
Linear H-Infinity Tracking Control in Discrete-Time Stochastic 
Systems with Uncertain Parameters 

 
SEIICHI NAKAMORI 

Professor Emeritus, Faculty of Education, 
Kagoshima University, 

1-20-6 Korimoto, Kagoshima 890-0065, 
JAPAN 

 
Abstract:  In linear discrete-time stochastic systems with uncertain parameters, this study proposes an H-
infinity tracking control strategy based on an H-infinity tracking controller and a robust recursive least-squares 
Wiener filter. A linear H-infinity tracking control algorithm for quantity ݑሺ݇ሻ, whose components are the 
control and exogenous inputs, was proposed for discrete-time deterministic systems without input and 
observation noise. Based on the separation principle between control and estimation, this study presents 
equations for ݑሺ݇ሻ in linear discrete-time stochastic systems with uncertain parameters as a counterpart to the 
equations in deterministic systems. The H-infinity tracking control algorithm in linear discrete-time stochastic 
systems with uncertain parameters is derived in the same manner as the H-infinity tracking control algorithm in 
linear discrete-time deterministic systems. The filtering estimate ݔി෠ሺ݇ሻ of the degraded system state ݔിሺ݇ሻ is used 
to calculate the estimate ݑොሺ݇ሻ of ݑሺ݇ሻ. The robust RLS Wiener filter calculates the filtering estimate ݔി෠ሺ݇ሻ of 
the system state ݔിሺ݇ሻ  for degraded stochastic systems with uncertain parameters. With knowledge of the 
estimate ݑොሺ݇ െ 1ሻ of ݑሺ݇ െ 1ሻ, the degraded observed value ݕ෬ሺ݇ሻ, and the filtering estimate ݔ෬෠ሺ݇ െ 1ሻ of the 
degraded state ݔ෬ሺ݇ െ 1ሻ, ݔി෠ሺ݇ሻ is updated from  ݔി෠ሺ݇ െ 1ሻ.  
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1 Introduction 
Linear quadratic Gaussian (LQG) control has been 
studied in e.g., [1], [2], [3], [4], [5], [6]. In addition, 
LQG tracking control problems have also been 
investigated, [7], [8], [9], [10], [11]. A real-time 
transcale LQG tracking control technique for 
discrete-time stochastic systems was presented in 
[11], and was based on wavelet packet 
decomposition (WPD). The system in this scenario 
excluded unknown parameters. An output feedback 
controller was developed for discrete-time 
stochastic systems with uncertainties and missing 
measurements, [12]. The parameter uncertainties 
were norm-bounded. The probability that the 
missing data will occur presupposes that it 
is known. Using linear matrix inequalities (LMIs) 
solves this problem. In [13], a robust controller 
based on a disturbance observer was proposed for 
linear continuous-time uncertain systems with a 
time delay. The LMI solution determines observer 
parameters. It deals with state feedback control. The 
H-infinity controller was designed in [14], for a 
state-space model with uncertain parameters in 

linear continuous-time stochastic systems. A robust 
controller has been developed for linear discrete-
time uncertain systems, [15]. In [15], a state 
feedback controller is designed using the LMI 
technique, and a low-order disturbance observer is 
presented. The LMI approach is presented for state 
feedback quadratic stabilization in linear 
continuous-time uncertain systems in subsection 5. 
3 of [16]. For linear discrete-time uncertain 
stochastic systems, a combined H2/Passivity 
controller was developed, [17]. Some sufficient 
conditions are converted into LMIs using the 
Lyapunov theory. A repeated-tracking controller for 
stochastic time-varying delay systems was designed 
in [18]. 

An H-infinity tracking control technique was 
proposed in [19], for deterministic systems without 
input and observation disturbances. Robust 
recursive least-squares (RLS) Wiener filter and 
fixed-point smoother were proposed in [20], [21], 
for linear discrete-time stochastic systems with 
uncertain parameters in the system and observation 
matrices. Signal estimation was the purpose of the 
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estimators in [20]. The robust RLS Wiener 
estimators in [21], estimate the nondegraded 
nominal system state rather than the degraded 
system state when utilizing degraded observations. 
In this case, the estimators employ the system and 
observation matrices from the original system. In 
linear discrete-time systems with norm-bounded 
uncertainties in the system and input matrices, a 
robust filter estimates the degraded state, [22]. A 
robust Kalman filter, [23], was designed for the 
linear discrete-time state-space model with 
multiplicative noise and norm-constrained time-
varying uncertainties both in the system and 
observation matrices. In [24], a robust Kalman filter 
was proposed for linear discrete-time uncertain 
systems with norm-bounded uncertainties in the 
system and observation matrices. Recently, an H-
infinity tracking control method using the robust 
RLS Wiener filter in [21], was developed to track 
the nondegraded nominal signal to the desired value 
in linear discrete-time uncertain systems with 
uncertainties in the system and observation 
matrices, [25]. As seen from [22], [23], [24], these 
robust filters estimate the degraded state rather than 
the nondegraded nominal system state. From this 
fact, this paper aims to newly design an H-infinity 
tracking controller for the degraded signal to track 
the desired value for linear discrete-time stochastic 
systems with uncertain parameters in Theorem 1. 
For this purpose, Theorem 2 proposes a new robust 
RLS Wiener filter to estimate the degraded state. It 
is assumed herein that uncertainties exist in the 
system and observation matrices. No norm-bounded 
uncertainties are assumed for the uncertain matrices. 
The uncertain system and observation matrices are 
estimated by (18) and (19), respectively. Using the 
uncertain system and observation matrix estimates, 
the robust RLS Wiener filter of Theorem 2 
recursively calculates the filtering estimate of the 
degraded system state. Based on the separation 
principle of control and estimation, it is shown in 
Section 2 that ݑሺ݇ሻ  satisfies (10)-(12) for linear 
discrete-time stochastic systems with uncertainties, 
corresponding to the deterministic systems in [19]. 
Here, ݑሺ݇ሻ consists of vector components, control 
input, and exogenous input. The filtering estimate 
 ിሺ݇ሻ is used toݔ ി෠ሺ݇ሻ of the degraded system stateݔ
calculate the estimate ݑොሺ݇ሻ of ݑሺ݇ሻ. The robust RLS 
Wiener filter in Theorem 2 computes the filtering 
estimate ݔി෠ሺ݇ሻ of the degraded system state ݔിሺ݇ሻ for 
the degraded state-space model with uncertainties. 
Information on the estimate ݑොሺ݇ െ 1ሻ of ݑሺ݇ െ 1ሻ, 
the degraded observed value ݕ෬ሺ݇ሻ, and the filtering 
estimate ݔ෬෠ሺ݇ െ 1ሻ of the degraded state ݔ෬ሺ݇ െ 1ሻ is 

used to update ݔി෠ሺ݇ሻ  from ݔി෠ሺ݇ െ 1ሻ . The estimate 
ොሺ݇ሻݑ  of ݑሺ݇ሻ  in Theorem 1 uses the filtering 
estimate ݔി෠ሺ݇ሻ  of the degraded state  ݔിሺ݇ሻ  by the 
robust RLS Wiener filter in Theorem 2.  

In Section 4, the first numerical simulation 
example compares the tracking control accuracy of 
the H-infinity tracking controller of Theorem 1 and 
the robust RLS Wiener filter of Theorem 2 with that 
of the H-infinity tracking controller of Theorem 1 
and the RLS Wiener filter, [26], or the robust 
Kalman filter, [24]. Compared to the combinations 
of the H-infinity tracking controller of Theorem 1 
with either the RLS Wiener filter or the robust 
Kalman filter, the combination of the H-infinity 
tracking controller of Theorem 1 with the robust 
RLS Wiener filter of Theorem 2 provides superior 
tracking control accuracy. The second simulation 
example demonstrates F16 aircraft tracking control 
in terms of tracking accuracy.  
 
 

2 H-Infinity Linear Tracking Control 
Problem 
Let (1) represent the discrete-time state-space model 
in linear stochastic systems.  

 

ሺ݇ሻݕ ൌ ሺ݇ሻݖ ൅ ,ሺ݇ሻݒ ሺ݇ሻݖ ൌ ,ሺ݇ሻݔܥ
ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔܣ ൅ ሺ݇ሻݑܩ ൅ Γݓሺ݇ሻ,

ܩ ൌ ሾܩଵ ,ଶሿܩ ሺ݇ሻݑ ൌ ൤
ଵሺ݇ሻݑ
ଶሺ݇ሻݑ

൨ ,

ሺ0ሻݔ ൌ ܿ, ሻሿݏሺ்ݒሺ݇ሻݒሾܧ ൌ ௄ሺ݇ߜܸ െ ,ሻݏ
ሻሿݏሺ்ݓሺ݇ሻݓሾܧ ൌ ௄ሺ݇ߜܹ െ ,ሻݏ
ሻሿݏሺ்ݓሺ݇ሻݒሾܧ ൌ 0, ሺ݇ሻሿ்ݓሺ0ሻݔሾܧ ൌ 0.

  (1)

Here, ݔሺ݇ሻ ∈ ܴ௡  is the state vector, ݑሺ݇ሻ ∈ ܴ௠  is 
the input vector, and ݖሺ݇ሻ ∈ ܴ௟ is the signal vector. 
ଵሺ݇ሻݑ ∈ ܴ௠భ  and ݑଶሺ݇ሻ ∈ ܴ௠మ , ݉ଵ ൅݉ଶ ൌ ݉, are 
the control and exogenous input vectors, 
respectively. The input noise ݓሺ݇ሻ ∈ ܴ௣  and the 
observation noise ݒሺ݇ሻ ∈ ܴ௟  are mutually 
uncorrelated with zero mean white Gaussian noise. 
Γ  is the ݊ ൈ ݌   input matrix, and ܥ  is the ݈ ൈ ݊ 
observation matrix. The auto-covariance functions 
for the input noise ݓሺ݇ሻ and the observation noise 
 ሺ݇ሻ are given in (1). This paper considers the stateݒ
and observation equations with uncertain parameters 
in (2). 

 

෬ሺ݇ሻݕ ൌ ሺ݇ሻݖ̌ ൅ ,ሺ݇ሻݒ
ሺ݇ሻݖ̌ ൌ ,ിሺ݇ሻݔിሺ݇ሻܥ ിሺ݇ሻܥ ൌ ܥ ൅ ΔCሺ݇ሻ,	
ിሺ݇ݔ ൅ 1ሻ ൌ ിሺ݇ሻݔിሺ݇ሻܣ ൅ ሺ݇ሻݑܩ ൅ Γݓሺ݇ሻ,	
ിሺ݇ሻܣ ൌ ܣ ൅ ΔAሺ݇ሻ, ിሺ0ሻݔ ൌ ിܿ, 
Eሾvሺkሻ்ݓሺsሻሿ ൌ 0, Eሾ∆Aሺkሻ்ݓሺsሻሿ ൌ 0, 
ሻሿݏሺ்ݓሾΔCሺ݇ሻܧ ൌ 0, ሺ݇ሻሿ்ݓിሺ0ሻݔሾܧ ൌ 0 

(2)
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In (2), the degraded system matrix ܣിሺ݇ሻ  and the 
degraded observation matrix ܥിሺ݇ሻ  are introduced 
instead of the system matrix ܣ and the observation 
matrix ܥ  in (1), respectively. Here, the matrix 
elements of ΔAሺ݇ሻ  and ΔCሺ݇ሻ  consist of unknown 
variables. The initial system state ݔിሺ0ሻ is a random 
vector that is uncorrelated with both system and 
measurement noise processes. Let ̃ݖሺ݇ሻ  represent 
the performance output, [27]. The expected value of 
ሺ݇ሻ‖ଶݖ̃‖

ଶ is given by (3).  

 
ሺ݇ሻ‖ଶݖ̃‖ሾܧ

ଶሿ	
ൌ ሺ݇ሻߟሾሺܧ െ ሺ݇ሻߟሺ݇ሻሻ்ܳሺ݇ሻ൫ݖ̆ െ 	ሺ݇ሻ൯ሿݖ̆
൅ܧሾݑଵ்ሺ݇ሻ ෨ܴሺ݇ሻݑଵሺ݇ሻሿ	 

(3) 

Here, ߟሺ݇ሻ is the desired value, and ܳሺ݇ሻ and ෨ܴሺ݇ሻ 
are symmetric positive-definite matrices. As in [19], 
the H-infinity optimal tracking control problem is to 
find the control input ݑଵሺ݇ሻ  and the exogenous 
input ݑଶሺ݇ሻ when ߛ is at its minimum value in the 
disturbance attenuation condition (4). ߛ ൐ 0  is 
referred to as the constant-disturbance attenuation 
level. 

 

෍ܧሾሺߟሺ݇ሻ െ ሺ݇ሻߟሺ݇ሻሻ்ܳሺ݇ሻ൫ݖ̆ െ ሺ݇ሻ൯ሿݖ̆

௅

௞ୀ଴

൅෍ܧሾݑଵ்
௅

௞ୀ଴

ሺ݇ሻ ෨ܴሺ݇ሻݑଵሺ݇ሻሿ	

൑ ଶݑሾܧଶ෍ߛ
்ሺ݇ሻ

௅

௞ୀ଴

 ଶሺ݇ሻሿݑ

(4) 

The H-infinity tracking control problem for a finite 
horizon equivalently transforms into a two-person 
zero-sum linear quadratic dynamic game, [28], [29]. 
Namely, given ߛଶ , we investigate the minimax 
problem, which minimizes the value function 
Jሺݔ, ,ଵݑ ଶሻݑ  for the control input ݑଵሺ݇ሻ  and 
maximize Jሺݔ, ,ଵݑ ଶሻݑ  for the exogenous input 
 .ଶሺ݇ሻݑ

 

Jሺݔ, ,ଵݑ 	ଶሻݑ

ൌ ෍ܧሾሺߟሺ݇ሻ െ ሺ݇ሻߟሺ݇ሻሻ்ܳሺ݇ሻሺݖ̆ െ ሺ݇ሻሻݖ̆

௅

௞ୀ଴

	

൅ݑଵ்ሺ݇ሻ ෨ܴሺ݇ሻݑଵሺ݇ሻ െ ଶݑଶߛ
்ሺ݇ሻݑଶሺ݇ሻሿ 

(5)

We assume that the vector ݑሺ݇ሻ  contains the 
components of the control input ݑଵሺ݇ሻ  and the 
exogenous input ݑଶሺ݇ሻ.  Introducing ܴሺ݇ሻ ൌ

ቈ
෨ܴሺ݇ሻ 0
0 െߛଶܫ௠మൈ௠మ

቉ transforms (5) into (6). 

 

,ݔሺܬ ,ଵݑ 	ଶሻݑ

ൌ ෍ሾሺߟሺ݇ሻ െ ሺ݇ሻߟሺ݇ሻሻ்ܳሺ݇ሻሺݖ̆ െ ሺ݇ሻሻݖ̆

௅

௞ୀ଴

	
(6)

൅்ݑሺ݇ሻܴሺ݇ሻݑሺ݇ሻሿ 

In the value function (6) the discount factor is 1. 
 ിሺ݇ሻ is expressed asݔ

 

ിሺ݇ሻݔ ൌ ΦശሬԦሺ݇, 0ሻിܿ

൅෍1ሺ݇ െ ݅ െ 1ሻΦശሬԦሺ݇, ݅ ൅ 1ሻሺݑܩሺ݅ሻ
௅

௜ୀ଴

൅	

൅Γݓሺ݅ሻሻ,  

1ሺߙሻ ൌ ቄ
1, 0 ൑ ,ߙ
0, ߙ ൏ 0,	

ΦശሬԦሺ݇, 	ሻݏ

ൌ ൜A
ശԦሺk െ 1ሻAശԦሺk െ 2ሻ⋯AശԦሺsሻ,			0 ൑ ݏ ൏ ݇,

,ܫ ݇ ൌ .ݏ
 

(7)

Here, ΦശሬԦሺ݇,  ሻ represents the state-transition matrixݏ
for the system matrix ܣിሺ݇ሻ, and 1ሺߙሻ represents the 
discrete-time unit step sequence. Substituting (7) 
into (6), we have 

 

,ݔሺܬ ,ଵݑ ଶሻݑ
ൌ ∑ ሺ݇ሻߟሾሺܧ െ ,ിሺ݇ሻΦശሬԦሺ݇ܥ 0ሻിܿ௅

௞ୀ଴

െ෍1ሺ݇ െ ݅ െ 1ሻܥിሺ݇ሻΦശሬԦሺ݇, ݅ ൅ 1ሻሺݑܩሺ݅ሻ
௅

௜ୀ଴

	

൅Γݓሺ݅ሻሻሻ்ܳሺ݇ሻሺߟሺ݇ሻ െ ,ിሺ݇ሻΦശሬԦሺ݇ܥ 0ሻിܿ	

െ෍1ሺ݇ െ ݅ െ 1ሻܥിሺ݇ሻΦശሬԦሺ݇, ݅ ൅ 1ሻሺݑܩሺ݅ሻ
௅

௜ୀ଴

	

൅Γݓሺ݅ሻሻሻ ൅   .ሺ݇ሻሿݑሺ݇ሻܴሺ݇ሻ்ݑ

(8)

According to the calculus of variations, [19], the 
necessary condition for ݑሺ݇ሻ to minimize the value 
function (8) for ݑଵሺ݇ሻ and maximize (8) for ݑଶሺ݇ሻ, 
is given by (9).  

 

ܴሺ݇ሻݑሺ݇ሻ ൅ ∑ ∑ 1௅
௝ୀ଴

௅
௜ୀ଴ ሺ݅ െ ݇ െ 1ሻ  

ൈ 1ሺ݅ െ ݆ െ 1ሻ்ܩΦശሬԦ୘ሺ݅, ݇ ൅ 1ሻܥി்ሺ݅ሻܳሺ݅ሻܥിሺ݅ሻ
ൈ ΦശሬԦሺ݅, ݆ ൅ 1ሻݑܩሺ݆ሻ	

ൌ෍1ሺ݅ െ ݇ െ 1ሻ்ܩΦശሬԦ்ሺ݅, ݇ ൅ 1ሻܥി்ሺ݅ሻܳሺ݅ሻ
௅

௜ୀ଴

	

ൈ ሺߟሺ݅ሻ െ ,ിሺ݅ሻΦശሬԦሺ݅ܥ 0ሻിܿሻ 

(9)

If we introduce  

 

,ሺ݇ܭ ݆ሻ

ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ෍ ,ΦശሬԦ்ሺ்݅ܩ ݇ ൅ 1ሻܥി்ሺ݅ሻܳሺ݅ሻܥിሺ݅ሻΦശሬԦሺ݅, ݆ ൅ 1ሻ,

௅

௜ୀ௞ାଵ

0 ൑ ݆ ൑ ݇ ൑ ,ܮ

෍ ,ΦശሬԦ்ሺ்݅ܩ ݇ ൅ 1ሻܥി்ሺ݅ሻܳሺ݅ሻܥിሺ݅ሻΦശሬԦሺ݅, ݆ ൅ 1ሻ
௅

௜ୀ௝ାଵ

,

0 ൑ ݇ ൑ ݆ ൑ ,ܮ

 (10) 

and 

 

݉ሺ݇ ൅ 1ሻ  

ൌ െ ෍ ,ΦശሬԦ்ሺ்݅ܩ ݇ ൅ 1ሻܥി்ሺ݅ሻܳሺ݅ሻ
௅

௜ୀ௞ାଵ

	
(11)
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ൈ ቀܥിሺ݅ሻΦശሬԦሺ݅, 0ሻിܿെ   ,ሺ݅ሻቁߟ

the optimal ݑሺ݇ሻ satisfies 

 
ܴሺ݇ሻݑሺ݇ሻ ൅෍ܭሺ݇, ݆ሻݑܩሺ݆ሻ

௅

௝ୀ଴

 

ൌ ݉ሺ݇ ൅ 1ሻ.  

(12)

The sufficient condition for the value function 
Jሺݔ, ,ଵݑ  ଵሺ݇ሻ and maximalݑ ଶሻ to be minimal forݑ
for ݑଶሺ݇ሻ is given by ܴሺ݇ሻߜ௄ሺ݇ െ ሻݏ ൅ ,ሺ݇ܭ ܩሻݏ ൐
0, [19]. 

Note that (10)-(12) of the H-infinity tracking 
control problem for the uncertain systems (2) can be 
obtained similarly to the equations in [19], for the 
H-infinity tracking control problem in linear 
deterministic systems. Theorem 1 presents the H-
infinity tracking control algorithm derived from 
(10)-(12). In Section 2 of [11], the filtering estimate 
used in the LQG tracking control algorithm was 
calculated using the Kalman filter. Thus, the 
separation principle of control and estimation is 
valid for the LQG tracking control problem. In [11], 
the filtering estimate is calculated using (11) and 
(12), which include the term related to the control 
input. In addition, the filter gain was calculated in 
the Kalman filter, [11]. The separation principle of 
control and estimation is valid for the degraded 
uncertain systems (2). Theorem 1 proposes the H-
infinity tracking-control algorithm. The estimate 
 ി෠ሺ݇ሻ of theݔ ሺ݇ሻ uses the filtering estimateݑ ොሺ݇ሻ ofݑ
degraded state ݔിሺ݇ሻ. The robust RLS Wiener filter 
in Theorem 2 computes the filtering estimate ݔി෠ሺ݇ሻ 
of the degraded state ݔിሺ݇ሻ  using the degraded 
observed value ݕ෬ሺ݇ሻ. Theorems 1 and 2 utilize the 

time-invariant estimates ܣിመ  and ܥിመ  for the unknown 
time-varying system and observation matrices ܣിሺ݇ሻ 
and ܥിሺ݇ሻ, respectively.   
 
 

3 H-Infinity Tracking Control 
Algorithm and Robust RLS Wiener 
Filter in Stochastic Systems with 
Uncertainties 

Fig.1 illustrates the structure of the H-infinity 
tracking controller and the robust RLS Wiener filter. 
Theorem 1 presents the H-infinity tracking control 
algorithm for estimating the control input ݑଵሺ݇ሻ and 
the exogenous input ݑଶሺ݇ሻ.  Using the filtering 
estimate ݔി෠ሺ݇ሻ  instead of ݔിሺ݇ሻ  the estimates of the 
control input ݑଵሺ݇ሻ and the exogenous input ݑଶሺ݇ሻ 

are denoted by ݑොଵሺ݇ሻ and ݑොଶሺ݇ሻ, respectively. The 
robust RLS Wiener filter in Theorem 2 calculates 
the filtering estimate ݔി෠ሺ݇ሻ of the state ݔിሺ݇ሻ by using 
the degraded observed value ݕ෬ሺ݇ሻ. 

 

 
Fig. 1: Structure of H-infinity tracking controller of 
Theorem 1 and robust recursive least-squares 
Wiener filter of Theorem 2. 
 
Theorem 1 Let ߟሺ݇ሻ denote the desired value and 

ܴሺ݇ሻ be expressed as ܴሺ݇ሻ ൌ ቈ
෨ܴሺ݇ሻ 0
0 െߛଶܫ௠మൈ௠మ

቉. 

Let ݑሺ݇ሻ have the components of the control input 
  ଶሺ݇ሻ asݑ ଵሺ݇ሻ and the exogenous inputݑ

ሺ݇ሻݑ  ൌ ൤
ଵሺ݇ሻݑ
ଶሺ݇ሻݑ

൨, (13)

then the estimate ݑොሺ݇ሻ of ݑሺ݇ሻ is calculated using 
(14)-(19). In (14), ݑොଵሺ݇ሻ  is the estimate of the 
control input ݑଵሺ݇ሻ and ݑොଶሺ݇ሻ is the estimate of the 
exogenous input ݑଶሺ݇ሻ. 

ොሺ݇ሻݑ  ൌ ൤
ොଵሺ݇ሻݑ
ොଶሺ݇ሻݑ

൨ (14)

 

 

ොሺ݇ሻݑ

ൌ ܴିଵሺ݇ሻ்ܩሼሺܣിመ்ሻିଵሾܣിመ்ܲሺ݇ ൅ 1ሻ	

ൈ ൫ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻ൯
ିଵ
	ിመܣ

൅ܥിመ்ܳሺ݇ሻܥിመሿ െ 	ി෠ሺ݇ሻݔിመሽܥിመ்ܳሺ݇ሻܥ

൅ܴିଵሺ݇ሻ்ܩሺܣിመ்ሻିଵሼܣിመ்ܲሺ݇ ൅ 1ሻ	
ൈ ሺܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵ	

ൈ ሺ݇ߦ்ܩଵሺ݇ሻିܴܩ ൅ 1ሻ ൅ ሺ݇ߦിመ்ܣ ൅ 1ሻ	

െܥിመ்ܳሺ݇ሻߟሺ݇ሻሽ

൅ ܴିଵሺ݇ሻ்ܩሺܣിመ்ሻିଵܥിመ்ܳሺ݇ሻߟሺ݇ሻ 

(15)

Here, ܣിመ   and ܥിመ  represent the time-invariant 
estimates of the unknown time-variant system 
matrix ܣിሺ݇ሻ  and  ܥിሺ݇ሻ  with uncertain matrix 
elements, respectively. 
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ܲሺ݇ሻ ൌ ിመ்ܲሺ݇ܣ ൅ 1ሻ	

ൈ ሺ	ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵܣിመ 

െܥിመ்ܳሺ݇ሻܥിመ, ܲሺܮ ൅ 1ሻ ൌ 0 

(16)

 

 

ሺ݇ሻߦ ൌ ിመ்ܲሺ݇ܣ ൅ 1ሻ	
ൈ ሺ	ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵ	

ൈ ሺ݇ߦ்ܩଵሺ݇ሻିܴܩ ൅ 1ሻ ൅ ሺ݇ߦിመ்ܣ ൅ 1ሻ	

൅ܥിመ்ܳሺ݇ሻߟሺ݇ሻ, ܮሺߦ ൅ 1ሻ ൌ 0 

(17)

The estimate ܣിመ of the uncertain system matrix ܣിሺ݇ሻ 
satisfies 

 
ിመܣ ൌ ௫ിܭ௫ിሺ1ሻܭ

ିଵሺ0ሻ,	
௫ിሺ1ሻܭ ൌ ിሺ݇ݔሾܧ ൅ 1ሻݔി்ሺ݇ሻሿ,	
௫ിሺ0ሻܭ ൌ   .ി்ሺ݇ሻሿݔിሺ݇ሻݔሾܧ

(18)

The estimate ܥിመ of the uncertain observation matrix 
  ിሺ݇ሻ is given byܥ

 
ിመܥ ൌ 	ി்ሺ݇ሻሿሻିଵݔിሺ݇ሻݔሾܧി்ሺ݇ሻሿሺݔሺ݇ሻݖሾ̆ܧ
or  

ിመܥ ൌ  .ി்ሺ݇ሻሿሻିଵݔിሺ݇ሻݔሾܧി்ሺ݇ሻሿሺݔ෬ሺ݇ሻݕሾܧ

(19)

In (15), we utilized the filtering estimate ݔി෠ሺ݇ሻ for 
the state ݔിሺ݇ሻ. ݔി෠ሺ݇ሻ is computed by the robust RLS 
Wiener filtering algorithm of Theorem 2 with the 
degraded observed value ݕ෬ሺ݇ሻ . ܲሺ݇ሻ  and ߦሺ݇ሻ  are 
computed using (16) and (17) from time ݇ ൌ L ൅ 1 
in the reverse direction of time until steady-state 
values ሜܲ  and ߦሜ  are reached, respectively. The 
estimate ݑොሺ݇ሻ of ݑሺ݇ሻ is calculated by (15) using ሜܲ  
and ߦሜ. In (15), ܲሺ݇ ൅ 1ሻ and ߦሺ݇ ൅ 1ሻ are replaced 
with their stationary values ሜܲ  and ߦሜ, respectively.  

Now, let's introduce the robust RLS Wiener filter 
in Theorem 2. Suppose that the sequence of the 
degraded signal ̆ݖሺ݇ሻ is fitted to an AR model of the 
order ܰ.  

 
ሺ݇ሻݖ̆ ൌ െ ෬ܽଵ̆ݖሺ݇ െ 1ሻ െ ෬ܽଶ̆ݖሺ݇ െ 2ሻ	
⋯െ ෬ܽே̆ݖሺ݇ െ ܰሻ ൅ ݁̆ሺ݇ሻ, 
ሻሿݏሾ݁̆ሺ݇ሻ்݁̆ሺܧ ൌ ෰ܳߜ௄ሺ݇ െ  ሻݏ

(20)

ሺ݇ሻݖ̆  is expressed using the state vector ݔ෬ሺ݇ሻ  as 
follows.  

 

ሺ݇ሻݖ̆ ൌ ,෬ሺ݇ሻݔምܥ
ምܥ ൌ ሾܫ௟ൈ௟ 0 0 ⋯ 0 0ሿ,

෬ሺ݇ሻݔ ൌ

ۏ
ێ
ێ
ێ
ۍ
෬ଵሺ݇ሻݔ
෬ଶሺ݇ሻݔ
⋮

෬ேିଵሺ݇ሻݔ
෬ேሺ݇ሻݔ ے

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ

ሺ݇ሻݖ̆
ሺ݇ݖ̆ ൅ 1ሻ

⋮
ሺ݇ݖ̆ ൅ ܰ െ 2ሻ
ሺ݇ݖ̆ ൅ ܰ െ 1ሻے

ۑ
ۑ
ۑ
(21) ې

Therefore, the state equation for the state vector 
 ෬ሺ݇ሻ is given byݔ

 

෬ሺ݇ݔ ൅ 1ሻ ൌ ෬ሺ݇ሻݔምܣ ൅ Γ෰ߞሺ݇ሻ,
ሻሿݏሺ்ߞሺ݇ሻߞሾܧ ൌ ෰ܳߜ௄ሺ݇ െ ,ሻݏ

ምܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 ௟ൈ௟ܫ 0 ⋯ 0
0 0 ௟ൈ௟ܫ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ௟ൈ௟ܫ

െ ෬ܽே െ ෬ܽேିଵ െ ෬ܽேିଶ ⋯ െ ෬ܽଵے
ۑ
ۑ
ۑ
ې

,

Γ෰ ൌ ሾ0 0 ⋯ 0 ,௟ൈ௟ሿ்ܫ
ሺ݇ሻߞ ൌ ݁̆ሺ݇ ൅ ܰሻ.

 (22)

The auto-covariance function ܭ෱ሺ݇, ሻݏ  of the state 
vector ݔ෬ሺ݇ሻ	 is expressed in the semi-degenerate 
functional form of  

 
,෱ሺ݇ܭ ሻݏ ൌ ቊ

Ψሺ݇ሻΞ்ሺݏሻ,0 ൑ ݏ ൑ ݇,
Ξሺ݇ሻΨ்ሺݏሻ,0 ൑ ݇ ൑ ,ݏ

Ψሺ݇ሻ ൌ ,ም௞ܣ Ξ்ሺݏሻ ൌ ,ݏ෱ሺܭምି௦ܣ .ሻݏ

 (23)

The wide-sense stationarity of the auto-covariance 
function ܭ෱ሺ݇, ሻݏ ൌ ሻሿݏሺ்ݖሺ݇ሻ̆ݖሾ̆ܧ  for the degraded 
signal ̆ݖሺ݇ሻ  shows that the auto-variance function 
,෱ሺ݇ܭ ݇ሻ of ݔ෬ሺ݇ሻ satisfies (24). 

 

,෱ሺ݇ܭ ݇ሻ ൌ ܧ

ۏ
ێ
ێ
ێ
ۍ

൦

ሺ݇ሻݖ̆
ሺ݇ݖ̆ ൅ 1ሻ

⋮
ሺ݇ݖ̆ ൅ ܰ െ 1ሻ

൪

ൈ ሾ்̆ݖሺ݇ሻ ሺ்݇ݖ̆ ൅ 1ሻ ⋯ ሺ்݇ݖ̆ ൅ ܰ െ 1ሻሿ൧

ൌ

ۏ
ێ
ێ
ێ
ۍ

௭෬ሺ0ሻܭ ௭෬ሺെ1ሻܭ ⋯ ௭෬ሺെܰܭ ൅ 1ሻ
௭෬ሺ1ሻܭ ௭෬ሺ0ሻܭ ⋯ ௭෬ሺെܰܭ ൅ 2ሻ
⋮ ⋮ ⋱ ⋮

௭෬ሺܰܭ െ 2ሻ ௭෬ሺܰܭ െ 3ሻ ⋯ ௭෬ሺെ1ሻܭ
௭෬ሺܰܭ െ 1ሻ ௭෬ሺܰܭ െ 2ሻ ⋯ ௭෬ሺ0ሻܭ ے

ۑ
ۑ
ۑ
ې

(24)

Using ܭ௭෬ሺ݅ሻ, 0 ൑ ݅ ൑ ܰ, the Yule-Walker equation 
for the AR parameters ෬ܽ௜, 1 ൑ ݅ ൑ ܰ, is given by 

 

,෡ሺ݇ܭ ݇ሻ

ۏ
ێ
ێ
ێ
ۍ
෬ܽଵ
்

෬ܽଶ
்

⋮
෬ܽேିଵ
்

෬ܽே
் ے
ۑ
ۑ
ۑ
ې

ൌ െ

ۏ
ێ
ێ
ێ
ێ
ۍ

௭෬ܭ
்ሺ1ሻ

௭෬ܭ
்ሺ2ሻ
⋮

௭෬ܭ
்ሺܰ െ 1ሻ
௭෬ܭ
்ሺܰሻ ے

ۑ
ۑ
ۑ
ۑ
ې

,

,෡ሺ݇ܭ ݇ሻ ൌ

ۏ
ێ
ێ
ێ
ۍ

௭෬ሺ0ሻܭ ௭෬ሺ1ሻܭ ⋯ ௭෬ሺܰܭ െ 1ሻ
௭෬ܭ
்ሺ1ሻ ௭෬ሺ0ሻܭ ⋯ ௭෬ሺܰܭ െ 2ሻ
⋮ ⋮ ⋱ ⋮

௭෬ܭ
்ሺܰ െ 2ሻ ௭෬ܭ

்ሺܰ െ 3ሻ ⋯ ௭෬ሺ1ሻܭ
௭෬ܭ
்ሺܰ െ 1ሻ ௭෬ܭ

்ሺܰ െ 2ሻ ⋯ ௭෬ሺ0ሻܭ ے
ۑ
ۑ
ۑ
ې

.

 (25)

Let ܭ௫ി௫෬ሺ݇, ሻݏ ൌ -ሻሿ represent the crossݏ෬்ሺݔിሺ݇ሻݔሾܧ
covariance function of ݔിሺ݇ሻ  with ݔ෬ሺݏሻ. ,௫ി௫෬ሺ݇ܭ   ሻݏ
has the expression 

 
,௫ി௫෬ሺ݇ܭ ሻݏ ൌ ሻ,0ݏሺ்ߚሺ݇ሻߙ ൑ ݏ ൑ ݇,

ሺ݇ሻߙ ൌ ΦശሬԦሺ݇, 0ሻ,

ሻݏሺ்ߚ ൌ ΦശሬԦିଵሺݏ, 0ሻܭ௫ി௫෬ሺݏ, ,ሻݏ

 (26)

with the state-transition matrix ΦശሬԦሺ݇, ሻݏ  of the 
unknown system matrix  ܣിሺ݇ሻ for ݔിሺ݇ሻ in (2). 
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Based on the above preliminaries, Theorem 2 
presents the robust RLS Wiener filtering algorithm 
for the filtering estimate ݔി෠ሺ݇ሻ  of ݔിሺ݇ሻ  with the 
degraded observed value ݕ෬ሺ݇ሻ in (2). Note that the 
filter equation for ݔി෠ሺ݇ሻ contains the term ݑܩොሺ݇ െ 1ሻ 
on the right-hand side of (28). The benefits of the 
technique are that the uncertain observation and 
system matrices, ܥም  and ܣም , for the degraded signal 
ሺ݇ሻݖ̆  used in the H infinity RLS Wiener filtering 
algorithm of Theorem 2 are given by (21) and (22) 
respectively, based on the autoregressive model in 
equation (20). 

 
Theorem 2 Suppose that, in discrete-time stochastic 
systems with the uncertain system matrix ܣിሺ݇ሻ and 
the uncertain observation matrix ܥിሺ݇ሻ , the linear 
state-space model of the state ݔിሺ݇ሻ is given by (2). 
Suppose the degraded signal ̆ݖሺ݇ሻ fits the AR model 
of order ܰ . Let the variance ܭ෱ሺ݇, ݇ሻ of state ݔ෬ሺ݇ሻ 
with regards to the degraded signal ̆ݖሺ݇ሻ  be 
expressed as (24). Let ܸ be the variance of the white 
Gaussian observation noise ݒሺ݇ሻ . Then (27)-(33) 
constitute the robust RLS Wiener filtering algorithm 
for the filtering estimate ݔി෠ሺ݇ሻ of ݔിሺ݇ሻ. 

Filtering estimate of the degraded signal ̆ݖሺ݇ሻ: ̆ݖመሺ݇ሻ  

መሺ݇ሻݖ̆   ൌ ി෠ሺ݇ሻ (27)ݔിመܥ

Filtering estimate of ݔിሺ݇ሻ: ݔി෠ሺ݇ሻ  

 
ി෠ሺ݇ሻݔ ൌ ി෠ሺ݇ݔിመܣ െ 1ሻ ൅ ොሺ݇ݑܩ െ 1ሻ
൅Θሺ݇ሻሺݕ෬ሺ݇ሻ െ ෬෠ሺ݇ݔምA෱ܥ െ 1ሻሻ,

ി෠ሺ0ሻݔ ൌ 0	

 (28)

Filter gain for ݔി෠ሺ݇ሻ in (28): Θሺ݇ሻ  

 

Θሺ݇ሻ ൌ ሾܭ௫ി௭෬ሺ݇, ݇ሻ െ ിመܵሺ݇ܣ െ 1ሻA෱்C෱்ሿ
ൈ ሼܸ ൅ ,෱ሺ݇ܭምሾܥ ݇ሻ െ A෱ܵ଴ሺܮ െ 1ሻA෱்ሿC෱்ሽିଵ,
,௫ി௭෬ሺ݇ܭ ݇ሻ ൌ ሺ݇ሻሿ்ݖിሺ݇ሻ̆ݔሾܧ
	or	ܭ௫ി௭෬ሺ݇, ݇ሻ ൌ 	෬்ሺ݇ሻሿݕിሺ݇ሻݔሾܧ

 (29)

Filtering estimate of ݔ෬ሺ݇ሻ: ݔ෬෠ሺ݇ሻ  

 
෬෠ሺ݇ሻݔ ൌ A෱ݔ෬෠ሺ݇ െ 1ሻ

൅݃ሺ݇ሻሺݕ෬ሺ݇ሻ െ ෬෠ሺ݇ݔምA෱ܥ െ 1ሻሻ,
෬෠ሺ0ሻݔ ൌ 0

 (30)

Filter gain for ݔ෬෠ሺ݇ሻ in (30): ݃ሺ݇ሻ	 

 
݃ሺ݇ሻ ൌ ሾܭ෱ሺ݇, ݇ሻܥም் െ ምܵ଴ሺ݇ܣ െ 1ሻA෱்C෱்ሿ
ൈ ሼܸ ൅ ,෱ሺ݇ܭምሾܥ ݇ሻ െ A෱ܵ଴ሺܮ െ 1ሻA෱்ሿC෱்ሽିଵ

 (31)

Auto-variance function of ݔ෬෠ሺ݇ሻ : ܵ଴ሺ݇ሻ ൌ
  ෬෠்ሺ݇ሻሿݔ෬෠ሺ݇ሻݔሾܧ

 
ܵ଴ሺ݇ሻ ൌ A෱ܵ଴ሺ݇ െ 1ሻA෱்

൅݃ሺ݇ሻܥምሾܭ෱ሺ݇, ݇ሻ െ A෱ܵ଴ሺ݇ െ 1ሻA෱்ሿ,
ܵ଴ሺ0ሻ ൌ 0

 (32)

Cross-variance function of ݔി෠ሺ݇ሻ with ݔ෬෠ሺ݇ሻ: ܵሺ݇ሻ ൌ
  ෬෠்ሺ݇ሻሿݔി෠ሺ݇ሻݔሾܧ

 
ܵሺ݇ሻ ൌ ിመܵሺ݇ܣ െ 1ሻܣም்

൅Θሺ݇ሻܥምሾܭ෱ሺ݇, ݇ሻ െ A෱ܵ଴ሺ݇ െ 1ሻA෱்ሿ,
ܵሺ0ሻ ൌ 0

 (33)

Here, the estimates ܣിመ   and ܥിመ  of the uncertain 
matrices  ܣിሺ݇ሻ and  ܥി are given by (18) and (19), 
respectively. In (28), the term ݑܩොሺ݇ െ 1ሻ is inserted. 
ොሺ݇ݑ െ 1ሻ  is gained from (15), where ݑොሺ݇ሻ  is 
calculated by the tracking control algorithm of 
Theorem 1. The equation for ݑොሺ݇ሻ uses the filtering 
estimate ݔി෠ሺ݇ሻ, which is updated from ݔി෠ሺ݇ െ 1ሻ in 
(28).  
Proof Theorem 2 is derived by modifying the robust 
RLS Wiener filter in [21], for estimating ݔሺ݇ሻ to the 
estimation of  ݔിሺ݇ሻ. 
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Fig. 2: Flowchart created by combining the H-
infinity tracking controller of Theorem 1 with the 
robust RLS Wiener filter of Theorem 2. 

STOP

START 

ܲሺ݇ሻ ൌ ിመ்ܲሺ݇ܣ ൅ 1ሻሺ ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵܣിመ െ   ിመܥിመ்ܳሺ݇ሻܥ

ሺ݇ሻߦ ൌ ിመ்ܲሺ݇ܣ ൅ 1ሻሺ ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵ  

ൈ ሺ݇ߦ்ܩଵሺ݇ሻିܴܩ ൅ 1ሻ ൅ ሺ݇ߦിመ்ܣ ൅ 1ሻ ൅   ሺ݇ሻߟിመ்ܳሺ݇ሻܥ

ܲሺܮ ൅ 1ሻ ൌ ܮሺߦ ,0 ൅ 1ሻ ൌ 0, ܮ ൌ 499  
ܮ) ൌ 499 is an example.) 

ሜܲ ൌ ܲሺ200ሻ (Stationary value:  ሜܲ )  

ሜߦ ൌ ሺ200ሻߦ (Stationary value: ߦሜ) 
ොሺ0ሻݔ ൌ 0 (Initial value of ݔොሺ݇ሻ at ݇ ൌ 0) 

 .ി෠ሺ݇ሻ is computed by the robust RLS Wiener filter of Theorem 2ݔ

ොሺ݇ሻݑ ൌ ܴିଵሺ݇ሻ்ܩሼሺܣിመ்ሻିଵሾܣിመ୘ܲሺ݇ ൅ 1ሻ 

ൈ ൫ܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻ൯
ିଵ
 ിመܣ

൅ܥിመ்ܳሺ݇ሻܥിመሿ െ ി෠ሺ݇ሻݔിመሽܥിመ்ܳሺ݇ሻܥ ൅ ܴିଵሺ݇ሻ்ܩሺܣിመ்ሻିଵ 

ሼܣിመ்ܲሺ݇ ൅ 1ሻሺܫ െ ሺ்݇ܲܩଵሺ݇ሻିܴܩ ൅ 1ሻሻିଵିܴܩଵሺ݇ሻߦ்ܩሺ݇ ൅ 1ሻ 

൅ܣിመ୘ߦሺ݇ ൅ 1ሻ െ ሺ݇ሻሽߟിመ்ܳሺ݇ሻܥ ൅ ܴିଵሺ݇ሻ்ܩሺܣിመ்ሻିଵܥിመ்ܳሺ݇ሻߟሺ݇ሻ, 
መ
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Fig. 2 shows a flowchart combining the H-
infinity tracking controller of Theorem 1 and the 
robust RLS Wiener filter of Theorem 2. 

Section 4 presents numerical simulation examples 
for the tracking control characteristics of the H-
infinity tracking controller using the estimate ݔി෠ሺ݇ሻ 
of ݔിሺ݇ሻ by the robust RLS Wiener filter of Theorem 
2 in comparison with the RLS Wiener filter, [26], 
and the robust Kalman filter, [24]. 

  
 

4 Numerical Simulation Examples 

EXAMPLE 1 
Consider the observation and multi-input state 
equations given by  

 

ሺ݇ሻݕ ൌ ሺ݇ሻݖ ൅ ,ሺ݇ሻݒ ሺ݇ሻݖ ൌ ,ሺ݇ሻݔܥ

ܥ ൌ ሾ0.95 െ0.4ሿ, ሺ݇ሻݔ ൌ ൤
ଵሺ݇ሻݔ
ଶሺ݇ሻݔ

൨ ,

ሺ݇ݔ ൅ 1ሻ ൌ Aݔሺ݇ሻ ൅ ሺ݇ሻݑܩ ൅ Γݓሺ݇ሻ,

ሺ݇ሻݑ ൌ ൤
ଵሺ݇ሻݑ
ଶሺ݇ሻݑ

൨ , A ൌ ቂ 0.05 0.95
െ0.98 0.2

ቃ ,

G ൌ ቂ0.952 0
0.2 1

ቃ , Γ ൌ ቂ0.952
0.2

ቃ ,

ሻሿݏሺݒሺ݇ሻݒሾܧ ൌ ௄ሺ݇ߜܸ െ ,ሻݏ
ሻሿݏሺݓሺ݇ሻݓሾܧ ൌ 0.5ଶߜ௄ሺ݇ െ .ሻݏ

 (34)

The linear time-invariant (LTI) system in (34) is 
observable and controllable. In (34), ݑଵሺ݇ሻ is the 
control input and ݑଶሺ݇ሻ is the exogenous input. 
Consider that the degraded observed value ݕ෬ሺ݇ሻ and 
the degraded signal ̆ݖሺ݇ሻ are generated by the 
observation and state equations in (35). 

 

෬ሺ݇ሻݕ ൌ ሺ݇ሻݖ̌ ൅ 	,ሺ݇ሻݒ
ሺ݇ሻݖ̌	 ൌ ,ിሺ݇ሻݔിሺ݇ሻܥ ിሺ݇ሻܥ ൌ ܥ ൅ ΔCሺ݇ሻ,	
ിሺ݇ݔ ൅ 1ሻ ൌ ിሺ݇ሻݔിሺ݇ሻܣ ൅ ሺ݇ሻݑܩ ൅ Γݓሺ݇ሻ, 

ിሺ݇ሻݔ	 ൌ ൤
ിଵሺ݇ሻݔ
ിଶሺ݇ሻݔ

൨ , ിሺ݇ሻܣ ൌ ܣ ൅ ΔAሺ݇ሻ,  

ΔCሺ݇ሻ ൌ ሾ0.3 ∗ ݀݊ܽݎ 0ሿ, 

ΔAሺ݇ሻ ൌ ቂ0.1 ∗ ݀݊ܽݎ 0
0 0.2 ∗ ݀݊ܽݎ

ቃ  

(35) 

Here, “ ݀݊ܽݎ “ is a MATLAB or Octave function 
representing random numbers uniformly distributed 
in the interval ሺ0,1ሻ. In [24], the uncertain matrices 
ΔAሺ݇ሻ and ΔCሺ݇ሻ are subject to the norm-bounded 
uncertainty conditions. The robust RLS Wiener 
filtering algorithm of Theorem 2 does not directly 
use knowledge of the uncertain matrices ΔAሺ݇ሻ and 
ΔCሺ݇ሻ. ിሺ݇ሻܣ   is estimated according to the 

relationship ܣിመ ൌ ௫ിܭ௫ിሺ1ሻܭ
ିଵሺ0ሻ,  where ܭ௫ിሺ1ሻ ൌ

ിሺ݇ݔሾܧ ൅ 1ሻݔി்ሺ݇ሻሿ, ௫ിሺ0ሻܭ  ൌ .ി்ሺ݇ሻሿݔിሺ݇ሻݔሾܧ  The 
expectation is approximated in terms of 351 ݔിሺ݇ሻ 
data. That is, ܭ௫ിሺ1ሻ ≅

ଵ

ଷହ଴
∑ ിሺ݇ݔ ൅ 1ሻݔി்ሺ݇ሻଷହ଴
௞ୀଵ , 

௫ിሺ0ሻܭ ≅
ଵ

ଷହ଴
∑ ി்ሺ݇ሻ.ଷହ଴ݔിሺ݇ሻݔ
௞ୀଵ  In addition, 

,௫ി௭෬ሺ݇ܭ ݇ሻ  in (29) is approximated as ܭ௫ി௭෬ሺ݇, ݇ሻ ≅
ଵ

ଷହ଴
∑ ിሺ݇ሻଷହ଴ݔ
௞ୀଵ ሺ݇ሻݖ̆ .  The estimate ܥിመ  of ܥിሺ݇ሻ  is 

given by ܥിመ ൌ  .ി்ሺ݇ሻሿሻିଵݔിሺ݇ሻݔሾܧി்ሺ݇ሻሿሺݔ෬ሺ݇ሻݕሾܧ
Here, ܧሾݕ෬ሺ݇ሻݔി்ሺ݇ሻሿ  is approximated by 
ଵ

ଶ଴଴଴
∑ ി்ሺ݇ሻଶ଴଴଴ݔ෬ሺ݇ሻݕ
௞ୀଵ .  The robust RLS Wiener 

filter in Theorem 2 computes the filtering estimate 
 ሺ݇ሻ inݑ ොሺ݇ሻ ofݑ ി෠ሺ݇ሻ in (28) to obtain the estimateݔ
(15). In this instance, the AR model of order ܰ=10 
in (20) is applied to a sequence of uncertain signal 
ሺ݇ሻݖ̆ ሺ݇ሻ. Fig. 3 illustrates the degraded signalݖ̆ ൌ

ിሺ݇ሻݔിሺ݇ሻܥ  and its filtering estimate ̆ݖመሺ݇ሻ ൌ  ി෠ሺ݇ሻݔിመܥ
vs. ݇  for the white Gaussian observation noise 
ܰሺ0, 0.3ଶሻ, provided that the desired value ߟሺ݇ሻ ൌ
ߛ ,10 ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. From Fig. 3, 
it can be seen that the sequence of filtering estimates 
 መሺ݇ሻ is closer to the desired value of 10 than theݖ̆
degraded signal ̆ݖሺ݇ሻ. Fig. 4 illustrates the estimate 
 ଵሺ݇ሻ vs. ݇ for the whiteݑ ොଵሺ݇ሻ of the control inputݑ
Gaussian observation noise ܰሺ0, 0.3ଶሻ,  provided 
that ߟሺ݇ሻ ൌ ߛ ,10 ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. 
Fig. 5 illustrates the estimate ݑොଶሺ݇ሻ  of the 
exogenous input ݑଶሺ݇ሻ vs. ݇ for the white Gaussian 
observation noise ܰሺ0, 0.3ଶሻ, provided that ߟሺ݇ሻ ൌ
ߛ ,10 ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. From Fig. 4 
and 5, it follows that fluctuations in the sequence of 
the estimate ݑොଶሺ݇ሻ of the exogenous input ݑଶሺ݇ሻ are 
much smaller than those in the sequence of the 
estimate ݑොଵሺ݇ሻ of the control input ݑଵሺ݇ሻ.  Table 1 
shows the mean square values (MSVs) of the 
tracking errors ߟሺ݇ሻ െ ሺ݇ሻݖ̆ ሺ݇ሻݖ̆ , ൌ ിሺ݇ሻݔിሺ݇ሻܥ  and 

ሺ݇ሻߟ െ መሺ݇ሻݖ̆ ,መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻ, 1ݔിመܥ ൑ ݇ ൑ 1200, by the 
H-infinity tracking controller of Theorem 1 and the 
robust RLS Wiener filter of Theorem 2 for ߛ ൌ 10 
and ߛ ൌ 0.01 , provided that ߟሺ݇ሻ ൌ 10 , ෨ܴ ൌ
0.0001 and ܳሺ݇ሻ ൌ 1. In this case, the observation 
noise is subject to ܰሺ0, 0.1ଶሻ,  ܰሺ0, 0.3ଶሻ, 
ܰሺ0, 0.5ଶሻ, ܰሺ0,1ሻ and ܰሺ0, 5ଶሻ. The MSV of the 
tracking errors ߟሺ݇ሻ െ  መሺ݇ሻ is less than that of theݖ̆
tracking errors ߟሺ݇ሻ െ ሺ݇ሻݖ̆  for each observation 
noise. This indicates that the filtering estimate ̆ݖመሺ݇ሻ 
accurately tracks the desired value in comparison 
with ̆ݖሺ݇ሻ. As the variance of the white Gaussian 
observation noise increases, the MSVs of the 
tracking errors ߟሺ݇ሻ െ ሺ݇ሻݖ̆  and ߟሺ݇ሻ െ  መሺ݇ሻݖ̆
become small gradually. For ߛ ൌ 10 and ߛ ൌ 0.01, 
the MSVs of the tracking errors ߟሺ݇ሻ െ ሺ݇ሻݖ̆  are 
almost the same for each observation noise. 
Similarly, for ߛ ൌ 10  and ߛ ൌ 0.01 , the MSVs of 
the tracking errors ߟሺ݇ሻ െ  
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Fig. 3: Degraded signal ̆ݖሺ݇ሻ ൌ ിሺ݇ሻݔിሺ݇ሻܥ  and its 

filtering estimate  ̆ݖመሺ݇ሻ ൌ ി෠ሺ݇ሻݔിመܥ  vs. ݇  for white 
Gaussian observation noise ܰሺ0, 0.3ଶሻ,  provided 
that the desired value ߟሺ݇ሻ ൌ 10 ߛ , ൌ 10,  ෨ܴ ൌ
0.0001 and ܳሺ݇ሻ ൌ 1.   
    

 
Fig. 4: Estimate ݑොଵሺ݇ሻ of control input ݑଵሺ݇ሻ vs. ݇ 
for white Gaussian observation noise ܰሺ0, 0.3ଶሻ , 
provided that  ߟሺ݇ሻ ൌ ߛ ,10 ൌ 10, ෨ܴ ൌ 0.0001 and 
ܳሺ݇ሻ ൌ 1. 
 
 .መሺ݇ሻ are almost the same for each observation noiseݖ̆
Table 2 shows the MSVs of the tracking errors 
ሺ݇ሻߟ െ ሺ݇ሻݖ̆ ሺ݇ሻݖ̆ , ൌ ിሺ݇ሻݔിሺ݇ሻܥ  and ߟሺ݇ሻ െ መሺ݇ሻݖ̆ , 

መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻݔിመܥ , 1 ൑ ݇ ൑ 1200 , by the H-infinity 
tracking controller of Theorem 1 and the RLS 
Wiener filter, [26], for ߛ ൌ 10  and ߛ ൌ 0.01 , 
provided that ߟሺ݇ሻ ൌ 10 , ෨ܴ ൌ 0.0001  and ܳሺ݇ሻ ൌ
1. From Tables 1 and 2, the tracking controller of 
Theorem 1 combined with the robust RLS Wiener 
filter of Theorem 2 is superior in tracking control 
accuracy to the tracking controller of Theorem 1 
combined with the RLS Wiener filter, [26], for each 
observation noise. Table 3 shows the MSVs of the 
tracking errors ߟሺ݇ሻ െ ሺ݇ሻߟ ሺ݇ሻ andݖ̆ െ  መሺ݇ሻ by theݖ̆
H-infinity tracking controller of Theorem 1 and the 
robust Kalman filter, [24], for the observation noise 
ܰሺ0, 0.1ଶሻ, ܰሺ0, 0.3ଶሻ, ܰሺ0, 0.5ଶሻ, ܰሺ0,1ሻ and 

 
Fig. 5: Estimate ݑොଶሺ݇ሻ of exogenous input ݑଶሺ݇ሻ vs. 
݇ for white Gaussian observation noise ܰሺ0, 0.3ଶሻ, 
provided that ߟሺ݇ሻ ൌ ߛ ,10 ൌ 10, ෨ܴ ൌ 0.0001  and 
ܳሺ݇ሻ ൌ 1. 
 

Table 1. Mean-square values of tracking errors 
ሺ݇ሻߟ െ ሺ݇ሻݖ̆ ,ሺ݇ሻݖ̆ ൌ ሺ݇ሻߟ ിሺ݇ሻ andݔിሺ݇ሻܥ െ  ,መሺ݇ሻݖ̆

መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻ, 1ݔിመܥ ൑ ݇ ൑ 1200, by H-infinity 
tracking control algorithm of Theorem 1 plus robust 
RLS Wiener filter of Theorem 2 for ߛ ൌ 10 and ߛ ൌ
0.01, provided that ߟሺ݇ሻ ൌ 10, ෨ܴ ൌ 0.0001 and 

ܳሺ݇ሻ ൌ 1. 

White 
Gaussian 
observation 
noise 

ߛ ൌ ߛ 10 ൌ 0.01 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆

 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆

 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆

 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆

 

ܰሺ0, 0.1ଶሻ 0.2469 0.1376 0.2473 0.1382 
ܰሺ0, 0.3ଶሻ 0.2126 0.1168 0.2108 0.1162 
ܰሺ0, 0.5ଶሻ 0.1765 0.0968 0.1755 0.0961 
ܰሺ0,1ሻ 0.1042 0.0572 0.1049  0.0573 
ܰሺ0, 5ଶሻ 0.0100 0.0019 0.0099 0.0019 

ܰሺ0, 5ଶሻ. In the computation of the robust Kalman 
filter, [24], the program uses the values ߳௣ ൌ 100, 

ଵܪ ൌ ቂ1 0
0 1

ቃ , ଶܪ ൌ ሾ1 1ሿ	and ܧ ൌ ቂ1 0
0 1

ቃ. From 

Table 3, the combination of the H-infinity tracking 
controller of Theorem 1 and the robust Kalman filter, 
[24], does not track the desired value at all or 
diverges. 

EXAMPLE 2 
Consider linear discrete-time systems for the 
observation and multi-input state equations of the 
F16 aircraft, [30]. The angle of attack  ߙሺ݇ሻ, the rate 
of pitch ݍሺ݇ሻ, and the elevator angle of deflection 
௖ሺ݇ሻߜ  constitute the state vector ݔሺ݇ሻ ൌ
ሾߙሺ݇ሻ ሺ݇ሻݍ ଵሺ݇ሻݔ ,௖ሺ݇ሻሿ்ߜ ൌ ଶሺ݇ሻݔ ,ሺ݇ሻߙ ൌ 
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Table 2. Mean-square values of tracking errors 
ሺ݇ሻߟ െ ሺ݇ሻݖ̆ ,ሺ݇ሻݖ̆ ൌ ሺ݇ሻߟ ിሺ݇ሻ andݔിሺ݇ሻܥ െ  ,መሺ݇ሻݖ̆

መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻ, 1ݔിመܥ ൑ ݇ ൑ 1200, by H-infinity 
tracking control algorithm of Theorem 1 plus RLS 

Wiener filter, [26], for ߛ ൌ 10 and ߛ ൌ 0.01, 
provided that ߟሺ݇ሻ ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ

1. 

White 
Gaussian 
observation 
noise 

ߛ ൌ ߛ 10 ൌ 0.01
MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆
 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆
 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆
 

ܰሺ0, 0.1ଶሻ 
2.0878e+
003 

282.4114 49.9650 51.4861 

ܰሺ0, 0.3ଶሻ 671.1428 90.6103 49.9649 51.3064 

ܰሺ0, 0.5ଶሻ 321.3791 42.9632 49.9647 51.2206 

ܰሺ0,1ሻ 58.7219 8.1504 49.9649  50.9183 

ܰሺ0, 5ଶሻ 4.1633 0.8318 49.9650 50.4742 
 

Table 3. Mean-square values of tracking errors 
ሺ݇ሻߟ െ ሺ݇ሻݖ̆ ,ሺ݇ሻݖ̆ ൌ ሺ݇ሻߟ ിሺ݇ሻ andݔിሺ݇ሻܥ െ  ,መሺ݇ሻݖ̆

መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻ, 1ݔിመܥ ൑ ݇ ൑ 1200, by H-infinity 
tracking control algorithm of Theorem 1 plus robust 

Kalman filter, [24], for ߛ ൌ 10 and ߛ ൌ 0.01, 
provided that ߟሺ݇ሻ ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ

1. 

White 
Gaussian 
observation 
noise 

ߛ ൌ ߛ 10 ൌ 0.01
MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆
 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ሺ݇ሻݖ̆
 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  መሺ݇ሻݖ̆
 

ܰሺ0, 0.1ଶሻ 
4.8511e+
017 

3.7728e+
018 Divergence Divergence 

ܰሺ0, 0.3ଶሻ 49.3066 9.5687 Divergence Divergence 

ܰሺ0, 0.5ଶሻ 46.2886 9 .3179 Divergence Divergence 

ܰሺ0,1ሻ 46.1339 9.4984 Divergence Divergence 

ܰሺ0, 5ଶሻ 46.0462 9.3938 8.4403e+
235 

7.0283e+
238 

 

ଷሺ݇ሻݔ ,ሺ݇ሻݍ ൌ  ,ሺ݇ሻݖ ,௖ሺ݇ሻ. The system outputߜ
corresponds to the angle of attack ߙሺ݇ሻ . In (36), 
ଵሺ݇ሻݑ  is the control input and ݑଶሺ݇ሻ  is the 
exogenous input. The desired value of ߙሺ݇ሻ is set to 
ሺ݇ሻߟ ൌ 0.1	ሾ݀ܽݎሿ . The LTI system in (36) is 
observable and controllable. 

 

ሺ݇ሻݕ ൌ ሺ݇ሻݖ ൅ ,ሺ݇ሻݒ ሺ݇ሻݖ ൌ ,ሺ݇ሻݔܥ

ܥ ൌ ሾ1 0 0ሿ, ሺ݇ሻݔ ൌ ቎
ଵሺ݇ሻݔ
ଶሺ݇ሻݔ
ଷሺ݇ሻݔ

቏ ,

ሺ݇ݔ ൅ 1ሻ ൌ Aݔሺ݇ሻ ൅ ሺ݇ሻݑܩ ൅ Γݓሺ݇ሻ,

ሺ݇ሻݑ ൌ ൤
ଵሺ݇ሻݑ
ଶሺ݇ሻݑ

൨ ,

A ൌ ൥
0.906488 0.0816012 0.0005
0.0741349 0.90121 െ0.0007083

0 0 0.132655
൩ ,

G ൌ ൥
െ0.00150808 0.00951892
െ0.0096 0.00038373
0.867345 0

൩ ,

Γ ൌ ൥
0
0
1
൩ , ሻሿݏሺݒሺ݇ሻݒሾܧ ൌ ௄ሺ݇ߜܸ െ ,ሻݏ

ሻሿݏሺݓሺ݇ሻݓሾܧ ൌ 0.3ଶߜ௄ሺ݇ െ ሻݏ

 (36)

The order of the AR model in (20) is ܰ ൌ 10. We 
assume that the degraded observed value ݕ෬ሺ݇ሻ and 
the degraded signal ̆ݖሺ݇ሻ  are generated by the 
following observation and state equations. 

 

෬ሺ݇ሻݕ ൌ ሺ݇ሻݖ̆ ൅ ,ሺ݇ሻݒ ሺ݇ሻݖ̆ ൌ ,ിሺ݇ሻݔിሺ݇ሻܥ  
ിሺ݇ݔ ൅ 1ሻ ൌ ിሺ݇ሻݔിሺ݇ሻܣ ൅ ሺ݇ሻݑܩ ൅	

Γݓሺ݇ሻ, ിሺ݇ሻݔ ൌ ቎
ിଵሺ݇ሻݔ
ിଶሺ݇ሻݔ
ിଷሺ݇ሻݔ

቏,  

ምሺ݇ሻܣ ൌ ܣ ൅ ΔAሺ݇ሻ,  
ിሺ݇ሻܥ ൌ ܥ ൅ ΔCሺ݇ሻ, 

ΔAሺ݇ሻ ൌ ൥
0 0 0
0 0.05 ∗ ݀݊ܽݎ 0
0 0 0

൩ , 

ΔCሺ݇ሻ ൌ ሾ0.03 ∗ ݀݊ܽݎ 0 0ሿ,	  

(37)

The robust RLS Wiener filter in Theorem 2 
computes the filtering estimate ݔി෠ሺ݇ሻ  in (28) to 
obtain the estimate ݑොሺ݇ሻ of ݑሺ݇ሻ in (15). A total of 
351 datasets are used to calculate the expected 
values ܧሾݔിሺ݇ ൅ 1ሻݔി்ሺ݇ሻሿ ി்ሺ݇ሻሿݔിሺ݇ሻݔሾܧ , , and 

ി்ሺ݇ሻሿݔ෬ሺ݇ሻݕሾܧ  for  ܣിመ  and ܥിመ , respectively. Fig. 6 
illustrates the degraded signal ̆ݖሺ݇ሻ ൌ  ിሺ݇ሻ andݔിሺ݇ሻܥ

its filtering estimate ̆ݖመሺ݇ሻ ൌ ി෠ሺ݇ሻݔിመܥ  vs. ݇  for the 
white Gaussian observation noise ܰሺ0, 0.3ଶሻ, 
provided that the desired value ߟሺ݇ሻ ൌ 0.1ሾ݀ܽݎሿ , 
ߛ ൌ 10,  ෨ܴ ൌ 0.0001  and ܳሺ݇ሻ ൌ 1.  From Fig. 6, 
the sequence of the filtering estimates ̆ݖመሺ݇ሻ is closer 
to the desired value of 0.1	ሾ݀ܽݎሿ than the degraded 
signal ̆ݖሺ݇ሻ. Fig. 7 illustrates the estimate ݑොଵሺ݇ሻ of 
the control input  ݑଵሺ݇ሻ vs. ݇ for the white Gaussian 
observation noise ܰሺ0, 0.3ଶሻ, provided that ߟሺ݇ሻ ൌ
0.1	ሾ݀ܽݎሿ, ߛ ൌ 10, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. Fig. 
8 illustrates the estimate ݑොଶሺ݇ሻ  of the exogenous 
input ݑଶሺ݇ሻ  vs. ݇  for the white Gaussian 
observation noise ܰሺ0, 0.3ଶሻ, provided that ߟሺ݇ሻ ൌ
0.1	ሾ݀ܽݎሿ, ߛ ൌ 10,  
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Fig. 6: Degraded signal ̆ݖሺ݇ሻ ൌ ിሺ݇ሻݔിሺ݇ሻܥ  and its 

filtering estimate  ̆ݖመሺ݇ሻ ൌ ി෠ሺ݇ሻݔിመܥ  vs. ݇  for white 
Gaussian observation noise ܰሺ0, 0.3ଶሻ,  provided 
that the desired value ߟሺ݇ሻ ൌ 0.1	ሾ݀ܽݎሿ ߛ , ൌ 10, 
෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. 

 

Fig. 7: Estimate ݑොଵሺ݇ሻ of control input ݑଵሺ݇ሻ vs. ݇ 
for white Gaussian observation noise ܰሺ0, 0.3ଶሻ, 
provided that ߟሺ݇ሻ ൌ 0.1	ሾ݀ܽݎሿ ߛ , ൌ 10,  ෨ܴ ൌ
0.0001 and ܳሺ݇ሻ ൌ 1. 

෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. From Fig. 7 and Fig. 8, 
it can be seen that the amplitude of the exogenous 
input ݑොଶሺ݇ሻ sequence is very small compared with 
that of the control input ݑොଵሺ݇ሻ  sequence. Table 4 
shows the MSVs of the tracking errors ߟሺ݇ሻ െ  ,ሺ݇ሻݖ̆

ሺ݇ሻݖ̆ ൌ ሺ݇ሻߟ ിሺ݇ሻ andݔിሺ݇ሻܥ െ መሺ݇ሻݖ̆ ,መሺ݇ሻݖ̆ ൌ  ,ി෠ሺ݇ሻݔിመܥ
1 ൑ ݇ ൑ 1200, by the H-infinity tracking controller 
of Theorem 1 and the robust RLS Wiener filter of 
Theorem 2 for ߛ ൌ 10 and ߛ ൌ 0.05, provided that 
ሺ݇ሻߟ ൌ 0.1	ሾ݀ܽݎሿ, ෨ܴ ൌ 0.0001 and ܳሺ݇ሻ ൌ 1. Here, 
the observation noise is subject to ܰሺ0, 0.1ଶሻ, 
ܰሺ0, 0.3ଶሻ , ܰሺ0, 0.5ଶሻ , ܰሺ0,1ሻ  and ܰሺ0, 5ଶሻ . The 
MSV of the tracking errors ߟሺ݇ሻ െ  መሺ݇ሻ is smallerݖ̆
than that of the tracking errors ߟሺ݇ሻ െ  ሺ݇ሻ for eachݖ̆
observation noise. This indicates that the filtering 
estimate ̆ݖመሺ݇ሻ tracks the desired value more  

 

Fig. 8: Estimate ݑොଶሺ݇ሻ of exogenous input ݑଶሺ݇ሻ vs. 
݇ for white Gaussian observation noise ܰሺ0, 0.3ଶሻ, 
provided that ߟሺ݇ሻ ൌ 0.1	ሾ݀ܽݎሿ ߛ , ൌ 10,  ෨ܴ ൌ
0.0001 and ܳሺ݇ሻ ൌ 1. 

Table 4. Mean-square values of tracking errors 
ሺ݇ሻߟ െ ሺ݇ሻݖ̆ ,ሺ݇ሻݖ̆ ൌ ሺ݇ሻߟ ിሺ݇ሻ andݔിሺ݇ሻܥ െ  ,መሺ݇ሻݖ̆

መሺ݇ሻݖ̆ ൌ ി෠ሺ݇ሻ, 1ݔിመܥ ൑ ݇ ൑ 1200, by H-infinity 
tracking control algorithm of Theorem 1 plus robust 

RLS Wiener filter of Theorem 2  for ߛ ൌ 10 and 
ߛ ൌ 0.05, provided that ߟሺ݇ሻ ൌ 0.1	ሾ݀ܽݎሿ, ෨ܴ ൌ

0.0001 and ܳሺ݇ሻ ൌ 1. 

White 
Gaussian 
observation 
noise 

ߛ ൌ ߛ 10 ൌ 0.05 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ෬ሺ݇ሻݖ

 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ෬෠ሺ݇ሻݖ

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ෬ሺ݇ሻݖ

 

MSV of 
tracking 
errors 	
ሺ݇ሻߟ
െ  ෬෠ሺ݇ሻݖ

ܰሺ0, 0.1ଶሻ 0.1161 0.0095 0.1028 0.0097 
ܰሺ0, 0.3ଶሻ 0.1318 0.0166 0.1246 0.0164 
ܰሺ0, 0.5ଶሻ 0.1426 0.0175 0.1524 0.0182 
ܰሺ0,1ሻ 0.1684 0.0186 0.1383 0.0181
ܰሺ0, 5ଶሻ 0.3270 0.0159 0.2600 0.0148

accurately than ̆ݖሺ݇ሻ. For both ߛ ൌ 10 and ߛ ൌ 0.05, 
the MSV of the tracking errors ߟሺ݇ሻ െ  መሺ݇ሻ for eachݖ̆
observed noise is almost identical. As the variance 
of the white Gaussian observation noise increases, 
the MSV of the tracking errors ߟሺ݇ሻ െ  መሺ݇ሻ tends toݖ̆
increase gradually in both ߛ ൌ 10 and ߛ ൌ 0.05 for 
ܰሺ0, 0.1ଶሻ, ܰሺ0, 0.3ଶሻ and ܰሺ0, 0.5ଶሻ.  Concerning 
Fig 6, from Table 4, for the white Gaussian 
observation noise ܰሺ0, 0.3ଶሻ, the MSV of the tracking 
errors ߟሺ݇ሻ െ ෬෠ሺ݇ሻݖ  is 0.0166. The MSV of the 
tracking errors ߟሺ݇ሻ െ ෬ሺ݇ሻݖ  is 0.1318. This indicates 
that the proposed H-infinity tracking control 
algorithm improves tracking accuracy by using the 
robust RLS Wiener filter in Theorem 2.  

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2023.19.5 Seiichi Nakamori

E-ISSN: 2224-3488 50 Volume 19, 2023



5 Conclusion 
This paper developed the H-infinity tracking 
control technique combined with the robust 
RLS Wiener filter for linear discrete-time 
stochastic systems with uncertainties. For linear 
discrete-time stochastic systems (2) with 
uncertainties, based on the separation principle of 
control and estimation, ݑሺ݇ሻ  satisfies (12) along 
with (10) and (11). The filtering estimate ݔി෠ሺ݇ሻ of 
ിሺ݇ሻݔ  is updated from ݔി෠ሺ݇ െ 1ሻ  by (28) with the 
information of the estimate ݑොሺ݇ െ 1ሻ of ݑሺ݇ െ 1ሻ, 
the degraded observed value ݕ෬ሺ݇ሻ and the filtering 
estimate ݔ෬෠ሺ݇ െ 1ሻ  of the degraded state ݔ෬ሺ݇ െ 1ሻ . 
The estimate ݑොሺ݇ሻ of ݑሺ݇ሻ in (15) uses the filtering 
estimate  ݔി෠ሺ݇ሻ by the robust RLS Wiener filter. 

Numerical simulation examples have 
demonstrated the characteristics of tracking control 
using the H-infinity tracking controller of Theorem 
1 and the robust RLS Wiener filter of Theorem 2 in 
linear discrete-time stochastic systems with 
uncertainties. Tables 1 and 2 show that the tracking 
controller of Theorem 1 with the robust RLS Wiener 
filter of Theorem 2 is superior in tracking control 
accuracy to the tracking controller of Theorem 1 
with the RLS Wiener filter for the white Gaussian 
observation noise ܰሺ0, 0.1ଶሻ,  ܰሺ0, 0.3ଶሻ, 
ܰሺ0, 0.5ଶሻ, ܰሺ0,1ሻ and ܰሺ0, 5ଶሻ. In addition, from 
Table 3, the MSVs of the tracking errors ߟሺ݇ሻ െ
መሺ݇ሻݖ̆  by the H-infinity tracking controller of 
Theorem 1 with the robust Kalman filter show that 
the tracking technique either fails to track the 
desired value at all or diverges for the observation 
noise. In the example for the F16 aircraft, Table 4 
shows that the MSV of the tracking errors ߟሺ݇ሻ െ
ሺ݇ሻߟ መሺ݇ሻ is less than that of the tracking errorsݖ̆ െ
 ሺ݇ሻ for each observation noise. This indicates thatݖ̆
the filtering estimate ̆ݖመሺ݇ሻ tracks the desired value 
more accurately than ̆ݖሺ݇ሻ. 

In particular, as the uncertainties in the system 
and observation matrices increase, the accuracy of 

the estimates for ܣിመ and ܥിመ is numerically required. In 

EXAMPLE 1, in the calculation of ܥിመ , 
ി்ሺ݇ሻሿݔ෬ሺ݇ሻݕሾܧ  is approximated by 
ଵ

ଶ଴଴଴
∑ ി்ሺ݇ሻଶ଴଴଴ݔ෬ሺ݇ሻݕ
௞ୀଵ  instead of 

ଵ

ଷହ଴
∑ ി்ሺ݇ሻଷହ଴ݔ෬ሺ݇ሻݕ
௞ୀଵ . 
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