
Human pronunciation can be divided into voiced and 
unvoiced sound according to the vibration of vocal cords. The 
vocal cords do not vibrate when air flow through the opened 
vocal cords without obstruction. This will produce unvoiced 
sound. Voiced sound is produced when the vocal cords close 
and air flow to make the vocal cords vibrate. If the processing 
of the speech only relies on the overall synthesis features of the 
signal, it will inevitably blur the characteristics of the two 
components in the speech (i.e. the unvoiced and the voiced). 
Applying the classification to speech signal processing will 
solve the problem that vowels and consonants have different 
time-frequency resolution requirements [1-3]. At the same time, 
the corresponding adaptability and function of speech 
recognition can be enhanced. At present, there are several the 
following the classical classification methods of unvoiced and 
voiced sounds [4]. We can set eigenvalue thresholds based on 
the difference in the short-term energy of the two sounds. And 
on this basis improved judgments is based on short-term energy 
distribution characteristics [5]. But with a large amount of 
computation and complex implementation. Or we can use the 
method of short-term zero-crossing rate judgment [6]. Either 
way the accuracy of these methods is unsatisfactory. Since the 
1980s, artificial neural networks have also been introduced into 
this field, but the training speed is slow and it is easy to fall into 
local points [7-8].  

In this paper, an unvoiced and voiced sound segmentation 
algorithm based on the  estimation of the short-term linear 
subspace dimension of speech is designed. First, the overall 
principal component analysis of different monophones is 
carried out [9-10]. We can find the principal component number 
of unvoiced and voiced sounds, that is, the dimension, has 
different trends with the frame length. On the basis of this 
research, the local principal component analysis of continuous 
speech is continued [11-12]. According to the change of the 
number of signal dimensions over time, it reflects which time 
period is voiced and which time period is unvoiced. The method 
utilizes the difference in the number of principal components of 
unvoiced and voiced signals to obtain a way of judging. This 
method has good real-time performance and high accuracy. 

 

PCA transforms the original data into a linearly 
independent representation of each dimension through linear 
transformation. This a chieve the effect of dimensionality 
reduction [13-15]. Simultaneously, it can be used to extract the 
main feature components of the data. PCA transform, also 
known as Hotelling transform or K-L transform, is an 
orthogonal linear transform. The transform is understood as 
using linear projection to project the data into the subspace with 
the smallest dimension. So that the obtained components are 
distributed according to the amount of information. The amount 
of information contained in the first principal component is the 
largest, and it decreases in turn in the backward direction. And 
there is no correlation between the principal component 
components after transformation. The information of the image 
after PCA transformation is mainly concentrated in the first few 
principal components. Generally, the components with small 
amount of information are discarded until the amount of 
information is greater than 90%~95%. Each eigenvector of the 
data covariance matrix is a subspace coordinate vector, and its 
corresponding eigenvalue is the variance of the initial signal 
projected onto the projection surface. 

The algorithm flow of PCA analysis of speech signal is as 
follows: 

First divide the speech signal into M frames, each frame 
has N dimensions, and the n-th dimension element of the m-th 
frame is denoted as n

mX . 

Step 1: Decentralize all features, that is, find the average of 
each dimension, and then subtract its own mean from each 
feature 
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The n-th dimension mean: 
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The original signal becomes: 
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Step 2: Find the covariance matrix 

Variance in two dimensions: 
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Covariance C: 
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Step 3: Find the eigenvalues   of the covariance matrix C and 
the corresponding eigenvectors  . 

 C   (5)
Among them, there are a total of N eigenvalues, and they 

are arranged from large to small to select the first k to g et 

 1 ... ku u . 

Step 4: Project the original feature onto the selected feature 
vector and use k

my  to represent the kth dimension of the m-th 
frame. 
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Step 5: Find the proportion of information in each dimension 
ne  
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The value of an eigenvalue divided by the sum of all 
eigenvalues is the variance contribution rate of the eigenvector. 
It represents the proportion of the amount of information 
contained in this dimension. 

 
Fig. 1 Flow chart of PCA algorithm 

Local PCA is to take some frames that are close in time near 
a certain moment to do PCA. Instead of doing PCA for all 
frames of the whole signal. Do local PCA analysis of continuous 
speech signals containing different pronunciation phonemes. 
The purpose is to check the local the number of principal 
components of the signal vector set changes over time. Then 
unvoiced and voiced sounds can be determined. 

First, the frame offset is used as a variable. In order to 
increase the signal vector, the frame offset of adjacent frames 
can be smaller. Since PCA is a statistical method, more sample 
vectors are required. If the frame offset is too large, there will be 
too few signal vectors in the local temporal neighborhood, and 
the PCA results will lose statistical significance. But the frame 
offset is too small may also bring some problems such as 
increasing the amount of calculation. 

From the experience of the ordinary speech rate of 
continuous speech signals, the duration of about 16 ms to 32 ms 
corresponds to one pronunciation phoneme. Therefore, the local 
time interval is 20 to 30 ms. Under the sampling frequency of 16 
kHz, it is converted into the length of the number of sampling 
points. That is to say that the length of the local interval is 320 
to 480 sampling points. First, the frame length, frame offset, and 
local interval should be set. And then a range of local intervals 
should be taken from the beginning of the signal. Next, the local 
signal will be framed to form a data matrix, and a complete PCA 
analysis should be performed to obtain the number of principal 
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components. Repeat the above steps starting with the second 
frame, the number of principal components that change with 
time will be obtained. And the unvoiced and voiced sounds can 
be effectively segmented by taking a certain threshold for the 
result. 

The overall PCA analysis of the monophone signal was 
carried out to observe the change of the number of principal 
components of the signal with the frame length under different 
frame lengths. And we can know the difference between 
different signals. 

 
Fig. 2 PCA analysis of monophone signals 

The results are shown in the figure below:  

 
Fig. 3 The number of principal components varies with frame length (More 

than 90% composition) 

 
Fig. 4 The number of principal components varies with frame length (More 

than 95% composition) 
 

In Fig. 3 and Fig. 4, the abscissa represents the frame length, 
and the ordinate represents the number of principal components.  

The main components of some phonemes vary with the 
frame length as shown in the tables below: 

 
 
 

TABLE 1 THE NUMBER OF PRINCIPAL COMPONENTS VARIES WITH FRAME LENGTH( MORE THAN 90% COMPOSITION) 

Frame 

 length 

Signal 
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

/u/ 2 3 4 5 6 7 7 8 8 8 8 8 8 8 8 8 

/o/ 2 3 4 5 6 7 7 8 8 8 8 8 8 8 9 9 

/sh/ 6 11 15 19 23 28 31 35 39 43 46 50 52 55 58 61 

/s/ 4 6 9 11 13 16 18 20 22 24 26 28 31 32 34 36 
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4. Experimental Simulation Analysis 
4.1 PCA Analysis of Monophone Signals 
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TABLE 2 THE NUMBER OF PRINCIPAL COMPONENTS VARIES WITH FRAME LENGTH (MORE THAN 95% COMPOSITION) 

Frame 

 length 

Signal 
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

/u/ 2 4 5 6 7 8 8 9 9 9 9 9 9 9 9 10 

/o/ 3 4 5 7 8 9 10 11 11 12 12 12 12 13 13 13 

/sh/ 8 14 19 24 29 35 40 44 49 54 58 63 66 70 74 77 

/s/ 5 9 12 15 18 21 24 27 30 33 36 38 41 43 45 47 
 

It can be seen from the figure and table that for voiced 
sounds, it tends to a limit value, while for unvoiced sounds, it 
increases approximately linearly with the increase of frame 
length. Under the same frame length, the number of principal 
components of different phoneme pronunciation signals is 
different. 

 

Based on the above results, a method for segmenting 
different phonemes of continuous speech signals based on local 
PCA analysis is proposed. That is, t aking some temporally 
closed frames near a certain moment for PCA to check the 
number of principal components of the local signal vector set 
with the passage of time changes. Thus, the voiced and unvoiced 
phonemes in word pronunciation can be judged and segmented. 

 
Fig. 5 Flowchart of local PCA over time 

The following figures show the local PCA analysis of the 
three words signals of ‘face; show; wash’. The frame length is 
128, the frame offset is 4, and the local range is 400 points. A 
certain threshold (boundary value) is taken for the result curve. 
Time-domain waveforms are compared to the results produced. 

 
Fig. 6 Local PCA segmentation results of 'show' word signal (more than 90% 

components) 
 

 
Fig. 7 Local PCA segmentation results of 'show' word signal (more than 95% 

components) 
 

 
Fig. 8 Local PCA segmentation results of 'face' word signal (more than 90% 

components) 

0 500 1000 1500 2000 2500
0

10

20

30

0 2000 4000 6000 8000 10000 12000

-0.2

-0.1

0

0.1

0.2

0 500 1000 1500 2000 2500
0

10

20

30

40

0 2000 4000 6000 8000 10000 12000

-0.2

-0.1

0

0.1

0.2

0 500 1000 1500 2000
0

10

20

30

40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

-0.5

0

0.5

4.2 Local PCA Analysis of Continuous
 Speech Signals 
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Fig. 9 Local PCA segmentation results of 'face' word signal (more than 95% 

components) 
 

 
Fig. 10 Local PCA segmentation results of 'wash' word signal (more than 90% 

components) 
 

 
Fig. 11 Local PCA segmentation results of 'wash' word signal (more than 95% 

components) 
 

The upper part of each image is the signal time-domain 
waveform diagram, and the lower part is the graph of the number 
of principal components finally obtained over time. The vertical 
direction of the two images corresponds to the same time. 

The thresholds of the number of principal components are 
taken as 13 (take more than 90% components) and 18 (take more 
than 95% components). Only from the distinction between 
unvoiced and voiced sounds, it can be seen from the above result 
graph that the position of the red vertical line in the figure can 

be accurately correspond to the segmentation of unvoiced and 
voiced sounds in the time domain waveform. That is, the method 
can segment unvoiced and voiced sounds. However, in the  
"face" signal, it can be seen that there is a silent signal in the 
signal. Although the voiced and unvoiced sounds can still be 
segmented, the existence of the silent signal cannot be 
distinguished. Therefore, the silent signal should be extracted 
first, and then segmented by the method in this paper. 

This paper firstly studies the relationship between the 
number of principal components and the frame length after the 
monophone signal is divided into frames and reduced in 
dimension. As the frame length increases, the number of 
principal components tends to a limit for voiced sounds, while 
for unvoiced sounds, the number of principal components 
increases approximately linearly. And under the same frame 
length, the number of principal components of different 
phoneme pronunciation signals is different. Further research on 
continuous speech segmentation by local PCA is carried out. 
That is, the set of speech frames that are very close in time is 
used for PCA analysis, and the graph of the number of local 
principal components over time is obtained and compared with 
the time-domain waveforms. It is found that the segmentation 
of voiced and unvoiced sounds can be effectively performed by 
setting the threshold. Future research will be carried out from 
the segmentation of silent segments and unvoiced or voiced 
sounds. We will strive to achieve high-accuracy real-time 
segmentation for it that is different from traditional methods. 
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