algorithm 2: Iterative OFIR filter 
 Data: 𝑦𝑛, 𝑢𝑛, 𝑥𝑚, Pm ,Q

n
, Rn, 𝑁 

 Result: 𝑥𝑛 
 Begin 
   For n=1,2, … do 

 
    𝑚 = 𝑛 − 𝑁 + 1 if  𝑘 > 𝑁 − 1 and 

𝑚 = 0 otherwise 

 

    For 𝑖=m+1,m+2,…, n do 
  Algorithm 1: 𝑥𝑖, P𝑖 
end for 

 

 
  end for 

𝒙̂𝒏, Pn  
  End 

 

7 Unbiased Finite Impulse Response 
(UFIR) 

Unlike the KF and iterative OFIR, the Unbiased 
FIR  does not require any information about initial 
conditions and noise, except for the zero mean 
assumption [9] [14] [29] [30] [31]. Therefore, the 
Unbiased FIR filter is more suited for object 
tracking, where measurement and process noises are 
not exactly known. However, the UFIR filter 
requires an optimal horizon length, Nopt, from 𝑚 =
 𝑛 −  𝑁𝑜𝑝𝑡 +  1 to 𝑛, to minimize the Mean 
Squared Error, and cannot ignore the CMN vn, 
which violates the zero-mean assumption on short 
horizons.  

Since the UFIR algorithm does not require noise 
statistics, the prediction phase calculates only one 
value, a priori state. 

𝑥l
−=F 𝑥l −1+𝐸lul (15) 

In the update step, the state estimate is combined 
with the current observation state to refine the state. 

The estimate is iteratively updated to the a posteriori 
state estimate using (16) -(19).  

Generalized noise power gain: 

Gl=[Cl
TCl+(FLGl−1Fl

T)−1]
−1

 (16) 

The measurement residual: 

zl=yl − Cl 𝑥
− (17) 

The UFIR gain: 

Gainl=yl − Cl 𝑥̂
− (18) 

The a posteriori state estimate is given by: 

𝑥l=𝑥̂𝑙
−+Gainl(zl − C 𝑥l

−) (19) 

A pseudo-code of the UFIR algorithm is listed as 
Algorithm 3. To initialize iterations, the algorithm 
requires a short measurement vector 𝑦𝑚.𝑘 =
[𝑦𝑚 …𝑦𝑘]𝑇 and matrix (20). 

H𝑚,s=

[
 
 
 
 
 Cm(Fk

m+1)
−1

Cm+1(Fk
m+2)

−1

⋮
Ck−1Fk

−1

Ck ]
 
 
 
 
 

 (20) 

 

Algorithm 3: Unbiased FIR filter 
 Data: 𝑦𝑛, 𝑢𝑛, 𝑁 
 Result: 𝑥𝑛 
 Begin 
   For n= N −1, N, … do 

     𝑚 = 𝑛 − 𝑁 + 1, 𝑠 = 𝑛 − 𝑁 + 𝐾 

 
    𝐺𝑆 = (𝐻𝑚,𝑠

𝑇 𝐻𝑚,𝑠) 
𝑥̃𝑠 = 𝐺𝑠𝐻𝑚,𝑠

𝑇 (𝑌𝑚,𝑠 − 𝐿𝑚,𝑠𝑢𝑚,𝑠) + 𝑆𝑚,𝑠
𝑘 𝑢𝑚,𝑠 

 

    For l=s+k: do 
𝑥̃𝑙

− = 𝐹𝑥𝑙−1 + 𝐸𝑢   

𝐺𝑙 = [𝐶𝑙
𝑇𝐶𝑙 + (𝐹𝑙𝐺𝑙−1𝐹𝑙

𝑇)
−1

]
−1

  
𝐺𝑎𝑖𝑛𝑙 = 𝐺𝑙𝐶𝑙

𝑇  
𝑥̃𝒍 = 𝑥𝑙

− + 𝐺𝑎𝑖𝑛𝑙(𝑦𝑙 − 𝐶𝑥̃𝑙
−)  

end for 

 

 
  end for 

𝑥𝒏 = 𝑥̃𝒏  
  End 

Where 𝑆𝑚,𝑠 and 𝐿𝑚,𝑠are given by (21) and 
(22) respectively, 𝑆𝑚,𝑠

𝑘  is de Kth row vector in 
(21).  

𝑆𝑚,𝑠=

[
 
 
 
 

𝐸0 0           …       0     0
𝐹𝑚+1𝐸𝑚 𝐸𝑚+1           …       0     0

⋮ ⋮           ⋱        0     0
𝐹𝑠−1

𝑚+1𝐸𝑚 𝐹𝑠−1
𝑚+2𝐸𝑚+1 …    𝐸𝑠−1   0

𝐹𝑠
𝑚+1𝐸𝑚 𝐹𝑠

𝑚+2𝐸𝑚+1   … 𝐹𝑠𝐸𝑠−1 𝐸𝑠]
 
 
 
 

  (21) 
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𝐿m,s=diag(𝐶𝑚,𝑠)𝑆𝑚.𝑠 (22) 

8 Optimal Unbiased Finite Impulse 
Response (OUFIR) 
Generally, in real object tracking applications, not 
all information about the initial conditions of the 
model is available. Since the OUFIR filter is very 
indifferent to the initial conditions. In this case, we 
apply an Optimal Unbiased iterative filter (OUFIR) 
[32]. 
The iterative OUFIR algorithm is stated below. The 
prediction phase calculates a single value, a priori 
state, considering input (u) equal to zero the a priori 
state is computed by (23). 

𝑥̃𝒍 = 𝐹𝑙𝑥𝑙
− + 𝐺𝑎𝑖𝑛𝑙(𝑦𝑙 − 𝐶𝑖𝑥̃𝑙

−)   (23) 

In the update stage, the state estimated is 
combined with the current observation state to 
refine the state. In the same way as UFIR, the 
estimate is iteratively updated to the a posterior state 
estimate using equations (24) -(28).  

The residual covariance matrix is given by: 

Sn=CnPn
 −Cn

T+Rn (24) 

The OUFIR filter gain:  

Kl=Pn
 −𝐶n

TSn
  (25) 

𝐾𝑙
−=(I − Kl𝐶𝑙) 𝐺𝑙N𝑙𝐺𝑙

𝑇𝐶𝑙
𝑇Sn

  (26) 
Gain=Kl + 𝐾𝑙

− (27) 

The a posteriori state estimate: 

𝑥̃𝒍 = 𝑥𝑙
− + 𝐺𝑎𝑖𝑛𝑙(𝑦𝑙 − 𝐶𝑖𝑥̃𝑙

−) (28) 

A pseudo-code of the Optimal Unbiased FIR 
filter is listed as Algorithm 4. 

9 Object tracking tests 
The KF and FIR algorithms were tested on 

simulated data and benchmark data available in [8].  

 

9.1 Test on simulated data 
In this section, we test the algorithms numerically 
by different simulated data. Our main goal is to 
evaluate the performance in object tracking using 
precision and F-score metrics. We consider the two-
state model and suppose an object is disturbed by 
white Gaussian acceleration noise with a given 
value of standard deviation.  The model of a moving 
target in a two-dimensional space was specified by 
(5) and (6) with matrices: 

F= [
1 𝑇
0 1

] ,         𝐵 = [
𝑇
1
],       𝐶 = [1 0]. 

In simulation data two scenarios will be 
considered:  

Algorithm 4: Iterative OUFIR filter 
 Data: 𝑦𝑛, Q

n
, Rn, 𝑁 

 Result: 𝑥𝑛 
 Begin 
   For 𝑛 = 𝑁 − 1,𝑁,…𝒅𝒐 

 
    𝑚 = 𝑛 − 𝑁 + 1, if 𝑘 > 𝑁 − 1 and 𝑚 =

0 otherwise 
     Compute 𝑥𝑚+1 and 𝑃𝑚+1 

 

    For l=m+2, m+3, … n do 
𝑃𝑙

− = 𝐹𝑙𝑃𝑙−1𝐹𝑙
𝑇 + 𝐵𝑙𝑄𝑙𝐵𝑙

𝑇 − 
𝐹𝑙𝑃𝑙𝐹𝑙

𝑇S𝑙ClPn
 𝐹𝑙

𝑇 
Gl=𝐹𝑙(I − Pn

 −Cl
TSlCl

T)Gl-1 

Sl=ClP𝑙
 −C𝑙

T+R𝑙 

N𝑙=(𝑁𝑙−1
−1 + 𝐺𝑙

𝑇𝐶𝑙
𝑇𝑆𝑙𝐶𝑙𝐺𝑙)

−1
 

Kl=Pn
 −Cn

TSn
  

𝐾𝑙
−=(I − Kl𝐶𝑙) 𝐺𝑙N𝑙𝐺𝑙

𝑇𝐶𝑙
𝑇Sn

  

Gain=Kl + 𝐾𝑙
− 

𝑥̃𝒍 = 𝑥𝑙
− + 𝐺𝑎𝑖𝑛𝑙(𝑦𝑙 − 𝐶𝑖𝑥̃𝑙

−) 

end for 

 

 
  end for 

𝑥𝒏 = 𝑥̃𝒏  
  End 

 
1) Simulated data 1. An object target is 
disturbed by white Gaussian acceleration noise 
with a standard deviation of 𝜎𝑤 = 4𝑚/𝑠2. The 
for the data noise originates from white Gaussian 
𝜎𝑣 = 3𝑚. The simulation of the trajectory was 
1000 points with sample time T= 0.05 seconds, 
𝑃0 = 0, 𝑄 = 𝜎𝑤

2 , 𝑅 = 𝜎𝑉
2, on a short horizon Nopt 

= 15. 
2) Simulated data 2. A trajectory is simulated 
at 1000 points 𝜎𝑤 = 45𝑚/𝑠2, 𝜎𝑣 = 25𝑚. With 
sample time T= 0.05 seconds, 𝑃0 = 0, 𝑄 = 𝜎𝑤

2 , 
𝑅 = 𝜎𝑉

2, on a short horizon Nopt = 10. 

9.1.1 Test on simulated data 1  
We examine the results of algorithms in the object 
tracking simulation using the bounding box 
coordinates as a metric of evaluation. In Fig. 2 the 
true trajectory of the object and the estimations 
made by the algorithms are shown, where the black 
line is the true trajectory, the blue line is KF, the red 
line is UFIR, the yellow line is OUFIR, and the 
green line is OFIR. Given that the Nopt for the FIR 
filters was 15, the estimates started from this.  

With low values of white Gaussian acceleration 
noise and data noise, the OUFIR and UFIR filters 
showed similar behavior. To provide a more 
complete view, we calculate the root mean square 
error (RMSE). The RMSE values were 929.98 for 
KF, 929.93 for OFIR, 444.55 for OUFIR, and 
478.21 for UFIR. According to these results, we 
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consider that the OUFIR algorithm presented the 
best performance with the lowest RMSE value. 

The test precision results of simulated data 1 are 
shown in Fig. 3. The OFIR and KF algorithms 
produced a low precision with similar behavior on 
the all thresholds range. According to the results,  it 
can be inferred that in each detection the overlap of 
the Predicted Bounding Box (PBB) on the True 
Bounding Box (TBB) was poor. It can be inferred 
that each detection of the Kalman and OFIR filters 
covers less to 50% of the TBB area. Since the most 
used threshold values are 0.50% and 0.75% [22]. 
Therefore, we consider that Kalman and FIR filters 
algorithms gave poor results in the most widely used 
threshold IoU range. On the other hand, the OUFIR 
and UFIR filters showed good results with an 
average precision of 0.87 and 0.85, respectively, 
that is, they cover at least 80% of the TBB area. 

 

 
Fig. 3 Precision of simulated data 1 

The F-score metric was used to measure the 
accuracy. This metric is based on the bounding box 
overlap obtained between the algorithm and the true 
trajectory to calculate the accuracy with which the 

algorithm operates on an object trajectory. The 
results of the F-score for simulated data 1 are shown 
in Fig. 4. The OUFIR and UFIR algorithms 
produced a high accuracy from 0 to 0.9 threshold, 
from which to decay. The OUFIR filter showed the 
highest accuracy with average of 0.87, closely 
followed by UFIR with 0.84. OFIR and KF 
algorithms presented lowest values with average of 
0.50 and 0.49 , respectively.  

 
Fig. 4 Accuracy of simulated data 1 

9.1.2 Test on simulated data 2  
Next, we analyze the simulated data 2 test. In Fig. 5 
the real trajectory of the object and the estimations 
made by the algorithms are shown, where the black 
line is the true trajectory, the blue line is KF, the red 
line is UFIR, the yellow line is OUFIR, and the 
green line is OFIR. Given that the Nopt for the FIR 
filters was 10, the estimates started from this.  

With high values of acceleration noise and data 
noise, the OUFIR and UFIR filters showed similar 
behavior. To analyze this, we calculate the root 
mean square error (RMSE). The RMSE values were 
6963.56 for KF, 6962.39 for OFIR, 3149.15 for 
OUFIR, and 3149.15 for UFIR. Therefore we 
consider the OUFIR and UFIR showed best 
performance. 

The precision results of simulated data 2 test are 
shown in Fig. 6. OUFIR and UFIR presented a 
better performance, these produced a precision over 
77% from 0 to 0.9 threshold, from which to decay. 
It can be inferred that each detection covers at least 
77% of the TBB area. While OFIR and KF 
presented low precision values below 40% in the 
threshold range. The average precision for OUFIR 
was 0.79, for UFIR was 0.79, for OFIR was 0.29, 
and for KF was 0.29. As already mentioned, usually 
the threshold used is 0.5, we consider that the 
OUFIR and UFIR algorithms gave favorable results. 
 

Fig. 2 Trajectory estimation of data 1 using Kalman 
and FIR filters. 
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Fig. 5 Trajectory estimation of  simulated data 2 
using Kalman and FIR filters. 

 
Fig. 6 Precision of simulated data 2 

In Fig. 7 the accuracy results of simulated data 2. 
The OUFIR and UFIR algorithms produced 
accuracy values over 0.6 from 0 to 0.8 threshold, 
from which to decayed. The  accuracy value 
towards the 1 threshold is close to 0.2. The OFIR 
and KF showed a poor performance from 0.1 to 1 
threshold, with an accuracy below 0.3. The accuracy 
value decreases as the threshold value increases. 
The OUFIR filter showed the highest accuracy with 
an average of 0.72, closely followed by UFIR with 
0.71, the average for OFIR was 0.29, and for KF 
was 0.28. With the given conditions, and according 
to the results, we can determine that the OUFIR and 
the UFIR present a good performance in the object 
tracking process. 

9.2 Test on benchmark trajectory 
Then, we realized a test with a benchmark 

trajectory, called “SUV” , available on [8]. The 
coordinates of the SUV trajectory are measured by a 

visual object tracking system. The SUV moves and 
maneuvers on a highway road. 

 
Fig.  7 Accuracy of simulated data 2 

For the test, we considered that an object is 
disturbed by white Gaussian acceleration noise with 
the standard deviation of 𝜎𝑤 = 10𝑚/𝑠2. The for the 
data noise (CMN) originates from white Gaussian 
𝜎𝑣 = 5𝑚. With sample time T= 0.05 seconds, 𝑃0 =
0, 𝑄 = 𝜎𝑤

2 , 𝑅 = 𝜎𝑉
2, and the model of a moving 

target in a two-dimensional space can be specified 
by (5) and (6) with: 

F=[

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

] , 𝐵 = [

𝑇

2

2
 0   𝑇  0

0   
𝑇

2

2
 0  𝑇

], 𝐶 = [
1 0 0 0
0 1 0 0

]. 

Since the UFIR filter requires an optimal 
averaging horizon [m, n] of Nopt points. Following 
[33], we determine: 

𝑁𝑜𝑝𝑡 = √
12𝜎𝑣

𝑇2𝜎𝑤
≅ 49 

Finally, we analyze the results obtained for the 
“SUV” trajectory. The true trajectory and the 
estimates by FIR and Kalman algorithms are shown 
in Fig. 8. The identification colors remain as already 
mentioned previously in this paper. The Nopt, as 
already mentioned for the FIR filters, was 49.  

 In this test, the estimates of OUFIR and UFIR 
were the best compared with those obtained by KF 
and OFIR. Using a quantitative measurement, we 
calculate the root mean square error (RMSE). The 
RMSE values were 2316.90 for OUFIR, 2361.90 for 
UFIR, 4962.39 for OFIR, and 4963.56 for KF. 
According to these results, we consider that the 
OUFIR and UFIR algorithms presented a good 
performance, where OUFIR and UFIR present a the 
best performance in the object tracking task under 
the given conditions 
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Analyzing the precision metric, it is observed 
that the performance of the algorithms was higher 
than in the previous simulated tests. The results are 
shown in Fig. 9. Again, the OUFIR and UFIR 
showed higher precision compared to OFIR and KF. 
The precision mean is 0.84 for OUFIR, 0.83 for 
UFIR. Taking as a reference that the Threshold most 
used to evaluate the precision is 0.5, in this value the 
precision is over 80% we can determine that the 
performance of OUFIR and UFIR were good. In the 
same way, the performance of KF and OFIR was 
good, although lower than those already mentioned, 
with an average precision of 0.68 and 0.66, 
respectively. 

 

The F-score values, accuracy, are shown in Fig. 
10. The OUFIR and UFIR algorithms produced 
accuracy values over than 0.7 in the 0.1 to 0.8 
threshold range. OFIR and KF algorithms produced 
accuracy values over 0.7 from 0.1 to 0.5 threshold 
range, from which to decay. The OFIR and KF 
presented a lower performance than UFIR and 
OUFIR. According to the results, we consider that 

OUFIR and UFIR present the best performance in 
the object tracking process under the given 
assumptions in a benchmark trajectory. 

Fig. 10 Accuracy of “SUV” benchmark 

10 Conclusion 
The KF and OFIR estimation algorithms seem 
to be less efficient than the OUFIR and UFIR in 
object tracking process under the conditions 
given in this paper. On the other hand, the 
algorithms OUFIR and UFIR showed 
favourable results in object tracking tests and 
provided state estimation with higher precision 
and accuracy, which can be useful in many 
visual tracking applications such as video 
surveillance and security, robotics, autonomous 
vehicle navigation, etc. Remarking that, UFIR 
does not require noise information and to know 
the initial position. Likewise, the OUFIR is 
highly insensitive to initial conditions. 

According to the accuracy and precision 
results, the OUFIR filters showed better 
performance for tracking objects. Consequently, 
the OUFIR filter in general shows higher 
robustness against initial conditions and noise 
statistics than UFIR, OFIR and KF. 

Therefore, we conclude that the 
incorporation of state estimators and the use of 
OUFIR and UFIR filtering can provide further 
development of object tracking algorithms for a 
wide variety of application areas. 
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