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Abstract: A matrix-valued inner product was proposed before to construct orthonormal matrix-valued wavelets for matrix-
valued signals. It introduces a weaker orthogonality for matrix-valued signals than the orthogonality of all components in
a matrix that is commonly used in orthogonal multiwavelet constructions. With the weaker orthogonality, it is easier to
construct orthonormal matrix-valued wavelets. In this paper, we re-study the matrix-valued inner product more from the
inner product viewpoint that is more fundamental and propose a new but equivalent norm for matrix-valued signals. We
show that although it is not scalar-valued, it maintains most of the scalarvalued inner product properties. We introduce a
new linear independence concept for matrix-valued signals and present some related properties. We then present the Gram-
Schmidt orthonormalization procedure for a set of linearly independent matrix-valued signals. Finally we define matrix-
valued lattices, where the newly introduced Gram-Schmidt orthogonalization might be applied.
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1. Introduction

Matrix-valued (v_ector—value(_j) signals are everyV\_/here theﬁfrthogonality A or Orthogonality C may not do so. In other
days, such as, videos, multi-spectral images, signals frQf, s Orthogonality B induced from the matrix-valued inner
multiarray multisensors, and high dimensional data. For thesg,qyct is the proper orthogonality for matrix-valued signals.
signals, there are correlations not only over the time but al§@yis g1s0 means that the matrix-valued inner product is needed

across their matrix components. How to efficiently represep} y,qy the decorrelation of matrix-valued signals and a

gn? process them plays an important and fundamental rol€;fhentional scalar-valued inner product may not be enough.
ata science.

) ) _ Since the main goal in [1], [2] was to construct orthonormal
In [1], [2], @ matrix-valued inner product was introduced fomatrix-valued (vector-valued) wavelets, not much about the

matrix-valued (or vector-valued) signals. It leads to a weak@ner product or the orthogonality itself, which is more funda-
orthogonality (called Orthogonality B) than the componenfnental, was studied. In this paper, we study more propertis on
wise orthogonality (called Orthogonality A) in orthogonajhe matrix-valued inner product and its induced Orthogonality
multiwavelet constructions [11], [12]. The weaker orthogg for matrix-valued signal space proposed in [1], [2]. We first
onality, i.e., Orthogonality B, provides an easier sufficieRefine a different norm for matrix-valued signals than that
condition to construct orthonormal multiwavelets with Orthogyefined in [2] and prove that these two norms are equivalent.
onality B than the necessary and sufficient condition [12] the norm defined in this paper is consistent with the matrix-
construct orthonormal multiwavelets with Orthogonality A. Ajgjued inner product similar to that for a scalar-valued inner
connection between multiwavelets and matrix-valued/vectgroduct_ We introduce a new linear independence concept for
valued wavelets can be found in [2]. After the works in [1]matrix-valued signals and present some related properties. We
[2], there have been many studies on matrix-valued/vect@ien present the Gram-Schmidt orthonormalization procedure
valued wavelets for matrix-valued/vector-valued signals in thier a set of linearly independent matrix-valued signals. We fi-
literature, see, for example, [3]- [10]. nally define matrix-valued lattices, where the newly introduced
On the other hand, the Orthogonality B induced from thgram-Schmidt orthogonalization might be applied. Due to the
matrix-valued inner product is stronger than the orthogonalifypncommuntativity of matrix multiplications, these concepts
which is called Orthogonality C here, induced from thand properties for matrix-valued signals and/or inner product
commonly used scalar-valued inner product for matrices. Itdge not straightforward extensions of the conventional ones for
because, as we shall see later, Orthogonality B is basically #iilar-valued signals and/or inner product.
orthogonality between all row vectors of two matrix-valued The remainder of this paper is organized as follows. In
signals, while Orthogonality C is the orthogonality of twasection II, we introduce matrix-valued signal space, matrix-
long vectors of concatenated row vectors of two matrix-valug@lued inner product, and define a new norm for matrix-valued
signals. It was proved in [2] that Orthogonality B or theignals. We present some simple properties for the matrix-
matrix-valued inner product is able to completely decorrela{@lued inner product and prove that the new norm proposed

matrix-valued signals not only in time domain but also acros$this paper is equivalent to that used in [2]. In Section IIl, we
the components inside matrix, i.e., it provides a complete

Karhunen-Loeve expansion for matrix-valued signals, while
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first introduce the concepts of degenerate and nondegeneesfeivalent in the sense that there exist two positive constants
matrix-valued signals and then introduce the concept of line@; > 0 and Cs > 0 such that

independence for matrix-valued signals. The newly introduced

linear independence is different from but consistent with theC1llfll < [[f][ar < Co[f[l, for any f € L2(a,b;CY*¥). (4)
conventional one for vectors. We also present some interestinQNe next define matrixovalued inner product for matrix-
properties on the linear independence and the orthogonal: ; R NXN procl .

ity. We finally present the Gram-Schmidt orthonormalizatio\r‘Ialued signals in*(a, b; C ). For two matrix-valued sig-
procedure for a set of linearly independent matrix-value
signals, which has the similar form as the conventional o

for vectors but not a straightforward generalization due to %

Isf,g € L?(a,b; CN*N), their matrix-valued inner product
r simply inner product)f, g) is defined as the integration
Ethe matrix product(t)g(¢), i.e.,

noncommutativity of matrix multiplications and the matrix- A [P

valued inner product used in the procedure. In Section IV, we (f,g) = / f(t)g' (t)dt. (5)

define matrix-valued lattices. In Section V, we conclude this “

paper. With the definition (5), most properties of the conventional
. . scalar-valued inner product hold for the above matrix-valued

2. Matrlx-_valued Slgnal Space inner product. For instance, the following properties of the

and Matrix-valued Inner Product matrix-valued inner product are clear:

We first introduce matrix-valued signal space studied ini) (f g) = (g, f).
[1], [2]. Let CN*N denote allN x N matrices of complex- (jj) (f,£) =0 if and only if f = 0.
valued entries, and foroo < a < b < oo, let L*(a,b) (i) |f]5, = | (£, £)] 2/,
denote all the finite energy signals in the interValb) and (i) For any A, B € CNV*N, (Af, Bg) = A(f,g)B.

L?(a,b;CN*N) pe defined in (1) at the top of this page .
We call L2(a,b;CN*N) a matrix-valued signal space an ote that Property (iii) may not hold for the norm (3) used in

, 2].
2 .C"NXxN 2 .C"NXN
ﬁw(gtrii—villggab’s(ic nal ), or simply £ € L%(a,b;C ) a Two matrix-valued signal§ andg in L?(a,b; CV*N) are
gnay called orthogonal if (f,g) = 0. A set of matrix-valued

For anyA € CVN*N andf € L?(a, b; CV*Y), the products ) . - .
yA el € L*(a,b;C ) products signals is called alrthogonal set if any two distinct matrix-

Af, £A4 € L¥(a,b;C*Y). This implies that the matrix- valued signals in the set are orthogonal. A sequebgg) €
| H | 2 .NXNY ; fi NXxN ? . )
valued signal spacé(a, b; C" ") is defined overC L?(a,b;CN*N) k € Z, is called anorthonormal set in

a?d not simply ove€. Forf € L?(a, b; CV*V), its integration L2(a b OV i
J; £(t)dt is defined by the integrations of its components, i.e.,
Sy £t = ([ fu(t)dt). (@1, 8) = S(k — DIy, klCZ, ()

Let || - ||ar denote a matrix norm o8V >~ for example,

the Erobenius norm whered(k) = 1 whenk = 0 and (k) = 0 whenk # 0,

Iy is the N x N identity matrix. Due to (i) above, the

N 1/2 orthogonality/orthonormality betwedhandg is commutative,
lAllv = |AllF = Z | A2 : i.e., if f andg are orthogonal/orthonormal, thenandf are
k=1 orthogonal/orthonormal too.

A sequence®,.(t) € L?(a,b;CN*N), k € Z, is called an
orthonormal basis for L2(a,b; CV*¥) if it satisfies (6), and
moreover, for anyf € L?(a, b; CN <) there exists a sequence

where A = (Ay,;). For eachf € L2(a,b;CN*N), let ||f||ar
denote the norm of associated with the matrix north- ||
as

b 1/2 of N x N constant matrice$},, k € Z, such that
A
flla = £()f (t)dt 2
Il 2 | [ e o) . @ 0 YR, o o] -
where T denotes the complex conjugate transpose. Note that ©
the norm||f|| of f defined in [2] has the following form or simply

f= ZFm,

. b 1/2
||f||</ ||f<t>||?wdt> , 3)

whereF}, = (f, ®;), the multiplicationF, @, (t) for each fixed
where ||£(¢)]|a is the matrix norm of matrix(¢) for a fixedt. ¢ is the N x N matrix multiplication, and the convergence for
We will show later that the above two norrf#|| and||f||,; are the infinite summation is in the sense of the ndrfy, defined

E-ISSN: 2224-3488 147 Volume 18, 2022



WSEAS TRANSACTIONS on SIGNAL PROCESSING

DOI: 10.37394/232014.2022.18.21

Xiang-Gen Xia

by (2) for the matrix-valued signal space. The correspondingOn the other hand,

Parseval equality is

2

£l = Z A Z Fun(8) i ()
,N )
f) =) F.F}. (8) < N Z / Jiem (8) [ (£)dt
kEZ k,l=1m=1
N N
With the norm || - ||5r in (2), it is clear that for any el- NI &
ement ®, in an orthonormal set inL?(a,b;CV*Y), we s 3 Z Z / | fim (1) dt
have ||®x||»s = 1, which is consistent with the conventional k=1 m=1
relationship between vector norm and vector inner product.
However, this property may not hold for the noffm|| in (3) fzm )|t
used in [2]. We refer to [2] for the Karhunen-Loéve expansion
with an orthonormal basis for random processes of matrix- N
valued signals. < Z (/ | Frem (8)] dt)

We next show the equivalence (4) of the two nonng|,

in (2) and|| - || in (3).

Proposition 1: The norms|| - ||, in (2) and|| - || in (3) are

equivalent.

< / S i)t

@ km=1

= NZ|f||"

Proof: It is known that all matrix norms for constantThis shows that
matrices are equivalent. Hence, we show (4) only for the I£llar < VN|IE]|. (10)

Frobenius norm, i.eJ| - [|» = || - || 7. In this case,

2
£l =

/ kam i (B)dE
k,l=1
b
>y / o]

k=1|m=1
N

+ 2

kAl=1

iz/mm o]

k=1

/ From (8) frn (1)t

m=1

Y

IV
@\..
o
i MZ
=
T
SN

Thus, we have

1
WHfH < I£]las-

E-ISSN: 2224-3488
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)

Corrbining (9) and (10), the equivalence (4) with = N—1/4
andCy, = N'/2 between the normg- |27 in (2) and|| - || in
(3) is provedg.e.d.

Due to the equivalence of the norfh- ||, proposed in
this paper and the norri - || used in [2], all the results on
orthonormal matrix-valued wavelets obtained in [2] hold, when
the norm|| -|| »s for matrix-valued signals in this paper is used.

As a remark, the conventional inner product for two matrices
A and B is the scalar-valued inner produst(AB") where
tr stands for the matrix trace. It is not hard to see that with
this scalar-valued inner product, the orthogonality between two
matrix-valued signals, which is callgdrthogonality C, is the
orthogonality of two long vectors of concatenated row vectors
of two matrix-valued signals. As mentioned in Introduction,
and it is also not hard to see from the above definition, the
orthogonality (6) induced from the matrix-valued inner product
in this paper for two matrix-valued signals is the orthogonality
between any row vectors including the row vectors inside
a matrix of the two matrix-valued signals, which is named
Orthogonality B in [2]. Clearly Orthogonality B is stronger
than Orthogonality C, while it is weaker than the component-
wise orthogonality calledrthogonality A in [2], commonly
used in multiwavelets [11], [12].

With Orthogonality A, a necessary and sufficient condition
to construct orthonormal multiwavelets was given in [12] that
is not easy to check. However, with Orthogonality B, an easy
sufficient condition to construct orthonormal multiwavelets
was obtained in [2]. Furthermore, it was shown in [2] that the
matrix-valued inner product (5) and its induced Orthogonality
B provide a complete decorrelation of matrix-valued signals
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along time and across matrix components, i.e., a completelt is clear to see that Proposition 2 is a special case of
Karhunen-Loeve expansion for matrix-valued signals can Beoposition 3.

obtained. This may not be possible for Orthogonality A or Proposition 4: If matrix-valued signaldy, k = 1,2, ..., K,
Orthogonality C induced from a scalar-valued inner produate linearly independent, then for any full rank constant
[13], [14]. In other words, the matrix-valued inner product (5jnatricesGy € CN*V, k = 1,2, ..., K, matrix-valued signals

is fundamental to study matrix-valued signals. gk 2o, k= 1,2,..., K, are also linearly independent.
Proof: For any constant matrice§, € CN*VN, k =
1,2,.., K, if

3. Linear Independence and
Gram-schmidt Orthonormalization

K
Let us first introduce degenerate and linearly independent ; 8k
matrix-valued signals, and study their properties. a

K
= FGif=f
k=1
is degenerate, then for eaéh1 < k < K, the null space of

3.1 Degenerate and Linearly matrix (FpGy)" = GLF,I includes the null space of matrix
Independent Matrix-valued Signals (f,f), sincef,, ¥ = 1,2,..., K, are linearly independent.
) ) o Nx N Because all matrice&'y, k = 1,2, ..., K, have full rank, for
A matrix-valued signaff in L*(a,b;C ) is calledde-  oachi 1 < k < K, the null spaces of and G| F] are the

generate signal if (f,f) does not have full rank, otherwise itsame, thus, the null space ﬂj includes the null space of
is called nondegenerate signal. A sequence of matrix-valued (f,£) as well. This proves the propositiog.e.d

i i 2 .CONXxN —
signals fy, in L*(a,b; C ) k=12..K, are_ called * gimilar to the conventional linear dependence of vectors,
linearly independent if the following condition holds: if we have the following result for matrix-valued signals.

K A Proposition 5: For a matrix-valued signal €
Zkak =f (11) L%(a,b;CN*N) and two constant matriced, B € CNV*V,
k=1 matrix-valued signalsif and Bf are linearly dependent.

for constant matricesF, € CN*N, k = 1,2,.. K, is Proof: If Af and Bf are linearly independent, then, from

degenerate, then the null space of maﬁ’;§<includes the null Proposition 2 iF is easy to see that matricksnd B all have
space of matrix(f, f) for every k, k = 1,2,..., K. Clearly, full rank andf is nondegenerate. Then, we have

the above linear independence returns to the conventional one 1 .

. ) ; BAT'Af — Bf =0,

when all the above matrices are diagonal. Furthermore, if
f = 0 in (11), the above condition implies that all, = 0, which contradicts with the assumption of the linear indepen-
k =1,2,..., K, since in this case, the null space dtf) is dence ofAf and Bf. This proves the propositiom.e.d.

the whole spac&” <. This concides with the condition of Although it is obvious for the conventional vectors, the

the conventional linear independence. result in Proposition 5 for matrix-valued signals may not be
Proposition 2: If matrix-valued signalgy, k = 1,2, ..., K, so, due to the matrix-valued coefficient multiplications as it

are linearly independent, then, all signéils £k = 1,2,..., K, can be seen from the above proof. We next consider more

are nondegenerate. general linear combinations of linearly independent matrix-

Proof: Without loss of generality, assunfe is degenerate. valued signals.
Let /1 = Iy and Fy, = 0 for k = 2,3,..., K. Then, we have For1 < p < K, let Sy, ..., S, be a partition of the index

that X« set{1,2,..., K} and eachS; has K; elements, where;, N
ZF £ —f SiQ = ( for 1 < i # 19 < p, Ulesi = {1,2,...,K}, and
P RE = 1<Ky,..K,<Kwith K, + Ko +---+ K, = K.

Proposition 6: For eachi, 1 < i < p, let Gy, € CN*V,
is degenerate, while the null space i6f is 0 only and does %, € S,, be K, constant matrices and at least one of them
not include the null space df;, f;). In other wordsfi, k = have full rank. If matrix-valued signalf,, & = 1,2, ..., K,
1,2, ..., K, are not linearly independent. This contradicts thgre linearly independent, then the followipgmatrix-valued
assumption in the proposition and therefore the propositionggjnals:

proved.g.e.d. , . Z G, f,, fori=1,2 ....p,
As one can see, the above concept of degenerate signal is aprs

similar to that of0 in the conventional linear dependence or . .

. are linearly independent.

independence.

Proposition 3: Let Gy € CN*N, k — 1.2, K, be K Proof: Let F; € CV*V i =1,2, ..., p, be constant matrices.
) ' o Assume that

constant matrices and at least one of them have full rankl

p
If matrix-valued sig{nalsfk, k= 1,2,...,K, are linearly ZFi Z Grfe, =8
independent, thed |, Gf is nondegenerate. i=1 k€S

Proof: W}Ehout loss of g_enerality, let us assurie has fgll is degenerate. Then,
rank. If 37, Gifi, = g is degenerate, then by the linear ,
independence ofy, £k = 1,2,..., K, the null space ofGI

.1 . )~ ) 1. ) FZG f = ,
cannot only contair), which contradicts the assumption that Z Z Rilk: = 8

G has full rank.g.e.d. i=1 k€S,
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and by tte linear independence f, k = 1,2, ..., K, we know a general orthogonal set of matrix-valued signals may not
that the null space ofF;Gy, )t for everyk; € S; and every have to be linearly independent. This does not occur for any
1 =1,...,p contains the null space of matrig, g). From the orthogonal set of nonzero signals when a scalar-valued inner
condition in the proposition, without loss of generality, weroduct is used.

may assume that', ,, for somek;; € S;, has full rank for

1 < i < p. Thus, the null space ofF;Gy,,)t, or G} F!, 3.2 Gram-schmidt Orthonormalization

contains the null space dg, g) for 1 < i < p. SinceGy, , We are now ready to present the Gram-Schmidt orthonor-

has full rank, the null space df] must contain the null spacemalization for a finite sequence of linearly independent matrix-

of (g, g) for 1 <i <p. This proves the propositiom.e.d.  valued signals. Lef, € L%(a,b;CV*N), k =1,2,..., K, be
Note that whenp = 1 in Proposition 6, it returns to linearly independent. The Gram-Schmidt orthonormalization

Proposition 3, and whep = K in Proposition 6, it returns to for this sequence is as follows, which is similar to, but not a

Proposition 4. straightforward extension of, the conventional one, due to the
Proposition 7: If fi, k = 1,2,..., K, form an orthonormal noncommutativity of matrix multiplications.

set in L?(a,b; CN*N), then, they must be linearly indepen- Sincef, € L2(a,b;CN*N), k = 1,2,..., K, are linearly

dent. independent, by Proposition £, is nondegenerate, i.e., matrix
Proof: For constant matrices;, € CN*V, k =1,2,..., K, (f,f,) is invertible and positive definite. Let
let
K g1 = <f1,f1>_1/2f1. (12)
;kak =f Then, we have
B b
Then, from the Parseval equality (8), we have (g1,g1) = <f1,f1>—1/2/ £L(O)F] (8)dt (£, £) 712
K a
S R = (£,1). = (f, )20 B (B BTV = Iy (13)
k=1 Let
Assume that for some vectar# 0, we have(f, f)u = 0 but go = £ — (f2,81)81, (14)

F! w +# 0 for someky, 1 < ko < K. Then, A 1/22
ot 7 o= ho g — (gni) . (15)
For (15) to be vaild, we need to show thgt in (14) is

K
0<u'F, Fl u< TR Fu = ol (f,f)u =0 -
S U ko Pt S Zu kFyu = ul(f, flu =0, nondegenerate. In fact, f, is degenerate, then, from (14)

k=1
) o and (12), we have
which leads to a contradiction. Thus, for edghl < k < K, R 172
the null space off; includes the null space off,f). This g = bh—(fb,g)f, fi)”*hH
proves the linear independencefpf £ = 1,2, ..., K. g.e.d. = If] + [y,

Corollary_ 1 Assume_sz, k = 1,2,..., K, are nondegen- whereFs = Iy andFy = —(f>, g1 )(f1, £1)~1/2. Similar to the
erate matrix-valued signals and form an orthogonal set In . . . .

5 CANXN A ~1/2 B proof of Proposition 2, this contradicts the assumption fhat
L (a,b,(C ) Then,gk = <fk,fk> fr, k = 1,2,..., K,

i andf, are linearly independent. Therefore, it proves tgat
2 . NXN —
form an orthor_10rma| _set L™ (a, b CT), and £, k& = in (14) is nondegenerate and (15) is well-defined.
1,2,..., K, are linearly independent.

) . . Let us then check the orthogonality betwegn and gs.
Proof: Since all matrix-valued signafs are nondegenerate,From (14) and (13), we have

matrices(fy, fi,) all have full rank. From the property (iv) for
the matrix-valued inner product afdj } is an orthogonal set, (82,81) = (f2,81) — (f2,81)(g1,81)
for everyk,l,1 <k, | < K, = (f2,81) — (f2,81) = 0.

(g, 1) = (B, fu) V2 (E0, ) (6, £) Y2 = 6(k — 1) Iy. From (15) and (13), we have thgt andg, form an orthonor-
mal set.

Thus, gr, ¥ = 1,2,...,K, form an orthonormal set in Repeat the above process and for a general< k < K,

L2(a, b;CN*N),

. . we let
Then, the linear independence fif = (fi, fi)!/%gy, k = -
é,s,d..,K, immediately follows from Propositions 4 and 7. & = f— Z(fk,gz>gz, (16)
.e.d. —
The result in Corollary 1 is consistent with the conventional WA \—1/24
y g = (&8 Y% (17)

one for vectors, i.e., any orthogonal set of nonzero vectors
must be linearly independent. However, there is a differend#ith the same proof as the abogge and g,, we have the
In the above relationship between orthogonality and line&llowing proposition.

independence, matrix-valued signals need to be nondegeneratroposition 8: For a linearly independent set of matrix-
Note that it is possible that a matrix-valued sigfaln an valued signalsy, &£ = 1,2,..., K, let g1,g2,...,gx be con-
orthogonal set inL?(a,b; CN*/N) is degenerate, i.e(f,f) structed in (12) and (14)-(17). Thegy, g2, ..., gx form an
may not necessarily have full rank, even thodgf 0. Thus, orthonormal set.
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As we can ee, although the above Gram-Schmidt orthonofx +f : f € F} for x € £ form a partition ofRX. Since the
malization procedure for matrix-valued signals is similar tbasis element,, £ = 1,2, ..., K, are not constant real vectors
the conventional one for vectors, it is not a straightforwaras in the conventional lattices, it would not be convenient to
generalization due to 1) the noncommuntativity of matridefine the determinant of the lattice. However, with the Gram-
mulitpications and 2) the matrix-valued inner product useBichmidt orthonormalization developed in the previous section,

in the above procedure. we may define the determinant of the lattice directly as
We also want to make a comment on the nondegenerate and K

linear independence for matrix-valued signals. The condition det(L) = H £l 7, (20)

for nondegenerate matrix-valued signals is a weak condition. Pl

Unless the row vectors of functions are linearly dependent . .

in the conventional sense, otherwise, a matrix-valued sighdtere fi, & = 1,2,... K, are from the following Gram-
is usually nondegenerate. For a finite set of nondegenergg'Midt orthogonalization ofy, k = 1,2,..., K, which is
matrix-valued signals, they usually satisfy the condition fdfom the Gram-Schmidt orthonormalization in the previous

linear independence for matrix-valued signals defined abo#&Ction:

i.e., they are usually linearly independent and therefore, they fi =1,

can be made to an orthonormal set by using the above Gram- . k=1

Schmidt procedure. e D i (21)
Another comment on the linear independence for matrix- =1

valued signals is that the definition in (11) is only for left mulwhere
tiplication of constant matriceB;, to matrix-valued signalf;. S A1
Similar definitions for linear independences of matrix-valueld’:x = (£, £)(6, 01) 7, 1=1,2,... . k=1 andk =2,3,.... K.
signals with right constant matrix multiplications and/or mixed . ) (22)

left and right constant matrix multiplications may be possibldt 1S clear to see that the spaces linearly spa}?n_ed by
Although what is studied in this paper is for continuous-timef1 f2: -+ fx } and {f1, f5, .., fc } are theNsame, LeR™ In
matrix-valued signals, it can be easily generalized to discrefd): Since they can be linearly (ov&r***) represented by

time matrix-valued signals (sequences of finite or infinit§@Ch other similar to the conventional vectors.
length). From the Gram-Schmidt orthogonalization (21), we have

k—1

4. Matrix-valued Lattices (Fis B) = (Bis B) + D el Bl s (23)
In this section, based on the matrix-valued signal space W]Lth =

the matrix-valued inner product, we introduce matrix-value,g)r k. - 1’2’_""[,(' Using Property (iii) in Section II, the
identity (23) implies

lattices.

We first introduce matrix-valued lattices. For convenience, R k-1 )
in what follows we only consider the Frobenius norm for I8l < 1€ llF + D M3 - 18017 (24)
matrices, i.e.|| - ||» = || - ||, @and real matrix-valued signal =1

spaces, and also |6® denote the real matrix-valued signafor k = 1,2,..., K. From (23), it is also clear thdfy|r >
spaceR 2 L2(a,b;RN*N). Let ZV*N denote allN x N ||fil|r, k=2, ..., K.
matrices of integer entries. As a remark, we know that the conventional Gram-Schmidt
For a finite many linearly independent real matrix-valuedrthogonalization plays an important role in the LLL algorithm
signalsf, € R, k = 1,2,..., K, let R¥ denote the matrix- for the conventional lattice basis reduction [20]. It is, however,
valued signal space linearly expanded by them, i.e., not clear how the Gram-Schmidt orthogonalization for matrix-
valued signals introduced above can be applied in matrix-

K
RE — {Zkak . F e RVXN | —12, ,K} . (18) valued lattice basis reduction.

k=1 .
From what was studied in the previous section, cledily, . Cpnclu5|on . ] .
k=1,2,..., K, form a basis inR . The matrix-valued lattice In this paper, we re-studied the matrix-valued inner product
formed by this basis iR is defined as previously proposed to construct orthonormal matrix-valued
wavelets for matrix-valued signal analysis [1], [2] where
} (19) not much on the matrix-valued inner product or its induced

K
— . NXxN _
L= {Zkak P heeZ k=12, K Orthogonality B, which is more fundamental, was studied.

k=1 In order to study more on the matrix-valued inner product
which is a subset/subgroup dR”. The basisf,, ¥ = and its induced Orthogonality B, we first proposed a new
1,2,..., K, is called a basis for thél dimensional matrix- norm for matrix-valued signals, which is more consistent with
valued latticeL. the matrix-valued inner product than that used in [2], and

The fundamental region of this latticé can be defined is similar to that with the conventional scalar-valued inner
similar to the conventional lattice as follows. A setc R®  product. We showed that these two norms are equivalent,
is called a fundamental region, if its translatiorst+ 7 = which means that with the newly proposed norm, all the
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results br contructing orthonormal matrix-valued wavelet§l2] G. Plonka, “Necessary and sufficient conditions for orthonormality
obtained in [2] still hold. We then proposed the concepts ©f scaling vectors” In: G. Numberger, J. W. Schmidt, and G. Walz
fd t d d t tri lued si | eds.), Multivariate Approximation and Splines, ISNM International
0 .egenerae-z an .non €generate ma ”X'Ya ue 5|gn_as @NGseries of Numerical Mathematics, vol 125. Birkhuser, Basel, 1997.
defined the linear independence for matrix-valued signals, https:/doi.org/10.1007/978-3-0348-887114
which is different from but similar to the conventional lineaf!3] E. J.Kelly and W. L. Root, "A representation of vector-valued random
. . _processes,” Group Rept. 55-21, revised, MIT, Lincoln Laboratory, Apr.
independence for vectors. We also presented some properueg%ol
on the linear independence and the orthogonality. We thgna] H. Van TreesDetection, Estimation, and Modulation Theory I, Wiley,
presented the Gram-Schmidt orthonormalization procedure for 1968.
. . . . hS] I. Kaplansky, “Modules over operator algebraarher. J. Math., vol. 75,
a set of linearly independent matrix-valued signals. Althoud pp. 839-853, 1953,
this procedure is similar to the conventional one for vectorgs] A. Bultheel, “Inequalities in Hilbert modules of matrix-valued func-
due to the noncommutativity of matrix multiplications and the _ tions,” Proc. Amer. Math. Soc., vol. 85, no. 3, pp. 369-372, July 1982.
trix-valued inner product used in the procedure. it is n ]’t7] E. C. Lance, “Hilbert C*-modules, A toolklt_ for operator algebraists,
ma ”X_ value P iy ) p e ) London Math. Soc. Note Ser., vol. 210, Cambridge Univ. Press, 1995.
a straightforward generalization. We finally defined matriXi8] M. Frank and D. R. Larson, “Modular frames for Hilbert C*-modules

valued lattices, where the neWIy introduced Gram-Schmidt and symmetric approximation of frames,” arXiv:math/0010115v1
[math.OA], Oct. 2000.

orthogonalization might be applied. [19] M. Frank and D. R. Larson, “Frames in Hilbert C*-modules and C*-

Since it was shown in [2] that the matrix-valued inner algebras,J. Operator Theory, vol. 48, no. 2, pp. 273-314, Fall 2002.
; ; 20] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials
prquCt and O_rthogonallty_ B provide _a Comp|8t_e KarhuneR with rational coefficients,"Mathematische Annalen, vol. 261, no. 4, pp.
Loeve expansion for matrix-valued signals, which a scalar- 515.534, 1982.

valued inner product may not do, it is believed that what
was studied in this paper for matrix-valued inner product for Creative Commons Attribution License 4.0

matrix-valued signal space will have fundamental applications (Attribution 4.0 International. CC BY 4 0)
for high dimensional signal analysis in data science. ' ' '

As a final note, after this paper was written, it has been This article is published under the terms of the Creative
found that the matrix-valued signal space with the matrix- Commons Attribution License 4.0
valued inner product in this paper is related to Hilbert modules, https://creativecommons.org/licenses/by/4.0/deed.en_US
see, for example, [15]- [19]. Interestingly, it was mentioned
in [18] that there does not exist any general notion 6f -
linear independence” due to the existence of zero-divisors. We
believe that the linear independence for matrix-valued signals
introduced in this paper is novel.
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