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Abstract: In linear discrete-time stochastic systems with uncertain parameters, this study proposes an H-
infinity tracking control strategy based on an H-infinity tracking controller and a robust recursive least-squares
Wiener filter. A linear H-infinity tracking control algorithm for quantity u(k), whose components are the
control and exogenous inputs, was proposed for discrete-time deterministic systems without input and
observation noise. Based on the separation principle between control and estimation, this study presents
equations for u(k) in linear discrete-time stochastic systems with uncertain parameters as a counterpart to the
equations in deterministic systems. The H-infinity tracking control algorithm in linear discrete-time stochastic
systems with uncertain parameters is derived in the same manner as the H-infinity tracking control algorithm in

linear discrete-time deterministic systems. The filtering estimate X (k) of the degraded system state X (k) is used
to calculate the estimate #i(k) of u(k). The robust RLS Wiener filter calculates the filtering estimate ?(k) of
the system state X(k) for degraded stochastic systems with uncertain parameters. With knowledge of the
estimate f1(k — 1) of u(k — 1), the degraded observed value ¥(k), and the filtering estimate ¥(k — 1) of the

degraded state X(k — 1), X(k) is updated from Xk —1).

Key-Words: - H-infinity tracking control, control input, exogenous input, robust recursive least-squares Wiener
filter, discrete-time stochastic systems with uncertain parameters.

Received: May 14, 2022. Revised: February 17, 2023. Accepted: March 16, 2023. Published: May 4, 2023.

1 Introduction linear continuous-time stochastic systems. A robust
Linear quadratic Gaussian (LQG) control has been gontroller has. been developed for linear discrete-
studied in e.g., [1], [2], [3], [4], [5], [6]. In addition, time uncertain systems, [15]. In [15], a state
LQG tracking control problems have also been feedback controller is designed using the LMI
investigated, [7], [8], [9], [10], [11]. A real-time technique, and a low-order disturbance observer is

transcale LQG tracking control technique for presented. The LMI approach is presented for state

discrete-time stochastic systems was presented in feedback  quadratic ~ stabilization  in  linear
[11], and was based on wavelet packet continuous-time uncertain systems in subsection 5.

decomposition (WPD). The system in this scenario 3 of [16]. For linear discrete-time uncertain
excluded unknown parameters. An output feedback stochastic  systems, a combined H2/Passivity
controller ~was developed for discrete-time controller was developed, [17]. Some sufficient
stochastic systems with uncertainties and missing conditions are converted into LMIs using the
measurements, [12]. The parameter uncertainties Lyapunqv theory. A.repeated-trackmg controlls:r for
were norm-bounded. The probability that the .stochastlc time-varying delay systems was designed
missing data will occur presupposes that it in [18].

An H-infinity tracking control technique was

is known. Using linear matrix inequalities (LMIs) k -Ontl :
proposed in [19], for deterministic systems without

solves this problem. In [13], a robust controller

based on a disturbance observer was proposed for input _ and  observation disturbgnces. Robust
linear continuous-time uncertain systems with a recursive least-squares (RLS) Wiener filter and
time delay. The LMI solution determines observer ﬁxed-.pomt Sr.noother. were prOpos'ed in [20], [2'1],
parameters. It deals with state feedback control. The for linear discrete-time stochastic systems with
H-infinity controller was designed in [14], for a uncertain parameters in the system and observation

state-space model with uncertain parameters in matrices. Signal estimation was the purpose of the
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estimators in [20]. The robust RLS Wiener
estimators in [21], estimate the nondegraded
nominal system state rather than the degraded
system state when utilizing degraded observations.
In this case, the estimators employ the system and
observation matrices from the original system. In
linear discrete-time systems with norm-bounded
uncertainties in the system and input matrices, a
robust filter estimates the degraded state, [22]. A
robust Kalman filter, [23], was designed for the
linear discrete-time state-space model with
multiplicative noise and norm-constrained time-
varying uncertainties both in the system and
observation matrices. In [24], a robust Kalman filter
was proposed for linear discrete-time uncertain
systems with norm-bounded uncertainties in the
system and observation matrices. Recently, an H-
infinity tracking control method using the robust
RLS Wiener filter in [21], was developed to track
the nondegraded nominal signal to the desired value
in linear discrete-time uncertain systems with
uncertainties in the system and observation
matrices, [25]. As seen from [22], [23], [24], these
robust filters estimate the degraded state rather than
the nondegraded nominal system state. From this
fact, this paper aims to newly design an H-infinity
tracking controller for the degraded signal to track
the desired value for linear discrete-time stochastic
systems with uncertain parameters in Theorem 1.
For this purpose, Theorem 2 proposes a new robust
RLS Wiener filter to estimate the degraded state. It
is assumed herein that uncertainties exist in the
system and observation matrices. No norm-bounded
uncertainties are assumed for the uncertain matrices.
The uncertain system and observation matrices are
estimated by (18) and (19), respectively. Using the
uncertain system and observation matrix estimates,
the robust RLS Wiener filter of Theorem 2
recursively calculates the filtering estimate of the
degraded system state. Based on the separation
principle of control and estimation, it is shown in
Section 2 that u(k) satisfies (10)-(12) for linear
discrete-time stochastic systems with uncertainties,
corresponding to the deterministic systems in [19].
Here, u(k) consists of vector components, control
input, and exogenous input. The filtering estimate
?(k) of the degraded system state X'(k) is used to
calculate the estimate #i(k) of u(k). The robust RLS
Wiener filter in Theorem 2 computes the filtering
estimate ?(k) of the degraded system state X (k) for
the degraded state-space model with uncertainties.
Information on the estimate fi(k — 1) of u(k — 1),
the degraded observed value y(k), and the filtering
estimate X(k — 1) of the degraded state ¥(k — 1) is
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used to update %(k) from ¥(k —1). The estimate
(k) of u(k) in Theorem 1 uses the filtering

estimate ¥(k) of the degraded state X(k) by the
robust RLS Wiener filter in Theorem 2.

In Section 4, the first numerical simulation
example compares the tracking control accuracy of
the H-infinity tracking controller of Theorem 1 and
the robust RLS Wiener filter of Theorem 2 with that
of the H-infinity tracking controller of Theorem 1
and the RLS Wiener filter, [26], or the robust
Kalman filter, [24]. Compared to the combinations
of the H-infinity tracking controller of Theorem 1
with either the RLS Wiener filter or the robust
Kalman filter, the combination of the H-infinity
tracking controller of Theorem 1 with the robust
RLS Wiener filter of Theorem 2 provides superior
tracking control accuracy. The second simulation
example demonstrates F16 aircraft tracking control
in terms of tracking accuracy.

2 H-Infinity Linear Tracking Control

Problem
Let (1) represent the discrete-time state-space model
in linear stochastic systems.

y(k) = z(k) + v(k), z(k) = Cx(k),

x(k +1) = Ax(k) + Gu(k) + Tw(k),
u, (k)

6=16 Galuto) =[],

x(0) = ¢, E[v(k)v" (s)] = Vi (k —5),

Ew(k)w" (s)] = Wk (k —s),

E[v(k)wT(s)] = 0, E[x(0)wT (k)] = 0.

Here, x(k) € R™ is the state vector, u(k) € R™ is
the input vector, and z(k) € R! is the signal vector.
u, (k) € R™ and u,(k) € R™2, my + my, = m, are
the control and exogenous input vectors,
respectively. The input noise w(k) € RP and the
observation noise v(k) € R' are mutually
uncorrelated with zero mean white Gaussian noise.
I is the n X p input matrix, and C is the [ X n
observation matrix. The auto-covariance functions
for the input noise w(k) and the observation noise
v(k) are given in (1). This paper considers the state
and observation equations with uncertain parameters
in (2).

y(k) = z(k) + v(k),

#(k) = C(k)%(k),C(k) = C + AC(k),
%k + 1) = A(k)%K) + Gu(k) + Tw(k),
Ak) = A+ AA(k), %(0) =T,
E[v(wT(s)] = 0, E[AAK)WT (s)] = 0,
E[ACU)WT (s)] = 0, E[¥(0)wT (k)] = 0

(1)

2
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In (2), the degraded system matrix Z(k) and the

degraded observation matrix C (k) are introduced
instead of the system matrix A and the observation
matrix C in (1), respectively. Here, the matrix
elements of AA(k) and AC(k) consist of unknown
variables. The initial system state ¥(0) is a random
vector that is uncorrelated with both system and
measurement noise processes. Let Z(k) represent
the performance output, [27]. The expected value of

I1Z()113 is given by (3).

E[llZ(Ol13]
= E[(n(k) — 2(k)" Q1) (n(k) — (k)]
+E[u] (DR (), (k)]

Here, n(k) is the desired value, and Q (k) and R (k)
are symmetric positive-definite matrices. As in [19],
the H-infinity optimal tracking control problem is to
find the control input u,(k) and the exogenous
input u, (k) when y is at its minimum value in the
disturbance attenuation condition (4). y >0 is
referred to as the constant-disturbance attenuation
level.

3)

> Bl — 260) QU (1) = 7(0)]
k=0

+ Z E[u! (0)R()u, (k)] 4)
k=0

L
<y? ) B0 u (k)]
k=0

The H-infinity tracking control problem for a finite
horizon equivalently transforms into a two-person
zero-sum linear quadratic dynamic game, [28], [29].
Namely, given y?, we investigate the minimax
problem, which minimizes the value function
J(x,us,uy) for the control input u;(k) and

maximize J(x,uq,u,) for the exogenous input
u, (k).
J(x, u1:u2)
Z El(0) = 200 QUM = 2()  (5)

+u1(k)R(k)u1(k) y2ug (k)u, (k)]

We assume that the vector u(k) contains the
components of the control input u,(k) and the

exogenous input u,(k). Introducing R(k) =
R(k) 0 .
0 2 transforms (5) into (6).
](x'Lult uZ)
= Ym0 - yrewmm -2y ©
k=0
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+ul (R (u(k)]

In the value function (6) the discount factor is 1.
X(k) is expressed as

%) = B(k,0)C
+Z 1(k — i — DBk, i + 1) (Gul) +

+FW(1))

1,0<a, ()
1(@) = {O,a <o,
3(1{,5)
_ {‘A’(k— DAK—2)--A(s), 0<s<k,
I, k=s.

Here, 3(!{, s) represents the state-transition matrix

for the system matrix A (k), and 1(«) represents the
discrete-time unit step sequence. Substituting (7)
into (6), we have

](x, ulfuZ) o R
= zik:o E[(m(k) — C(k)®(k, 0)C
—Z 1k — i — DER) Bk, i + 1)(Gu(i)

o 2N e ®)
+FW(1)))TQ(k)(n(k) — C(k)P(k,0)c

—Z 1k — i — DER) Bk, i + 1)(Gu(i)
WD) + uT (ORK)u(k)].

According to the calculus of variations, [19], the
necessary condition for u(k) to minimize the value
function (8) for u, (k) and maximize (8) for u,(k),
is given by (9).
R(u(k) + Xig Xjoo 1 —k — 1)
x1(i—j —1)GTP (i, k + 1)E‘T(i)Q(i)5(z)
X ‘cTS(i i+ D6u()

= Z 1(i —
X (77(1) C()P(I,0)7)
If we introduce
K(k,j)L

Z GTET (i, k + 1CT(HQWC DD, j + 1),

i=k+1

)

—DGTRT(, k + DCTH)Q )

0<j<k<IL,

(10)
i GTOT (i, k + NET(DQMCWDB(,j + 1),
o 0sk<j<L,
and
m(k +L1)
- Z GTOT(i,k + 1CT()HQO)

i=k+1

(an
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X (E(i)‘a(i, 0)¢'— n(i)),

the optimal u(k) satisfies

L
R(u(k) + Z K(k,j)Gu(j) (12)
j=0

=m(k +1).

The sufficient condition for the value function
J(x,uq,uy) to be minimal for u,(k) and maximal
for u, (k) is given by R(k)dx(k —s) + K(k,s)G >
0, [19].

Note that (10)-(12) of the H-infinity tracking
control problem for the uncertain systems (2) can be
obtained similarly to the equations in [19], for the
H-infinity tracking control problem in linear
deterministic systems. Theorem 1 presents the H-
infinity tracking control algorithm derived from
(10)-(12). In Section 2 of [11], the filtering estimate
used in the LQG tracking control algorithm was
calculated using the Kalman filter. Thus, the
separation principle of control and estimation is
valid for the LQG tracking control problem. In [11],
the filtering estimate is calculated using (11) and
(12), which include the term related to the control
input. In addition, the filter gain was calculated in
the Kalman filter, [11]. The separation principle of
control and estimation is valid for the degraded
uncertain systems (2). Theorem 1 proposes the H-
infinity tracking-control algorithm. The estimate

(k) of u(k) uses the filtering estimate ?(k) of the
degraded state X (k). The robust RLS Wiener filter

in Theorem 2 computes the filtering estimate %(k)
of the degraded state X(k) using the degraded
observed value ¥(k). Theorems 1 and 2 utilize the
time-invariant estimates A and C for the unknown
time-varying system and observation matrices (/T(k)
and C (k), respectively.

3 H-Infinity Tracking Control
Algorithm and Robust RLS Wiener
Filter in Stochastic Systems with
Uncertainties

Fig.1 illustrates the structure of the H-infinity
tracking controller and the robust RLS Wiener filter.
Theorem 1 presents the H-infinity tracking control
algorithm for estimating the control input u4 (k) and
the exogenous input u,(k). Using the filtering
estimate ?(k) instead of X(k) the estimates of the
control input u, (k) and the exogenous input u, (k)
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are denoted by 1, (k) and i, (k), respectively. The
robust RLS Wiener filter in Theorem 2 calculates
the filtering estimate %(k) of the state ¥(k) by using
the degraded observed value y (k).

Exogenous input u, (k)
»

FE(k + 1) = A(K)X(k) + Gu(k) + l"w(k)'| Observed value F(k)
¥(k) = 2(k) + v(k) |

filter |ag{H-infinity tracking controller | g
of Theorem 2 of Theorem 1

Control input u, (k)

Fig. 1: Structure of H-infinity tracking controller of
Theorem 1 and robust recursive least-squares
Wiener filter of Theorem 2.

Theorem 1 Let n(k) denote the desired value and
R(k) 0 ]

0 _Vzlmzxmz .
Let u(k) have the components of the control input
u4 (k) and the exogenous input u, (k) as

(e
ul) = [ul(k) :

then the estimate #i(k) of u(k) is calculated using
(14)-(19). In (14), ti;(k) is the estimate of the
control input u4 (k) and i, (k) is the estimate of the
exogenous input u, (k).

uy (k)

R (k) be expressed as R(k) = [

(13)

30 =[50 “4)
axk)
= R1(k)GT{(AT) 1 [ATP(k + 1)
x (I =GR (k)GTP(k +1)) 4
+CTQR)C] = LT TR
+R7I(K)GT (AT HATP(k + 1) (15)

X (I —GR Y (k)GTP(k + 1))‘1

X GRTM(K)G &k + 1) + ATE(k+ 1)
~CTQUom)}y
+R7I(K)GT (AT LCT QU (k)

Here, A and C represent the time-invariant
estimates of the unknown time-variant system

matrix A(k) and C(k) with uncertain matrix
elements, respectively.
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P(k) = ATP(k + 1) )
X (I =GR (k)GTP(k + 1))14 (16)
—CTQ(k)C,P(L+1)=0

£(k) = ATP(k + 1)
x (I =GR (k)GTP(k + }))-1

X GR™Y (k)G &k + 1) + ATk + 1)
+CTQRIN(K), E(L+1) =0

(17)

The estimate A of the uncertain system matrix Al (9]
satisfies

X = Ke(DK;(0),
K(1) = E[¥(k + 1)XT (k)] (18)
K(0) = ELZ(R)TT (K)].

The estimate C of the uncertain observation matrix
C (k) is given by

C = E[2(l)%" (k)] (E[X(k)ET ()]) !
or (19)

C = E[y(k)X" (k)](E[X(k)XT (k)]

In (15), we utilized the filtering estimate X(k) for
the state ¥(k). X(k) is computed by the robust RLS
Wiener filtering algorithm of Theorem 2 with the
degraded observed value y(k). P(k) and &(k) are
computed using (16) and (17) from time k =L+ 1
in the reverse direction of time until steady-state
values P and & are reached, respectively. The
estimate 7 (k) of u(k) is calculated by (15) using P
and €. In (15), P(k + 1) and &(k + 1) are replaced
with their stationary values P and &, respectively.

Now, let's introduce the robust RLS Wiener filter
in Theorem 2. Suppose that the sequence of the
degraded signal Z(k) is fitted to an AR model of the
order N.

(k) = —a,72(k — 1) — dpz(k — 2)
- —dyZ(k — N) + é(k), (20)
E[é(k)eT(s)] = Qb (k —s)

Z(k) is expressed using the state vector X(k) as
follows.

#(k) = Cx(k),

C=[Ixy 0 O 0 0],

)1 1 2k

%, (k) Z(k+1) 21
x(k) = : = :

fya(0| |2+ N=2)
Xy (k) Z(k+N—-1)
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Therefore, the state equation for the state vector
X(k) is given by
¥(k + 1) = Ax(k) + T¢(k),
E[{(k)ST ()] = Q8k (k — 9),

0 L 0 0
0 0 Ile 0
A=| : : N 22
0 0 0 Il><l ( )
—dy —0y-1 —Gy-z o —0
=0 0 -« 0 Iyl

{(k) = &(k + N).

The auto-covariance function K (k,s) of the state
vector X(k) is expressed in the semi-degenerate
functional form of

~ W(k)ET(s),0<s<k
Rik,s) =) T(S)' =5=1

ER)P (s)0<k<s, (23)

W(k) = A%, ET(s) = A5K (s, s).
The wide-sense stationarity of the auto-covariance
function K(k,s) = E[Z(k)Z" (s)] for the degraded
signal Z(k) shows that the auto-variance function
K(k, k) of X(k) satisfies (24).
Z(k)
Rkky=g|| ZEFD

#(k+N—1)

x[2T(k) ZT(k+1) #T(k+ N -1)]] (24)

K;(0) K;(—1) K;(—=N +1)
K;(1) K»(0) K;(=N + 2)
e -2 KW -3) Ky(-1)
KN-1) K;(N—=2) ~ K0

Using K;(i), 0 < i < N, the Yule-Walker equation
for the AR parameters d;, 1 < i < N, is given by

[ aj ] K7 (1)

az K7 (2)
RieB)| : |=- : ,
laﬁ_lJ Kf(N-1)
ay K7 (N)
K;(0) K;(1) - K(N-1) (25)
K7 (1) K;(0) - KN -2)
Kk, k) = : H H
K;(N-=2) K;(N-3) - K;(1)
KI(N-1) K{(N—-2) - K (0)

Let Kgz(k,s) = E[X(k)XT (s)] represent the cross-
covariance function of X¥(k) with ¥(s). Kggz(k,s)
has the expression
Kiz(k,s) = a(k)BT(s),0<s <k,
a(k) = ®(k,0), (26)
BT (s) = 37 (5,0)Kzx(s, ),
with the state-transition matrix 3(!{, s) of the
unknown system matrix A(k) for ¥(k) in (2).
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Based on the above preliminaries, Theorem 2
presents the robust RLS Wiener filtering algorithm
for the filtering estimate X(k) of ¥(k) with the
degraded observed value (k) in (2). Note that the
filter equation for ?(k) contains the term Gii(k — 1)
on the right-hand side of (28). The benefits of the
technique are that the uncertain observation and
system matrices, C and A, for the degraded signal
Z(k) used in the H infinity RLS Wiener filtering
algorithm of Theorem 2 are given by (21) and (22)
respectively, based on the autoregressive model in
equation (20).

Theorem 2 Suppose that, in discrete-time stochastic
systems with the uncertain system matrix Al (k) and
the uncertain observation matrix C (k), the linear
state-space model of the state X¥(k) is given by (2).
Suppose the degraded signal Z(k) fits the AR model
of order N. Let the variance K (k, k) of state X(k)
with regards to the degraded signal Z(k) be
expressed as (24). Let V be the variance of the white
Gaussian observation noise v(k). Then (27)-(33)
constitute the robust RLS Wiener filtering algorithm
for the filtering estimate %(k) of xX(k).

Filtering estimate of the degraded signal Z(k): Z(k)

A

2(k) = CX(k) (27)
Filtering estimate of X(k): ¥(k)
T(k) = A%k — 1) + Gk — 1)
+0(k)(y(k) — CA%X(k — 1)), (28)
%(0) =0
Filter gain for ¥(k) in (28): ©(k)
0(k) = [Ksy(k, k) — AS(k — 1)ATTT]
X (V + C[K(k, k) — ASo(L = DA}, g
Kz (e, k) = E[X(k)ZT (k)]
or Kzz(k, k) = E[x(k)y" (k)]
Filtering estimate of ¥(k): X¥(k)
£(k) =A%k — 1)
+g(k)(F(k) — CAX(k — 1)), (30)
X¥(0) =0
Filter gain for ¥(k) in (30): g(k)
g(k) = [K(k, k)CT — ASy(k — 1)ATCTT] 1)
X {V + C[K(k, k) — ASy(L — 1)AT]CT}1
Auto-variance function of ¥(k) So(k) =

E[X(l)X" (k)]

E-ISSN: 2224-3488

46

Seiichi Nakamori

So(k) = KSo(k — DAT
+g(K)C[K (k, k) — ASy(k — 1)AT],
S0(0)=0
Cross-variance function of ?(k) with ¥(k): S(k) =
E[X(k)ET (k)]

(32)

S(k) = AS(k — 1)AT
+0(k)C[K (k, k) — ASy(k — 1)AT],
S(0)=0

Here, the estimates A and C of the uncertain
matrices A(k) and C are given by (18) and (19),
respectively. In (28), the term G@i(k — 1) is inserted.
i(k—1) is gained from (15), where #(k) is
calculated by the tracking control algorithm of
Theorem 1. The equation for #i(k) uses the filtering
estimate ?(k), which is updated from ?(k —1)in
(28).
Proof Theorem 2 is derived by modifying the robust
RLS Wiener filter in [21], for estimating x (k) to the
estimation of X(k).

(33)

START

v

P(L+1)=0,6(L+1)=0,L =499
(L = 499 is an example.)

k =499,-1,200

y

P(k) = ATP(k + 1)(I — GR™'(K)GTP(k + 1)) ' 4 — CTQ(k)E
£(k) = ATP(k + 1)(1 — GR™(K)GTP(k + 1))
X GR™Y(K)GTE(k + 1) + ATE(k + 1) + CTQ)n (k)

\ 4
P = P(200) (Stationary value: P)
& = £(200) (Stationary value: &)
£(0) = 0 (Initial value of £(k) at k = 0)

k=1,100

»
L

%(k) is computed by the robust RLS Wiener filter of Theorem 2.
a(k) = R (k)GT{(A")[ATP(k + 1)

x (1= GR()GTP(k + 1)) "4

+CTQ)C) - CTQ)CYR(K) + R™(k)GT (AT) ™

(A"P(k + 1)(I = GR™(K)GTP(k + 1))"'GR™(k)GT&(k + 1)
+ATE(k + 1) = ETQUON(D} + R (DGT (AN T QU (),

y
STOP

Fig. 2: Flowchart created by combining the H-
infinity tracking controller of Theorem 1 with the
robust RLS Wiener filter of Theorem 2.
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Fig. 2 shows a flowchart combining the H-
infinity tracking controller of Theorem 1 and the
robust RLS Wiener filter of Theorem 2.

Section 4 presents numerical simulation examples
for the tracking control characteristics of the H-
infinity tracking controller using the estimate X (k)
of ¥(k) by the robust RLS Wiener filter of Theorem
2 in comparison with the RLS Wiener filter, [26],
and the robust Kalman filter, [24].

4 Numerical Simulation Examples

EXAMPLE 1
Consider the observation and multi-input state
equations given by

y(k) = z(k) + v(k), z(k) = Cx(k),

C=1[095 —0.4],xk)= [283]

x(k + 1) = Ax(k) + Gu(k) + Tw(k),
_[wi(®)] , _10.05 0.95
u(k) = l(k)]'A_ —098 02/ (34)
[0 952 o [0.952
’ 0.2
E [v(k)v(S)] VSK(k—S),

Elw(k)w(s)] = 0.526,(k — s).

The linear time-invariant (LTI) system in (34) is
observable and controllable. In (34), u,(k) is the
control input and u,(k) is the exogenous input.
Consider that the degraded observed value (k) and
the degraded signal Z(k) are generated by the
observation and state equations in (35).

y(k) = Z(k) + v(k),
#(k) = C(k)%(k), C(k) = C + AC(k),
%k + 1) = A()Z(k) + Gu(k) + Tw(k),

o (0] < 35
xkz[H1 ],Ak=A+AAk, (35)
() = |3 o | A k)
AC(k) =[0.3 *rand 0],
_ 0.1 *rand
AA(k) = [ 0.2 * rand]
Here, “ rand “ is a MATLAB or Octave function

representing random numbers uniformly distributed
in the interval (0,1). In [24], the uncertain matrices
AA(k) and AC(k) are subject to the norm-bounded
uncertainty conditions. The robust RLS Wiener
filtering algorithm of Theorem 2 does not directly
use knowledge of the uncertain matrices AA(k) and

AC(k). A(k) is to the
relationship AH=K,7(1)K§1(0), where Kg(1) =
E[X(k + DXT(k)], Kx(0) = E[¥(k)XT (k)]. The
expectation is approximated in terms of 351 ¥(k)
data. That is, Kg(1) 5% 350 2(k + 1)XT (k),

estimated according
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Kz(0) = T35 %)X (k). In
Ksy(k, k) in (29) is approximated as Ky 2 (k, k) =

3502350 X(k)Z(k). The estimate C of C(k) is

addition,

given by C = E[y(k)E(0](E[RIOE ()]) ™
Here E[y(k)XT(k)] is approximated by
7000 22000 y(k)XT (k). The robust RLS Wiener

filter in Theorem 2 computes the filtering estimate
%(k) in (28) to obtain the estimate (k) of u(k) in
(15). In this instance, the AR model of order N=10
in (20) is applied to a sequence of uncertain signal
Z(k). Fig. 3 illustrates the degraded signal Z(k) =
C(k)%(k) and its filtering estimate Z(k) = Cx(k)
vs. k for the white Gaussian observation noise
N(0,0.32), provided that the desired value n(k) =
10,y = 10, R = 0.0001 and Q(k) = 1. From Fig. 3,
it can be seen that the sequence of filtering estimates
Z(k) is closer to the desired value of 10 than the
degraded signal Z(k). Fig. 4 illustrates the estimate
111 (k) of the control input u, (k) vs. k for the white
Gaussian observation noise N(0,0.32), provided
that n(k) = 10,y = 10, R = 0.0001 and Q(k) = 1.
Fig. 5 illustrates the estimate #,(k) of the
exogenous input u, (k) vs. k for the white Gaussian
observation noise N(0,0.32), provided that n(k) =
10,y = 10, R = 0.0001 and Q(k) = 1. From Fig. 4
and 5, it follows that fluctuations in the sequence of
the estimate 1, (k) of the exogenous input u, (k) are
much smaller than those in the sequence of the
estimate @i, (k) of the control input u, (k). Table 1
shows the mean square values (MSVs) of the
tracking errors n(k) — Z(k), Z(k) = C(k)¥(k) and

n(k) — 2(k), (k) = Cx(k), 1 < k < 1200, by the
H-infinity tracking controller of Theorem 1 and the
robust RLS Wiener filter of Theorem 2 fory = 10
and y = 0.01 , provided that n(k) =10, R =
0.0001 and Q(k) = 1. In this case, the observation
noise is subject to N(0,0.12), N(0,0.32),
N(0,0.5%), N(0,1) and N(0,52%). The MSV of the
tracking errors (k) — Z(k) is less than that of the
tracking errors n(k) — Z(k) for each observation
noise. This indicates that the filtering estimate Z(k)
accurately tracks the desired value in comparison
with Z(k). As the variance of the white Gaussian
observation noise increases, the MSVs of the
tracking errors (k) —Z(k) and n(k) — zZ(k)
become small gradually. For y = 10 and y = 0.01,
the MSVs of the tracking errors n(k) — Z(k) are
almost the same for each observation noise.
Similarly, for y = 10 and y = 0.01, the MSVs of
the tracking errors n(k) —
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Degraded signal and its filtering estimate

[ — Degraded signal

== Filtering estimate of degraded signal

1}

0 20 40 60 80 100

Fig. 3: Degraded signal Z(k) = C(_’)(k)a?(k) and its
filtering estimate Z(k) = C: ?(k) vs. k for white
Gaussian observation noise N(0,0.32), provided

that the desired value n(k) =10, y =10, R =
0.0001 and Q(k) = 1.

157

Estimate of u (k)

WA IR

o 20 40 60 80 100
Time k

Fig. 4: Estimate iy (k) of control input u; (k) vs. k
for white Gaussian observation noise N(0,0.3%),
provided that n(k) = 10,y = 10, R = 0.0001 and
Qlk) =1.

0

Z(k) are almost the same for each observation noise.
Table 2 shows the MSVs of the tracking errors

(k) — 2(k) , #(k) = C(OX(k) and nk) — Z(k)

2(k) = C¥(k), 1 <k <1200, by the H-infinity
tracking controller of Theorem 1 and the RLS
Wiener filter, [26], for y =10 and y = 0.01,
provided that n(k) = 10, R = 0.0001 and Q(k) =
1. From Tables 1 and 2, the tracking controller of
Theorem 1 combined with the robust RLS Wiener
filter of Theorem 2 is superior in tracking control
accuracy to the tracking controller of Theorem 1
combined with the RLS Wiener filter, [26], for each
observation noise. Table 3 shows the MSVs of the
tracking errors (k) — Z(k) and n(k) — Z(k) by the
H-infinity tracking controller of Theorem 1 and the
robust Kalman filter, [24], for the observation noise
N(0,0.1%), N(0,0.32), N(0,0.5%), N(0,1) and
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Estimate of u (k)

Fig. 5: Estimate i, (k) of exogenous input u, (k) vs.
k for white Gaussian observation noise N (0, 0.32),
provided that n(k) = 10, y = 10, R = 0.0001 and

Qk) =1.

Table 1. Mean-square values of tracking errors
n(k) = 2(k), z(k) = C(k)X (k) and n(k) — Z(k),
2(k) = CX(k), 1 < k < 1200, by H-infinity
tracking control algorithm of Theorem 1 plus robust
RLS Wiener filter of Theorem 2 fory = 10 and y =
0.01, provided that n(k) = 10, R = 0.0001 and

Q(k) = 1.
y =10 y = 0.01
MSV of | MSV of | MSV of | MSV of

White. tracking | tracking | tracking | tracking

Gaussian errors errors errors errors

observation | (k) n(k) n(k) n(k)
noise =) | -z | —z00 | —Z(0)
N(0,0.12) | 0.2469 | 0.1376 | 0.2473 | 0.1382
N(0,0.32) | 0.2126 | 0.1168 | 0.2108 | 0.1162
N(0,0.5%2) | 0.1765 | 0.0968 | 0.1755 | 0.0961
N(0,1) 0.1042 | 0.0572 | 0.1049 | 0.0573
N(0,5%) 0.0100 | 0.0019 | 0.0099 | 0.0019

N(0,52). In the computation of the robust Kalman
filter, [24], the program uses the values €, = 100,

H1=[(1) (1)],H2=[1 1]andE=[(1) (1)].Fr0m

Table 3, the combination of the H-infinity tracking
controller of Theorem 1 and the robust Kalman filter,
[24], does not track the desired value at all or
diverges.

EXAMPLE 2

Consider linear discrete-time systems for the
observation and multi-input state equations of the
F16 aircraft, [30]. The angle of attack a(k), the rate
of pitch q(k), and the elevator angle of deflection
6.(k) constitute the state vector x(k) =

[a(k) q(k) 8T, x, (k) = a(k), x5 (k) =
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Table 2. Mean-square values of tracking errors
n(k) — 2(k), 2(k) = C()X(k) and (k) — Z(k),
2(k) = CX(k), 1 < k < 1200, by H-infinity
tracking control algorithm of Theorem 1 plus RLS
Wiener filter, [26], fory = 10 and y = 0.01,
provided that n(k) = 10, R = 0.0001 and Q(k) =

1.
y =10 y = 0.01

MSV of | MSV of | MSV of | MSV of
White tracking | tracking | tracking | tracking
Gaussian errors errors errors errors
observation U(’f) n(k) n(k) n(k)
noise —Z(k) | —2k) | —z(k) | —2(k)

oy | 2.0878e+

N(0,0.1%) | 503 2824114 | 49.9650 | 51.4861
N(0,0.3%) | 671.1428 | 90.6103 | 49.9649 | 51.3064
N(0,0.5%) | 321.3791 | 42.9632 | 49.9647 | 51.2206

49.9649 | 50.9183
49.9650 | 50.4742

N(0,1) | 58.7219 | 8.1504
N(0,52) | 41633 | 0.8318

Table 3. Mean-square values of tracking errors
n(k) — 2(k), 2(k) = CU)X(k) and (k) — Z(k),
2(k) = CX(k), 1 < k < 1200, by H-infinity
tracking control algorithm of Theorem 1 plus robust
Kalman filter, [24], for y = 10 and y = 0.01,
provided that n(k) = 10, R = 0.0001 and Q(k) =

1.
y =10 y =0.01
MSV of | MSV of | MSV of | MSV of
White tracking | tracking | tracking | tracking
Gaussian errors errors errors errors
observation | 1(K) n(k) n(k) n(k)
noise —Z(k) | —2k) | —z(k) | —2(k)

4.8511e+ | 3.7728e+
N(O, 0'12) 017 018

N(0,0.32) | 49.3066 | 9.5687 | Divergence | Divergence
N(0,0.5%) | 46.2886 | 9.3179 | Divergence | Divergence
N(0,1) 46.1339 | 9.4984 | Divergence | Divergence

2 8.4403e+ | 7.0283e+
N(0,5%) 46.0462 | 9.3938 25 28

Divergence | Divergence

q(k), x3(k) = 6.(k). The system output, z(k),
corresponds to the angle of attack a(k). In (36),
u,(k) is the control input and u,(k) is the
exogenous input. The desired value of a(k) is set to
n(k) = 0.1[rad] . The LTI system in (36) is
observable and controllable.
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y(k) = z(k) + v(k),z(k) = Cx(k),

x4 (k)
C=[1 0 0]x(k)=|x(k)|,
x3(k)
x(k + 1) = Ax(k) + Gu(k) + Tw(k),
uy (k)
u(k) = [ 1 ,
()= |, k)
[0.906488 0.0816012 0.0005 16
A=10.0741349 090121 —0.0007083|, (36)
[ o0 0 0.132655
'—0.00150808 0.00951892
G=| -0.0096 0.00038373],
| 0.867345 0
0
I'=|0|, E[v(k)v(s)] = Vg (k —s),
1

Ew(l)w(s)] = 0.328 (k — )

The order of the AR model in (20) is N = 10. We
assume that the degraded observed value y(k) and
the degraded signal Z(k) are generated by the
following observation and state equations.

y(k) = 2(k) + v(k), 2(k) = C(k)¥X(k),
Xk + 1) = A(k)X(k) + Gu(k) +

X1 (k)
Tw(k),x(k) = [x,(k)|,
X3 (k)
Ak) = A+ DA(K), (37

C(k) = C + AC(k),
0

0 0

AA(k) =0 0.05*rand 0‘,
0 0 0

AC(k) = [0.03*rand 0 0],

The robust RLS Wiener filter in Theorem 2

computes the filtering estimate X(k) in (28) to
obtain the estimate #(k) of u(k) in (15). A total of
351 datasets are used to calculate the expected
values E[X(k + 1XT (k)] , E[¥(k)XT (k)] , and

A

E[F(k)XT (k)] for A and ol , respectively. Fig. 6
illustrates the degraded signal Z(k) = C(k)¥(k) and

its filtering estimate Z(k) = 5?(k) vs. k for the
white Gaussian observation noise N(0,0.32),
provided that the desired value n(k) = 0.1[rad],
y =10, R = 0.0001 and Q(k) = 1. From Fig. 6,
the sequence of the filtering estimates Z(k) is closer
to the desired value of 0.1 [rad] than the degraded
signal Z(k). Fig. 7 illustrates the estimate 4, (k) of
the control input u; (k) vs. k for the white Gaussian
observation noise N (0, 0.32), provided that n(k) =
0.1 [rad], y = 10, R = 0.0001 and Q(k) = 1. Fig.
8 illustrates the estimate #i,(k) of the exogenous
input u,(k) vs. k for the white Gaussian
observation noise N(0,0.32), provided that n(k) =
0.1 [rad],y = 10,
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= Degraded signal
== Filtering estimate of degraded signal

Degraded signal and its filtering estimate
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o 20 40 60 80 100
time k

Fig. 6: Degraded signal Z(k) = C(k)%(k) and its

filtering estimate Z(k) = CH?(k) vs. k for white
Gaussian observation noise N(0,0.32), provided
that the desired value n(k) = 0.1 [rad], y = 10,
R =0.0001 and Q(k) = 1.
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Fig. 7: Estimate #i; (k) of control input u, (k) vs. k
for white Gaussian observation noise N(0,0.32),
provided that n(k) =0.1[rad], y =10, R=
0.0001 and Q (k) = 1.

R =0.0001 and Q(k) = 1. From Fig. 7 and Fig. 8,
it can be seen that the amplitude of the exogenous
input 11, (k) sequence is very small compared with
that of the control input 4, (k) sequence. Table 4
shows the MSVs of the tracking errors n(k) — Z(k),
#(k) = C(k)X(k) and n(k) — 2(k), 2(k) = C¥(k),
1 <k <1200, by the H-infinity tracking controller
of Theorem 1 and the robust RLS Wiener filter of
Theorem 2 for y = 10 and y = 0.05, provided that
n(k) = 0.1 [rad], R = 0.0001 and Q(k) = 1. Here,
the observation noise is subject to N(0,0.12),
N(0,0.3%), N(0,0.5%), N(0,1) and N(0,5%). The
MSV of the tracking errors n(k) — Z(k) is smaller
than that of the tracking errors n(k) — Z(k) for each
observation noise. This indicates that the filtering
estimate Z(k) tracks the desired value more
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Estimate of u , (k)
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Fig. 8: Estimate i, (k) of exogenous input u, (k) vs.
k for white Gaussian observation noise N(0,0.32),
provided that n(k) =0.1[rad] , y =10, R=
0.0001 and Q(k) = 1.

Table 4. Mean-square values of tracking errors
n(k) — Z(k), z(k) = C(k)%(k) and n(k) — Z(k),
Z(k) = Cx(k), 1 < k < 1200, by H-infinity
tracking control algorithm of Theorem 1 plus robust
RLS Wiener filter of Theorem 2 for y = 10 and
y = 0.05, provided that n(k) = 0.1 [rad], R =
0.0001 and Q(k) = 1.

y =10 y = 0.05
MSV of | MSV of | MSV of | MSV of
White tracking | tracking | tracking | tracking
Gaussian errors errors errors errors
ob.servation n(k) n(k) n(k) n(k)
noise —z(k) | —2(k) | —zk) | —Z(k)
N(0,0.1%) | 0.1161 | 0.0095 | 0.1028 | 0.0097
N(0,0.3%) |0.1318 | 0.0166 |0.1246 | 0.0164
N(0,0.5%) | 0.1426 | 0.0175 | 0.1524 | 0.0182
N(0,1) 0.1684 0.0186 0.1383 0.0181
N(0,5%) 0.3270 0.0159 0.2600 0.0148

accurately than Z(k). For both y = 10 and y = 0.05,
the MSV of the tracking errors (k) — Z(k) for each
observed noise is almost identical. As the variance
of the white Gaussian observation noise increases,
the MSV of the tracking errors (k) — Z(k) tends to
increase gradually in both y = 10 and y = 0.05 for
N(0,0.12), N(0,0.32) and N(0,0.5%). Concerning
Fig 6, from Table 4, for the white Gaussian
observation noise N(0,0.32), the MSV of the tracking
errors n(k) —z(k) is 0.0166. The MSV of the
tracking errors n(k) — Z(k) is 0.1318. This indicates
that the proposed H-infinity tracking control
algorithm improves tracking accuracy by using the
robust RLS Wiener filter in Theorem 2.
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5 Conclusion

This paper developed the H-infinity tracking
control technique combined with the robust
RLS Wiener filter for linear discrete-time
stochastic systems with uncertainties. For linear
discrete-time  stochastic  systems (2)  with
uncertainties, based on the separation principle of
control and estimation, u(k) satisfies (12) along
with (10) and (11). The filtering estimate ?(k) of
%(k) is updated from X(k —1) by (28) with the
information of the estimate @i(k — 1) of u(k — 1),
the degraded observed value y(k) and the filtering
estimate X¥(k — 1) of the degraded state ¥(k — 1).
The estimate #i(k) of u(k) in (15) uses the filtering

estimate ?(k) by the robust RLS Wiener filter.

Numerical simulation examples have
demonstrated the characteristics of tracking control
using the H-infinity tracking controller of Theorem
1 and the robust RLS Wiener filter of Theorem 2 in
linear discrete-time stochastic systems with
uncertainties. Tables 1 and 2 show that the tracking
controller of Theorem 1 with the robust RLS Wiener
filter of Theorem 2 is superior in tracking control
accuracy to the tracking controller of Theorem 1
with the RLS Wiener filter for the white Gaussian
observation noise N(0,0.12), N(0,0.3%),
N(0,0.52),N(0,1) and N(0,52%). In addition, from
Table 3, the MSVs of the tracking errors n(k) —
Z(k) by the H-infinity tracking controller of
Theorem 1 with the robust Kalman filter show that
the tracking technique either fails to track the
desired value at all or diverges for the observation
noise. In the example for the F16 aircraft, Table 4
shows that the MSV of the tracking errors n(k) —
Z(k) is less than that of the tracking errors n(k) —
Z(k) for each observation noise. This indicates that
the filtering estimate Z(k) tracks the desired value
more accurately than Z(k).

In particular, as the uncertainties in the system
and observation matrices increase, the accuracy of

the estimates for A and C is numerically required. In

EXAMPLE 1, in the calculation of c ,
E[y(k)XT (k)] is approximated by
ﬁ 32000 5 (k)XT (k) instead of
1 -

3 0T (k).
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