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Abstract: - Distributed Kalman filter (DKF) is classified into the information fusion Kalman filter (IFKF), i. e. 

the centralized Kalman filter (CKF), and the Kalman consensus filter (KCF) in distributed sensor networks. 

The KCF has the advantage to improve the estimate of the state at the sensor node uniformly by incorporating 

the information of the observations and the filtering estimates at the neighbor nodes. In the first devised KCF, a 

user adjusts the consensus gain. This paper designs the recursive least-squares (RLS) Wiener consensus filter 

and fixed-point smoother that do not need to be adjusted in linear discrete-time stochastic systems. In addition 

to the observation equation at the sensor node, an observation equation is introduced excessively. Here, the new 

observation is the sum of the filtering estimates of the signals at the neighbor nodes of the sensor node. Thus, it 

is interpreted that the RLS Wiener consensus estimators incorporate the information of the observations at the 

neighbor nodes indirectly because the observations are used in the calculations of the filtering estimates. A 

numerical simulation example shows that the proposed RLS Wiener consensus filter and fixed-point smoother 

are superior in estimation accuracy to the RLS Wiener estimators. 
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1 Introduction 

Over the last decade or more, the Kalman consensus 

filter (KCF) has been studied extensively in linear 

discrete-time or continuous-time systems, e.g., [1]-

[9]. Casbeer and Beard [10] present an information 

consensus filter (ICF) in distributed sensor 

networks. Li, Caimou, and Haoji, [11], study the 

KCF and the ICF, where they propose a new 

optimization procedure to update the consensus 

weights of the ICF. Wu et al., [4], propose the KCF 

by introducing the consensus gain, as shown in (7) 

and (8) in the paper, for linear continuous-time 

systems. AminiOmam, Torkamani-Azar, and 

Ghorashi, [12], propose a generalized Kalman 

consensus filter for nonlinear discrete-time systems, 

and its stability on the asymptotical convergence is 

proved based on the Lyapunov method. Chen et al., 

[13], propose the distributed state estimator in 

discrete-time nonlinear systems and present the 

distributed cubature information filtering algorithm.  

Olfati-Saber [14]-[16] is the first proposer of the 

KCF. Referring to Olfati-Saber [14]-[16], Takaba 

[17] explains in Japanese the distributed Kalman 

filter (DKF). The DKF is classified into the 

information fusion Kalman filter (IFKF), i. e. the 

centralized Kalman filter (CKF), and the KCF in 

distributed sensor networks. The KCF has the 

advantage to improve the estimate of the state at the 

sensor node uniformly by incorporating the 

information of the observations and the filtering 

estimates at the neighbor nodes. In the calculation of 

the filtering estimate at the sensor node, the KCF, 

[16], uses the one-step-ahead prediction estimates of 

the states at the neighbor nodes of the sensor node in 

addition to the observed value at the sensor node. In 

the first devised KCF, a user adjusts the consensus 

gain. This paper designs the recursive least-squares 

(RLS) Wiener consensus filter and fixed-point 

smoother that do not need to be adjusted in linear 

discrete-time stochastic systems. In addition to the
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observation equation at the sensor node, a new 

observation equation is introduced excessively. 

Here, the new observation is the sum of the filtering 

estimates of the signals at the neighbor nodes of the 

sensor node. Thus, it is interpreted that the RLS 

Wiener consensus estimators incorporate the 

information of the observations at the neighbor 

nodes indirectly because these observations are used 

in the calculations of the filtering estimates at the 

neighbor nodes.  

Section 2 introduces the least-squares consensus 

fixed-point smoothing problem. Section 3 presents 

the RLS Wiener consensus filtering and fixed-point 

smoothing algorithms. Section 4 presents the 

recursive algorithm for the estimation error variance 

function of the RLS Wiener consensus fixed-point 

smoother. Also, the asymptotic stability condition of 

the RLS Wiener consensus filter and the existence 

of the RLS Wiener consensus fixed-point smoother 

are shown. A numerical simulation example is 

shown in section 5 to demonstrate the estimation 

characteristic of the RLS Wiener consensus filter 

and fixed-point smoother. From the numerical 

simulation example, the proposed RLS Wiener 

consensus filter and fixed-point smoother are 

superior in estimation accuracy to the RLS Wiener 

filter and fixed-point smoother respectively. 

2 Least-squares consensus fixed-point 

smoothing problem 

Consider the state equation for the state vector 𝑥(𝑘) 

in linear discrete-time stochastic systems  

 𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), (1) 

where 𝑥(𝑘) is the state vector with 𝑛 components at 

time 𝑘, Φ is the system matrix, Γ is the input matrix 

and 𝑤(𝑘)  is the zero-mean input noise. For the 

sensor nodes, 𝑖 = 1,2,⋯ ,𝑁, each sensor node has 

the observation equation 

 
𝑦𝑖(𝑘) = 𝐶𝑖𝑥(𝑘) + 𝑣𝑖(𝑘), 𝑧𝑖(𝑘)

= 𝐶𝑖𝑥(𝑘), (2) 

where 𝑦𝑖(𝑘) is the 𝑚-dimensional observed value at 

the sensor node 𝑖, 𝑧𝑖(𝑘) is the signal at the sensor 

node 𝑖 , 𝐶𝑖  is the 𝑚  by 𝑛  observation matrix at the 

sensor node 𝑖  and 𝑣𝑖(𝑘)  is the zero-mean 

observation noise at the sensor node 𝑖 . The auto-

covariance functions of 𝑤(𝑘)  and 𝑣𝑖(𝑘)  are given 

by  

 

𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 > 0,

𝐸[𝑤(𝑘)] = 0,

𝐸 [𝑣𝑖(𝑘)(𝑣𝑗)
𝑇
(𝑠)] = 𝑅𝑖𝑗𝛿𝐾(𝑘 − 𝑠),

 (3) 

where 𝛿𝐾(⋅)  denotes the Kronecker 𝛿  function. 

According to the observation equation (2), Olfati-

Saber [16] shows the Kalman consensus filter as 

follows.  

Filtering estimate of the state 𝑥(𝑘)  at the sensor 

node 𝑖: 𝑥𝑖(𝑘 | 𝑘) 

 

𝑥𝑖(𝑘 | 𝑘) = 𝑥𝑖(𝑘 | 𝑘 − 1)

+𝐾𝑖(𝑘)(𝑦𝑖(𝑘) − 𝐶𝑖𝑥𝑖(𝑘 | 𝑘 − 1)) +

+𝑈𝑖(𝑘) ∑(

𝑗∈𝑁𝑖

𝑥𝑗(𝑘 | 𝑘 − 1)

−𝑥𝑖(𝑘 | 𝑘 − 1)),

𝑥𝑖(𝑘 | 𝑘 − 1) = Φ𝑥𝑖(𝑘 − 1 | 𝑘 − 1),

𝑥𝑗(𝑘 | 𝑘 − 1) = Φ𝑥𝑗(𝑘 − 1 | 𝑘 − 1)

 (4) 

𝐾𝑖(𝑘)  and 𝑈𝑖(𝑘)  are the Kalman gain and the 

consensus gain respectively. The equations for the 

Kalman gain and the consensus gain are shown in 

the paper. In (4), the filtering estimate at the sensor 

node 𝑖 uses the observed value 𝑦𝑖(𝑘) at the sensor 

node 𝑖  together with the one-step-ahead prediction 

estimates 𝑥𝑗(𝑘 | 𝑘 − 1) of 𝑥(𝑘 − 1) at the neighbor 

nodes 𝑗 ∈ 𝑁𝑖  of the sensor node 𝑖. Here, it should be 

noted that the Kalman filter calculates the estimates 

𝑥𝑗(𝑘 | 𝑘 − 1)  recursively with the observed values 

𝑦𝑗(𝑘 − 1).  

Referring to Olfati-Saber [14]-[16], Takaba [17] 

summarizes the Kalman consensus filter as follows. 

The observation 𝑧̆𝑖(𝑘) at the sensor node 𝑖 is given 

by 

 

𝑧̆𝑖(𝑘) = 𝐻𝑖𝑥(𝑘) + 𝑑𝑖(𝑘),

𝐻𝑖 =

[
 
 
 

𝐶𝑖

𝐶𝑖1

⋮
𝐶𝑖𝑁𝑖]

 
 
 

,  𝑑𝑖(𝑘) =

[
 
 
 
 

𝑣𝑖(𝑘)

𝑣𝑖1
(𝑘)

⋮
𝑣𝑖𝑁𝑖

(𝑘)]
 
 
 
 

.
 (5) 

From (2) and (5), 𝑧̆𝑖(𝑘)  consists of the observed 

value 𝑦𝑖(𝑘)  at the sensor node 𝑖  and its neighbor 

observed values 𝑦𝑖1(𝑘), 𝑦𝑖2(𝑘),⋯, 𝑦𝑖𝑁𝑖
(𝑘) at time 𝑘. 

𝑑𝑖(𝑘) has the auto-covariance function. 
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𝑅𝑖 = 𝐸[𝑑𝑖(𝑘)(𝑑𝑖)
𝑇(𝑘)]

=

[
 
 
 
 

𝑅𝑖𝑖 𝑅𝑖,𝑖1
⋯ 𝑅𝑖,𝑖𝑁𝑖

𝑅𝑖1,𝑖 𝑅𝑖1,𝑖1
⋯ 𝑅𝑖1,𝑖𝑁𝑖

⋮
𝑅𝑖𝑁𝑖

,𝑖

⋮
𝑅𝑖𝑁𝑖

,𝑖1

⋱
⋯

⋮
𝑅𝑖𝑁𝑖

,𝑖𝑁𝑖 ]
 
 
 
 
 (6) 

The Kalman consensus filter calculates the filtering 

estimate 𝑥𝑖(𝑘 | 𝑘), at the sensor node 𝑖, of the state 

𝑥(𝑘) recursively by (7) - (10). 

 

𝑥𝑖(𝑘 | 𝑘) = 𝑥𝑖(𝑘 | 𝑘 − 1)

+𝐾𝑖(𝑘)(𝑧̆𝑖(𝑘) − 𝐻𝑖𝑥𝑖(𝑘 | 𝑘 − 1))

+𝜀𝑃𝑖(𝑘|𝑘 − 1)

× ∑(

𝑗∈𝑁𝑖

𝑥𝑗(𝑘 | 𝑘 − 1) − 𝑥𝑖(𝑘 | 𝑘 − 1)),

𝑥𝑖(𝑘 | 𝑘 − 1) = Φ𝑥𝑖(𝑘 − 1 | 𝑘 − 1),

𝑥𝑗(𝑘 | 𝑘 − 1) = Φ𝑥𝑗(𝑘 − 1 | 𝑘 − 1)

 (7) 

Kalman gain: 

 
𝐾𝑖(𝑘) = 𝑃𝑖(𝑘|𝑘 − 1)(𝐻𝑖)

𝑇

× (𝑅𝑖 + 𝐶𝑖𝑃𝑖(𝑘|𝑘 − 1)(𝐶𝑖)
𝑇)𝑇 (8) 

Riccati equation: 

 
𝑃𝑖(𝑘 | 𝑘 − 1)

= Φ𝑃𝑖(𝑘 − 1 | 𝑘 − 1)(Φ)𝑇 + 𝑄
 (9) 

 

 

𝑃𝑖(𝑘|𝑘)

= (𝐼𝑛 − 𝐾𝑖(𝑘)𝐻𝑖) 𝑃𝑖(𝑘|𝑘 − 1)

× (𝐼𝑛 − 𝐾𝑖(𝑘)𝐻𝑖)
𝑇

+𝐾𝑖(𝑘)𝑅𝑖(𝐾𝑖(𝑘))𝑇

 (10) 

Here, 𝜀 is a positive parameter determined by a user. 

So, the Kalman consensus filter is suboptimal. In 

(7), 𝑁𝑖  denotes the neighbor nodes of the sensor 

node 𝑖  in the distributed sensor networks. At the 

sensor node 𝑖 , in estimating the state 𝑥(𝑘) , the 

Kalman consensus filter uses the observations at the 

sensor node 𝑖 and the observations at the neighbor 

nodes of the sensor node 𝑖  together with the one-

step-ahead prediction estimates 𝑥𝑗(𝑘 | 𝑘 − 1) at the 

neighbor nodes 𝑗 ∈ 𝑁𝑖  of the sensor node 𝑖. Taking 

into consideration of the Kalman consensus filtering 

algorithm, we newly introduce the augmented 

observation equation as follows. 

 

𝑌̄𝑖(𝑘) = 𝐻̄𝑖𝑥(𝑘) + 𝑉̄𝑖(𝑘),

𝑌̄𝑖(𝑘) = [

𝑦𝑖(𝑘)

∑ 𝐶𝑗

𝑗∈𝑁𝑖

𝑥𝑗(𝑘|𝑘)] ,

𝐻̄𝑖 = [

𝐶𝑖

∑ 𝐶𝑗

𝑗∈𝑁𝑖

] ,

𝑉̄𝑖(𝑘) = [
𝑣𝑖(𝑘)
𝑣̃(𝑘)

]

 (11) 

𝑦𝑖(𝑘)  is the observed value at the sensor node 𝑖 . 

∑ 𝐶𝑗𝑗∈𝑁𝑖
𝑥𝑗(𝑘|𝑘)  denotes the sum of the filtering 

estimates 𝑧̂𝑗(𝑘|𝑘)  of the signal 𝑧𝑗(𝑘) = 𝐶𝑗𝑥(𝑘)  in 

the neighbor nodes 𝑗 ∈ 𝑁𝑖  of the sensor node 𝑖. In 

this paper, the RLS Wiener filter calculates the 

filtering estimates 𝑥𝑗(𝑘|𝑘) of the state 𝑥(𝑘), for the 

neighbor nodes 𝑗, 𝑗 ∈ 𝑁𝑖 , of the sensor node 𝑖, with 

the observed values 𝑦𝑗(𝑘)  recursively. Since the 

filtering estimate 𝑥𝑗(𝑘|𝑘)  is calculated with the 

information of the observed values 𝑦𝑗(𝑘), the RLS 

Wiener consensus estimators in this paper do not 

include the observed values from the neighbor 

nodes in the observation equation (11). 𝑣̃(𝑘) 

represents the sum of the filtering errors of the 

signals at the neighbor nodes 𝑗 ∈ 𝑁𝑖  of the sensor 

node 𝑖. 

 

𝑣̃(𝑘) = 𝐶𝑖1 (𝑥𝑖1
(𝑘 | 𝑘) − 𝑥(𝑘))

+𝐶𝑖2 (𝑥𝑖2
(𝑘 | 𝑘) − 𝑥(𝑘))⋯

+𝐶𝑖𝑁𝑖
(𝑥𝑖𝑁𝑖

(𝑘 | 𝑘) − 𝑥(𝑘))

= ∑(𝑧̂𝑗

𝑖𝑁𝑖

𝑗=𝑖1

(𝑘 | 𝑘) − 𝑧𝑗(𝑘))

 (12) 

It is seen that the processes 𝑥𝑖1
(𝑘 | 𝑘) − 𝑥(𝑘) , 

𝑥𝑖2
(𝑘 | 𝑘) − 𝑥(𝑘) , ⋯ , 𝑥𝑖𝑁𝑖

(𝑘 | 𝑘) − 𝑥(𝑘)  are 

mutually uncorrelated. Let the auto-covariance 

function 𝐾(𝑘, 𝑠)  of the state 𝑥(𝑘)  have the semi-

degenerate kernel form 

 

𝐾(𝑘, 𝑠) = 𝐸[𝑥(𝑘)𝑥𝑇(𝑠)]

= {
𝐴(𝑘)𝐵𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑘,

𝐵(𝑠)𝐴𝑇(𝑘), 0 ≤ 𝑘 ≤ 𝑠,

𝐴(𝑘) = Φ𝑘 ,  𝐵𝑇(𝑠) = Φ−𝑠𝐾(𝑠, 𝑠),

 (13) 

in wide-sense stationary stochastic systems [18]. 

The auto-covariance function 𝑅̃(𝑘) of 𝑣̃(𝑘) is given 

by 
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𝐸[𝑣̃(𝑘)𝑣̃𝑇(𝑠)] = 𝑅̃(𝑘)𝛿𝐾(𝑘 − 𝑠),

𝑅̃(𝑘) = ∑ 𝐶𝑗

𝑖𝑁𝑖

𝑗=𝑖1

(𝐾(𝑘, 𝑘)

−𝑃̂𝑗(𝑘|𝑘)) (𝐶𝑗)
𝑇),

𝑃̂𝑗(𝑘 | 𝑘) = 𝐸[𝑥𝑗(𝑘 | 𝑘)(𝑥̂𝑗(𝑘 | 𝑘))𝑇],

𝑗 = 𝑖1, 𝑖2, ⋯ , 𝑖𝑁𝑖
.

 (14) 

Hence, the auto-covariance function of 𝑉̄𝑖(𝑘)  is 

given by 

 

𝐸[𝑉̄𝑖(𝑘)(𝑉̄𝑖(𝑠))
𝑇] = 𝑅̄𝑖(𝑘)𝛿𝐾(𝑘 − 𝑠),

𝑅̄𝑖(𝑘) = [
𝑅𝑖𝑖 0

0 𝑅̃(𝑘)
] .

 (15) 

Now, the consensus estimation problem is reduced 

to estimate the state 𝑥(𝑘)  with the augmented 

observation 𝑌̄𝑖(𝑘) of (11).  

Let the fixed-point smoothing estimate 𝑥𝑖(𝑘|𝑘 + 𝐿) 

of 𝑥(𝑘), at the sensor node 𝑖, be expressed by 

 𝑥𝑖(𝑘|𝐿) = ∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗|𝐿)𝑌̄𝑖(𝑗) (16) 

as a linear transformation of the observed values 

𝑌̄𝑖(𝑗) , 1 ≤ 𝑗 ≤ 𝐿 . In (16), ℎ𝑖(𝑘, 𝑗|𝐿)  is called the 

impulse response function. We consider the fixed-

point smoothing problem, which minimizes the 

mean-square value (MSV)  

 𝐽 = 𝐸[||𝑥(𝑘) − 𝑥𝑖(𝑘|𝐿)||2] (17) 

of the fixed-point smoothing error at the sensor node 

𝑖. From an orthogonal projection lemma, [18], 

 
𝑥(𝑘) − ∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗|𝐿)𝑦(𝑗) ⊥ 𝑦(𝑠),

0 ≤ 𝑘, 𝑠 ≤ 𝐿,

 (18) 

the impulse response function, at the sensor node 𝑖, 
satisfies the Wiener-Hopf equation 

 

[𝑥(𝑘)(𝑌̄𝑖(𝑠))
𝑇]

= ∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗 | 𝐿)𝐾̄𝑖(𝑗, 𝑠),

𝐾̄𝑖(𝑘, 𝑠) = 𝐸[𝑌̄𝑖(𝑘)(𝑌̄𝑖(𝑠))
𝑇].

 (19) 

In (18), ‘ ⊥ ’ denotes the notation of the 

orthogonality. 𝐾̄𝑖(𝑘, 𝑠)  is the auto-covariance 

function of the augmented observed value 𝑌̄𝑖(𝑘) . 

Substituting (11), (13), and (15) into (19), we obtain 

the equation for the optimal impulse response 

function ℎ𝑖(𝑘, 𝑠 | 𝐿) at the sensor node 𝑖. 

 

ℎ𝑖(𝑘, 𝑠 | 𝐿)𝑅̄𝑖(𝑠) = 𝐾(𝑘, 𝑠)(𝐻̄𝑖)
𝑇

−∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗 | 𝐿)𝐻̄𝑖𝐾(𝑗, 𝑠)(𝐻̄𝑖)
𝑇 ,

0 ≤ 𝑘, 𝑠 ≤ 𝐿

 (20) 

Starting with (20), the RLS Wiener estimation 

algorithms are derived based on the invariant 

imbedding method. Section 3 proposes the RLS 

Wiener consensus filtering and fixed-point 

smoothing algorithms. 

3 RLS Wiener consensus filtering and 

fixed-point smoothing algorithms  

Starting with (20), which the optimal impulse 

response function ℎ𝑖(𝑘, 𝑠 | 𝐿) satisfies, based on the 

preliminary formulations of the least-squares 

consensus estimation problem, Theorem 1 presents 

the RLS Wiener consensus filtering and fixed-point 

smoothing algorithms.  

Theorem 1 Let the state equation for the state 𝑥(𝑘) 

be given by (1). Let the observation equation at the 

sensor node 𝑖  with the consensus of the neighbor 

nodes 𝑗 ∈ 𝑁𝑖  of the sensor node 𝑖 be given by (11). 

The auto-covariance function of the observation 

noise is given by (15). Then the RLS Wiener 

consensus filtering and fixed-point smoothing 

algorithms consist of (21)-(29) in the linear discrete-

time wide-sense stationary stochastic system.  

Fixed-point smoothing estimate of the signal 𝑧𝑖(𝑘) 

at the sensor node 𝑖: 𝑧̂𝑖(𝑘|𝐿)  

 𝑧̂𝑖(𝑘 | 𝐿) = 𝐶𝑖𝑥𝑖(𝑘 | 𝐿), 𝑖 = 1,2,⋯ ,𝑁𝑖 (21) 

Fixed-point smoothing estimate of the state 𝑥(𝑘) at 

the sensor node 𝑖: 𝑥𝑖(𝑘|𝐿) 

 

𝑥𝑖(𝑘 | 𝐿) = 𝑥𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1 | 𝐿 − 1))

 (22) 

Smoother gain at the sensor node 𝑖: ℎ𝑖(𝑘, 𝐿 | 𝐿) 
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ℎ𝑖(𝑘, 𝐿 | 𝐿) = ( 𝐾(𝑘, 𝑘)(Φ𝑇)𝐿−𝑘(𝐻̄𝑖)
𝑇

−𝑞𝑖(𝑘 | 𝐿 − 1)Φ𝑇  (𝐻̄𝑖)
𝑇)

× (𝑅̄𝑖(𝐿) + 𝐻̄𝑖𝐾(𝐿, 𝐿)

× −𝐻̄𝑖Φ𝑆𝑖(𝐿 − 1)Φ𝑇)(𝐻̄𝑖)
𝑇)−1

 (23) 

 

 

𝑞𝑖(𝑘 | 𝐿) = 𝑞𝑖(𝑘 | 𝐿 − 1)Φ𝑇

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝐻̄𝑖𝐾(𝐿, 𝐿)

−𝐻̄𝑖Φ𝑆𝑖(𝐿 − 1)Φ𝑇),

𝑞𝑖(𝑘 | 𝑘) = 𝑆𝑖(𝑘)

 (24) 

Filter gain at the sensor node 𝑖: 𝐺𝑖(𝐿, 𝐿) 

 

𝐺𝑖(𝐿, 𝐿)

=   (𝐾(𝐿, 𝐿) − Φ𝑆𝑖(𝐿 − 1)Φ𝑇)(𝐻̄𝑖)
𝑇

× (𝑅̄𝑖(𝐿) + 𝐻̄𝑖(𝐾(𝐿, 𝐿)

−Φ𝑆𝑖(𝐿 − 1)Φ𝑇)

× (𝐻̄𝑖)
𝑇)−1

 (25) 

Filtering estimate of the signal 𝑧𝑖(𝑘) at the sensor 

node 𝑖: 𝑧̂𝑖(𝑘|𝑘)  

 𝑧̂𝑖(𝑘|𝑘) = 𝐶𝑖𝑥̂𝑖(𝑘 | 𝑘) (26) 

Filtering estimate of the state 𝑥(𝐿)  at the sensor 

node 𝑖: 𝑥𝑖(𝐿 | 𝐿) 

 

𝑥𝑖(𝐿|𝐿) = Φ𝑥𝑖(𝐿 − 1 | 𝐿 − 1)

+𝐺𝑖(𝐿, 𝐿)(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1|𝐿 − 1)),

𝑥𝑖(0 | 0) = 0

 (27) 

The variance of the filtering estimate 𝑥𝑖(𝐿 | 𝐿) at the 

sensor node 𝑖: 𝑆𝑖(𝐿) 

 

𝑆𝑖(𝐿) = Φ𝑆𝑖(𝐿 − 1)Φ𝑇

+𝐺𝑖(𝐿, 𝐿)(𝐻̄𝑖𝐾(𝐿, 𝐿)

−𝐻̄𝑖Φ𝑆𝑖(𝐿 − 1)Φ𝑇),

𝑆𝑖(0) = 0

 (28) 

Here, the variance of the observation noise 𝑉̄𝑖(𝐿) is 

given by 

 

𝑅̄𝑖(𝐿) = [
𝑅𝑖𝑖 0

0 𝑅̃(𝐿)
] ,

𝑅̃(𝐿) = ∑ 𝐶𝑗

𝑖𝑁𝑖

𝑗=𝑖1

(𝐾(𝐿, 𝐿)

−𝑃̂𝑗(𝐿|𝐿)) (𝐶𝑗)
𝑇)

= ∑ 𝐶𝑗

𝑖

𝑗=𝑖1

(𝐾(𝐿, 𝐿) − 𝑆𝑗(𝐿)) (𝐶𝑗)
𝑇).

 (29) 

Proof of Theorem 1 is deferred to the Appendix.  

Section 4 proposes the algorithm for the RLS 

Wiener consensus fixed-point smoothing error 

variance function. Also, the asymptotic stability 

condition of the RLS Wiener consensus filter and 

the existence of the RLS Wiener consensus fixed-

point smoother are shown. 

4 RLS Wiener consensus fixed-point 

smoothing error variance function 

The RLS Wiener consensus fixed-point smoothing 

error variance function is defined by  

 

𝑃̃𝑖(𝑘 | 𝐿) = 𝐸[(𝑥(𝑘)
− 𝑥𝑖(𝑘 | 𝐿))(𝑥(𝑘)
− 𝑥𝑖(𝑘 | 𝐿))𝑇]. (30) 

From (22) and the relationship 𝑆𝑖(𝐿) =
𝐸[𝑥𝑖(𝐿 | 𝐿)(𝑥𝑖(𝐿 | 𝐿))𝑇], (30) is developed as 

 

𝑃̃𝑖(𝑘 | 𝐿)

= 𝐾(𝑘, 𝑘) − 𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇]

=  𝐾(𝑘, 𝑘) −  𝐸[(𝑥𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1 | 𝐿 − 1))

× (𝑥𝑖(𝑘 | 𝐿 − 1) + ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1 | 𝐿 − 1))𝑇]

=  𝐾(𝑘, 𝑘)

− 𝐸[𝑥𝑖(𝑘 | 𝐿 − 1)(𝑥𝑖(𝑘 | 𝐿 − 1))𝑇]

−ℎ𝑖(𝑘, 𝐿 | 𝐿)𝐸[(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1 | 𝐿 − 1))(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝐿 − 1 | 𝐿 − 1))𝑇]

× ( ℎ𝑖(𝑘, 𝐿 | 𝐿))𝑇

= 𝑃̃𝑖(𝑘 | 𝐿 − 1)−ℎ𝑖(𝑘, 𝐿 | 𝐿)

× (𝑅̄𝑖(𝐿) + 𝐻̄𝑖(𝐾(𝐿, 𝐿)

−Φ𝑆𝑖(𝐿 − 1)Φ𝑇)(𝐻̄𝑖)
𝑇)

× ( ℎ𝑖(𝑘, 𝐿 | 𝐿))𝑇 .

 (31) 
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Here, ℎ𝑖(𝑘, 𝐿 | 𝐿) is calculated by (23)-(25) and (28) 

recursively. 𝑆𝑖(𝐿)  is calculated by (25) and (28) 

recursively.  

Also, the RLS Wiener consensus fixed-point 

smoothing error variance function 𝑃̃𝑖(𝑘 | 𝐿)   is 

written as 𝑃̃𝑖(𝑘 | 𝐿) = 𝐾(𝑘, 𝑘) −
𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇].  𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇] 
represents the variance of the fixed-point smoothing 

estimate 𝑥𝑖(𝑘 | 𝐿) at the sensor node 𝑖. 𝑃̃𝑖(𝑘 | 𝐿) and 

𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇]  are positive-semidefinite 

matrices. From this fact, the variance of the fixed-

point smoothing estimate 𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇] is 

upper bounded by the variance of the state 𝑥(𝑘) and 

lower bounded by the zero matrix as  

0 ≤ 𝐸[𝑥𝑖(𝑘 | 𝐿)(𝑥𝑖(𝑘 | 𝐿))𝑇] ≤ 𝐾(𝑘, 𝑘). 

This shows the existence of the fixed-point 

smoothing estimate 𝑥𝑖(𝑘 | 𝐿).  

The asymptotic stability of the filtering equation 

(27) is assured by the condition that Φ −
𝐺𝑖(𝐿, 𝐿)𝐻̄𝑖Φ  is a stable matrix. Namely, for the 

stability of the filtering equation (27), all the 

eigenvalues of Φ − 𝐺𝑖(𝐿, 𝐿)𝐻̄𝑖Φ must lie within the 

unit circle. 

5 A numerical simulation example 

Let us consider the state equation 

 

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),

Φ = [
𝑎11 𝑎12

𝑎21 𝑎22
] , Γ = [

Γ1
Γ2

] ,

𝑥(𝑘) = [
𝑥1(𝑘)

𝑥2(𝑘)
] ,

𝑎11 = 0.85, 𝑎12 = −0.2, 𝑎21 = 0.2,
𝑎22 = 0.76,
Γ1 = 0.952, Γ2 = 0.2.

 (32) 

The auto-covariance function of the input noise 

𝜔(𝑘), with mean zero, is given by  

𝐸[𝜔(𝑘)𝜔(𝑠)] = 𝜎2𝛿𝐾(𝑘 − 𝑠), 𝜎2 = 0.52. 

 

Fig.1 Directed graph of topological structure for the 

distributed sensor networks with three sensor nodes. 

Fig.1 illustrates the directed graph of the topological 

structure for the distributed sensor networks with 

three sensor nodes. Its adjacency matrix is given by  

𝐴 = [
1 1 0
0 1 1
1 0 1

]. 

The observation equations at the sensor nodes are 

given as follows.  

Observation equation at the sensor node 1: 

 

𝑦1(𝑘) = 𝐶1𝑥(𝑘) + 𝑣1(𝑘),

𝑧1(𝑘) = 𝐶1𝑥(𝑘),

𝐶1 = [0.95 −0.4]
 (33) 

Observation equation at the sensor node 2: 

 

𝑦2(𝑘) = 𝐶2𝑥(𝑘) + 𝑣2(𝑘),

𝑧2(𝑘) = 𝐶2𝑥(𝑘),

𝐶2 = [1 0.5]
 (34) 

Observation equation at the sensor node 3: 

 

𝑦3(𝑘) = 𝐶3𝑥(𝑘) + 𝑣3(𝑘),

𝑧3(𝑘) = 𝐶3𝑥(𝑘),

𝐶3 = [0.5 1]
 (35) 

Here, the variance 𝑅𝑖𝑖  of the observation noises 

𝑣𝑖(𝑘), 𝑖 = 1,2,3, are the same. Substituting 𝐻̄𝑖 , Φ, 

𝐾(𝑘, 𝑘) , 𝑌̄𝑖(𝐿)  and 𝑅̄𝑖(𝐿)  into the RLS Wiener 

consensus fixed-point and filtering algorithms of 

Theorem 1, we calculate the fixed-point smoothing 

estimate 𝑧̂𝑖(𝑘|𝐿) and the filtering estimate 𝑧̂𝑖(𝑘|𝑘) 

of the signal 𝑧𝑖(𝑘), 𝑖 = 1,2,3, recursively.  

Fig.2 illustrates the signal 𝑧1(𝑘) , the filtering 

estimate 𝑧̂1(𝑘|𝑘)  and the fixed-point smoothing 

estimate 𝑧̂1(𝑘|𝑘 + 5)  for the observation noise 

𝑁(0, 0.52)  at sensor node 1  under the consensus 

with neighbor node 2 . Fig.3 illustrates the mean-

square values of the filtering and fixed-point 

smoothing errors 𝑧1(𝑘) − 𝑧̂1(𝑘 | 𝑘 + 𝐿𝑎𝑔) , 0 ≤
𝐿𝑎𝑔 ≤ 5, of the signal 𝑧1(𝑘) at the sensor node 1 

vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS 

Wiener consensus estimators, under the consensus 

of the sensor node 1 with the neighbor node 2, and 

the RLS Wiener estimators. Fig.4 illustrates the 

mean-square values of the filtering and fixed-point 
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smoothing errors 𝑧2(𝑘) − 𝑧̂2(𝑘 | 𝑘 + 𝐿𝑎𝑔) , 0 ≤
𝐿𝑎𝑔 ≤ 5, of the signal 𝑧2(𝑘) at the sensor node 2 

vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS 

Wiener consensus estimators, under the consensus 

of the sensor node 2 with the neighbor node 3, and 

the RLS Wiener estimators. Fig.5 illustrates the 

mean-square values of the filtering and fixed-point 

smoothing errors 𝑧3(𝑘) − 𝑧̂3(𝑘 | 𝑘 + 𝐿𝑎𝑔) , 0 ≤
𝐿𝑎𝑔 ≤ 5, of the signal 𝑧3(𝑘) at the sensor node 3 

vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS 

Wiener consensus estimators, under the consensus 

of the sensor node 3 with the neighbor node 1, and 

the RLS Wiener estimators. From Fig. 3, Fig.4, and 

Fig.5, it is seen that the estimation accuracies of the 

RLS Wiener consensus filter and fixed-point 

smoother are superior to those of the RLS Wiener 

filter and fixed-point smoother respectively for each 

observation noise. Here, the MSVs of the filtering 

and fixed-point smoothing errors are calculated by 

∑ (2000
𝑘=1 𝑧𝑖(𝑘) − 𝑧̂𝑖(𝑘|𝑘 + 𝐿𝑎𝑔))2/2000,0 ≤ 𝐿𝑎𝑔 ≤

5, for the RLS Wiener consensus estimators and the 

RLS Wiener estimators.

 

Fig.2 Signal 𝑧1(𝑘), filtering estimate 𝑧̂1(𝑘|𝑘) and fixed-point smoothing estimate 𝑧̂1(𝑘|𝑘 + 5) for the 

observation noise 𝑁(0, 0.52) at sensor node 1 under consensus with neighbor node 2. 
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Fig.3 Mean-square values of the filtering and fixed-point smoothing errors 𝑧1(𝑘) − 𝑧̂1(𝑘 | 𝑘 + 𝐿𝑎𝑔), 0 ≤

𝐿𝑎𝑔 ≤ 5, of the signal 𝑧1(𝑘) at the sensor node 1 vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS Wiener consensus estimators under the consensus of the 

sensor node 1 with the neighbor node 2 and the RLS Wiener estimators. 

 

Fig.4 Mean-square values of the filtering and fixed-point smoothing errors 𝑧2(𝑘) − 𝑧̂2(𝑘 | 𝑘 + 𝐿𝑎𝑔), 0 ≤

𝐿𝑎𝑔 ≤ 5, of the signal 𝑧2(𝑘) at the sensor node 2 vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS Wiener consensus estimators under the consensus of the 

sensor node 2 with the neighbor node 3 and the RLS Wiener estimators. 
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Fig.5 Mean-square values of the filtering and fixed-point smoothing errors 𝑧3(𝑘) − 𝑧̂3(𝑘 | 𝑘 + 𝐿𝑎𝑔), 0 ≤

𝐿𝑎𝑔 ≤ 5, of the signal 𝑧3(𝑘) at the sensor node 3 vs. 𝐿𝑎𝑔, for the white Gaussian observation noises 

𝑁(0, 0.32), 𝑁(0, 0.52) and 𝑁(0, 0.72), by the RLS Wiener consensus estimators under the consensus of the 

sensor node 3 with the neighbor node 1 and the RLS Wiener estimators. 

 

6 Conclusion 

This paper has originally developed the RLS Wiener 

consensus filter and fixed-point smoother in linear 

discrete-time stochastic systems. The new points of 

this paper are to incorporate the sum of the filtering 

estimates of the signals at the neighbor nodes as the 

observed value in the observation equation as shown 

in the augmented observation equation (11) and 

derive the RLS Wiener consensus estimators.  

From the numerical simulation results in section 

5, the estimation accuracies of the RLS Wiener 

consensus filter and the fixed-point smoother are 

superior to those of the RLS Wiener filter and fixed-

point smoother respectively for each observation 

noises 

A future task is to apply the robust RLS Wiener 

filter to linear distributed sensor networks with 

degraded observations generated by state-space 

model and observation equation with uncertain 

parameters. 

 

 

Appendix A: Proof of Theorem 1  

From (20), the impulse response function ℎ(𝑘, 𝑠|𝐿) 

satisfies 

 

ℎ𝑖(𝑘, 𝑠 | 𝐿)𝑅̄𝑖(𝑠) = 𝐾(𝑘, 𝑠)(𝐻̄𝑖)
𝑇

−∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗 | 𝐿)𝐻̄𝑖𝐾(𝑗, 𝑠)(𝐻̄𝑖)
𝑇 ,

0 ≤ 𝑘, 𝑠 ≤ 𝐿.

 (A-1) 

Subtracting ℎ𝑖(𝑘, 𝑠 | 𝐿 − 1)𝑅̄𝑖(𝑠)  from 

ℎ𝑖(𝑘, 𝑠 | 𝐿)𝑅̄𝑖(𝑠), we have 

 

(ℎ𝑖(𝑘, 𝑠 | 𝐿) − ℎ𝑖(𝑘, 𝑠 | 𝐿 − 1))𝑅̄𝑖(𝑠)

= −ℎ𝑖(𝑘, 𝐿 | 𝐿)𝐻̄𝑖𝐾(𝐿, 𝑠)(𝐻̄𝑖)
𝑇

− ∑(

𝐿−1

𝑗=1

ℎ𝑖(𝑘, 𝑗 | 𝐿)

−ℎ𝑖(𝑘, 𝑗 | 𝐿 − 1))𝐻̄𝑖𝐾(𝑗, 𝑠) × (𝐻̄𝑖)
𝑇 .

 (A-2) 

Introducing 
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𝐽𝑖(𝐿, 𝑠)𝑅̄𝑖(𝑠) = 𝐵𝑇(𝑠)(𝐻̄𝑖)
𝑇

−∑𝐽𝑖

𝐿

𝑗=1

(𝐿, 𝑗)𝐻̄𝑖𝐾(𝑗, 𝑠)(𝐻̄𝑖)
𝑇 ,

 (A-3) 

we obtain 

 
ℎ𝑖(𝑘, 𝑠 | 𝐿) − ℎ𝑖(𝑘, 𝑠 | 𝐿 − 1)

= −ℎ𝑖(𝑘, 𝐿 | 𝐿)𝐻̄𝑖𝐴(𝐿)𝐽𝑖(𝐿 − 1, 𝑠).
 (A-4) 

Subtracting 𝐽𝑖(𝐿 − 1, 𝑠)𝑅̄𝑖(𝑠) from 𝐽𝑖(𝐿, 𝑠)𝑅̄𝑖(𝑠), we 

have 

 

(𝐽𝑖(𝐿, 𝑠) − 𝐽𝑖(𝐿 − 1, 𝑠))𝑅̄𝑖(𝑠)

= −𝐽𝑖(𝐿, 𝐿)𝐻̄𝑖𝐾(𝐿, 𝑠)(𝐻̄𝑖)
𝑇

−∑(

𝐿

𝑖=1

𝐽𝑖(𝐿, 𝑗)

−𝐽𝑖(𝐿 − 1, 𝑗))𝐻̄𝑖𝐾(𝑗, 𝑠)(𝐻̄𝑖)
𝑇 .

 (A-5) 

From (A-3) and (A-5), we obtain 

 
𝐽𝑖(𝐿, 𝑠) − 𝐽𝑖(𝐿 − 1, 𝑠)

= −𝐽𝑖(𝐿, 𝐿)𝐻̄𝑖𝐴(𝐿)𝐽𝑖(𝐿 − 1, 𝑠).
 (A-6) 

From (A-3), 𝐽𝑖(𝐿, 𝐿) satisfies 

 

𝐽𝑖(𝐿, 𝐿)𝑅̄𝑖(𝐿) = 𝐵𝑇(𝐿)(𝐻̄𝑖)
𝑇

−∑𝐽𝑖

𝐿

𝑗=1

(𝐿, 𝑗)𝐻̄𝑖𝐾(𝑗, 𝐿)(𝐻̄𝑖)
𝑇

= 𝐵𝑇(𝐿)(𝐻̄𝑖)
𝑇

−∑𝐽𝑖

𝐿

𝑗=1

(𝐿, 𝑗)𝐻̄𝑖𝐵(𝑗)𝐴𝑇(𝐿)(𝐻̄𝑖)
𝑇 .

 (A-7) 

Introducing 

 𝑟𝑖(𝐿) = ∑𝐽𝑖(𝐿, 𝑗)𝐻̄𝑖𝐵(𝑗),

𝐿

𝑗=1

 (A-8) 

we obtain 

 
𝐽𝑖(𝐿, 𝐿)𝑅̄𝑖(𝐿)
= 𝐵𝑇(𝐿)(𝐻̄𝑖)

𝑇 − 𝑟𝑖(𝐿)𝐴𝑇(𝐿)(𝐻̄𝑖)
𝑇 . (A-9) 

Subtracting 𝑟𝑖(𝐿 − 1)  from 𝑟𝑖(𝐿)  and using (A-6), 

we obtain 

 

𝑟𝑖(𝐿) − 𝑟𝑖(𝐿 − 1) = 𝐽𝑖(𝐿, 𝐿)𝐻̄𝑖𝐵(𝐿)

+ ∑(𝐽𝑖(𝐿, 𝑗) − 𝐽𝑖(𝐿 − 1, 𝑗))

𝐿−1

𝑗=1

𝐻̄𝑖𝐵(𝑗)

= 𝐽𝑖(𝐿, 𝐿)(𝐻̄𝑖𝐵(𝐿)

−𝐻̄𝑖𝐴(𝐿)𝑟𝑖(𝐿 − 1)),

𝑟𝑖(0) = 0.

 (A-10) 

Let us introduce the function 

 𝑆𝑖(𝐿) = Φ𝐿𝑟𝑖(𝐿)(Φ𝑇)𝐿 . (A-11) 

From (A-10), we obtain 

 

𝑆𝑖(𝐿) = Φ𝑆𝑖(𝐿 − 1)Φ𝑇

+𝐺𝑖(𝐿, 𝐿)(𝐻̄𝑖𝐾(𝐿, 𝐿)

−𝐻̄𝑖Φ𝑆𝑖(𝐿 − 1)Φ𝑇).

 (A-12) 

Here, 

 𝐺𝑖(𝐿, 𝐿) = Φ𝐿𝐽𝑖(𝐿, 𝐿). (A-13) 

From (A-9), we have 

 
𝐺𝑖(𝐿, 𝐿) = (𝐾(𝐿, 𝐿)(𝐻̄𝑖)

𝑇

−𝑆𝑖(𝐿)(𝐻̄𝑖)
𝑇)(𝑅̄𝑖(𝐿))−1.

 (A-14) 

From (A-12) and (A-14), we obtain (25).  

From (20), ℎ𝑖(𝑘, 𝐿 | 𝐿) satisfies 

 

ℎ𝑖(𝑘, 𝐿 | 𝐿)𝑅̄𝑖(𝑠) = 𝐾(𝑘, 𝐿)(𝐻̄𝑖)
𝑇

−∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗 | 𝐿)𝐻̄𝑖𝐾(𝑗, 𝐿)(𝐻̄𝑖)
𝑇

= 𝐾(𝑘, 𝑘)(Φ𝑇)𝐿−𝑘(𝐻̄𝑖)
𝑇

−𝑝𝑖(𝑘|𝐿)(Φ𝑇)𝐿(𝐻̄𝑖)
𝑇 ,

 (A-15) 

where 

 𝑝𝑖(𝑘|𝐿) = ∑ℎ𝑖

𝐿

𝑗=1

(𝑘, 𝑗 | 𝐿)𝐻̄𝑖𝐵(𝑗). (A-16) 

Subtracting 𝑝𝑖(𝑘|𝐿 − 1) from 𝑝𝑖(𝑘|𝐿) and using (A-

4) with (A-8), we have 
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𝑝𝑖(𝑘 | 𝐿) = 𝑝𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)𝐻̄𝑖𝐵(𝐿)

+ ∑(ℎ𝑖

𝐿−1

𝑗=1

(𝑘, 𝑗 | 𝐿)

−ℎ𝑖(𝑘, 𝑗 | 𝐿 − 1))𝐻̄𝑖𝐵(𝑗)

= 𝑝𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝐻̄𝑖𝐵(𝐿)

−𝐻̄𝑖𝐴(𝐿)𝑟𝑖(𝐿 − 1)).

 (A-17) 

Introducing 

 𝑞𝑖(𝑘 | 𝐿) = 𝑝𝑖(𝑘 | 𝐿)(Φ𝑇)𝐿, (A-18)  

from (A-17) and (A-18), we obtain 

 

𝑞𝑖(𝑘 | 𝐿) = 𝑞𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝐻̄𝑖𝐵(𝐿)

−𝐻̄𝑖𝐴(𝐿)𝑟𝑖(𝐿 − 1))(Φ𝑇)𝐿

= 𝑞𝑖(𝑘 | 𝐿 − 1)

+ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝐻̄𝑖𝐾(𝐿, 𝐿)

−𝐻̄𝑖Φ𝑆𝑖(𝐿 − 1)Φ𝑇).

 (A-19)  

In (A-1), putting 𝐿 = 𝑘, we have 

 

ℎ𝑖(𝑘, 𝑠 | 𝑘)𝑅̄𝑖(𝑠) = 𝐾(𝑘, 𝑠)(𝐻̄𝑖)
𝑇

−∑ℎ𝑖

𝑘

𝑗=1

(𝑘, 𝑗 | 𝑘)𝐻̄𝑖𝐾(𝑗, 𝑠)(𝐻̄𝑖)
𝑇 ,

0 ≤ 𝑠 ≤ 𝑘.

 (A-20) 

From (A-3), it is clear that 

 ℎ𝑖(𝑘, 𝑠 | 𝑘) = Φ𝑘𝐽𝑖(𝑘, 𝑠). (A-21) 

From (A-18), we have 

 𝑞𝑖(𝑘 | 𝑘) = 𝑝𝑖(𝑘 | 𝑘)(Φ𝑇)𝑘 . (A-22) 

Putting 𝐿 = 𝑘 in (A-16), from (A-21), we have 

 

𝑝𝑖(𝑘 | 𝑘) = ∑ℎ𝑖

𝑘

𝑗=1

(𝑘, 𝑗 | 𝑘)𝐻̄𝑖𝐵(𝑗)

= Φ𝑘 ∑𝐽𝑖

𝑘

𝑗=1

(𝑘, 𝑗)𝐻̄𝑖𝐵(𝑗)

= Φ𝑘𝑟𝑖(𝑘).

 (A-23) 

From (A-11) and (A-22), we have 

 𝑞𝑖(𝑘 | 𝑘) = 𝑆𝑖(𝑘). (A-24) 

From (A-15) and (A-18), we obtain 

 

ℎ𝑖(𝑘, 𝐿 | 𝐿)𝑅̄𝑖(𝑠)

= 𝐾(𝑘, 𝑘)(Φ𝑇)𝐿−𝑘(𝐻̄𝑖)
𝑇

−𝑞𝑖(𝑘|𝐿)(𝐻̄𝑖)
𝑇 .

 (A-25) 

Substituting (A-19) into (A-25), after some 

manipulations, we obtain (23).  

Now, from (16), the filtering estimate 𝑥𝑖(𝐿|𝐿)  is 

given by 

 𝑥𝑖(𝐿 | 𝐿) = ∑ℎ𝑖

𝐿

𝑗=1

(𝐿, 𝑗 | 𝐿)𝑌̄𝑖(𝑗). (A-26) 

Let us introduce the function 

 𝑒𝑖(𝐿 | 𝐿) = ∑𝐽𝑖

𝐿

𝑗=1

(𝐿, 𝑗)𝑌̄𝑖(𝑗). 𝐴 − 27 (A-27) 

From (A-21), we get 

 𝑥𝑖(𝐿 | 𝐿) = Φ𝐿𝑒𝑖(𝐿 | 𝐿). (A-28) 

Subtracting the equation obtained by putting 𝐿 →
𝐿 − 1 in (A-27) from (A-27), we have 

 

𝑒𝑖(𝐿 | 𝐿) − 𝑒𝑖(𝐿 − 1 | 𝐿 − 1)

= 𝐽𝑖(𝐿, 𝐿)𝑌̄𝑖(𝑗)

+∑(

𝐿

𝑗=1

𝐽𝑖(𝐿, 𝑗) − 𝐽𝑖(𝐿 − 1, 𝑗))𝑌̄𝑖(𝑗)

= 𝐽𝑖(𝐿, 𝐿)𝑌̄𝑖(𝑗)

−𝐽𝑖(𝐿, 𝐿)𝐻̄𝑖𝐴(𝐿)𝑒𝑖(𝐿 − 1 | 𝐿 − 1).

 (A-29) 

Substituting (A-29) into (A-28), using (A-13), we 

obtain (27).  

The fixed-point smoothing estimate 𝑥𝑖(𝑘|𝐿) is given 

by (16). Subtracting 𝑥𝑖(𝑘|𝐿 − 1) from 𝑥𝑖(𝑘|𝐿), and 

using (A-4), we have 

 

𝑥𝑖(𝑘 | 𝐿) − 𝑥𝑖(𝑘 | 𝐿 − 1)

= ℎ𝑖(𝑘, 𝐿 | 𝐿)𝑌̄𝑖(𝐿)

+ ∑(ℎ𝑖

𝐿−1

𝑗=1

(𝑘, 𝑗 | 𝐿)

−ℎ𝑖(𝑘, 𝑗 | 𝐿 − 1))𝑌̄𝑖(𝑗)

= ℎ𝑖(𝑘, 𝐿 | 𝐿)(𝑌̄𝑖(𝐿)

−𝐻̄𝑖Φ𝑥̂𝑖(𝑘 | 𝐿 − 1)).

 (A-30) 
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The initial condition of the fixed-point smoothing 

estimate 𝑥𝑖(𝑘 | 𝐿) at 𝐿 = 𝑘  is the filtering estimate 

𝑥𝑖(𝑘 | 𝑘).  

(Q.E.D.)  
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