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Abstract: - Aircraft state estimation refers to the process of determining the current or future state of an aircraft, 
such as its position, velocity, orientation, and other relevant parameters, based on available sensor data and 
mathematical models. This information is crucial for safe and efficient flight operations, as well as for various 
applications, including Guidance, Navigation, Control (GNC), and autonomous flight. Given the beginning 
circumstances, the motion of the airplane was examined in this study by estimating the state vectors using the 
Kalman Filter (KF) and the Adaptive Kalman Filters (AKF), as well as by comparing the various estimate 
techniques. 
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1 Introduction 
State estimation can be a challenging task due to the 
complexity of the aircraft dynamics, sensor 
limitations, and environmental factors. Advances in 
sensor technology and estimation algorithms have 
improved the accuracy and reliability of state 
estimation in modern aircraft, contributing to safer 
and more efficient flight operations, [1]. 
 

Key components of aircraft state estimation 
include: 
Sensor Data: Aircraft are equipped with various 
sensors, such as GPS (Global Positioning System), 
inertial measurement units (IMUs), altimeters, 
airspeed indicators, and more. These sensors 
provide data on the aircraft's physical state and 
environment. 
Mathematical Models: To estimate the aircraft's 
state accurately, mathematical models are used. 
These models incorporate the principles of physics 
and aerodynamics to predict how an aircraft's state 
will evolve. These models may include equations of 
motion, atmospheric models, and sensor error 
models. 
Sensor Fusion: Since no single sensor is perfect 
and sensor measurements can be noisy or subject to 
errors, sensor fusion techniques are employed to 
combine data from multiple sensors. Kalman filters 

and extended Kalman filters are commonly used for 
this purpose. 
Filtering and Smoothing: Estimation methods 
often involve filtering techniques, which provide 
real-time estimates of the aircraft's state as new 
sensor data becomes available. Smoothing 
techniques, on the other hand, are used to refine the 
state estimates using historical data. 
Navigation: State estimation is fundamental to 
aircraft navigation. It enables the aircraft to 
determine its position and orientation accurately, 
helping it follow a desired flight path, avoid 
obstacles, and maintain proper altitude. 
Control: Aircraft state estimation is critical for flight 
control systems. By knowing the aircraft's state, the 
control system can adjust, ensure stability, respond 
to pilot inputs, and execute various flight 
maneuvers. 
Autonomous Flight: In the context of autonomous 
flight, state estimation plays a crucial role in 
enabling drones, UAVs (Unmanned Aerial 
Vehicles), and autonomous aircraft to operate safely 
and perform complex missions without direct 
human intervention. 
Safety and Redundancy: Aircraft state estimation 
is an essential component of safety-critical systems. 
Redundant sensors and estimation algorithms are 
often employed to ensure that the aircraft can 
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continue to operate safely in the event of sensor 
failures or other anomalies. 

In addition, numerous approaches for estimating 
aircraft state vectors are being worked on. For the 
estimate of motion state vectors for various 
platforms than airplanes, Kalman filters (KF) and 
state vector estimations have demonstrated their 
effectiveness and excel in terms of their high 
accuracy, [2], [3], [4], [5], [6].  

The Extended Kalman Filter (EKF) is a widely 
used technique for state estimation in the presence 
of noise and disturbances. However, as mentioned 
before, it can face challenges when dealing with 
practical usage where system and sensor noises 
occur. In such cases, the Adaptive Kalman Filter 
(AKF) has gained popularity for its ability to handle 
varying noise and improve state estimates in the 
presence of disturbances.  

 
Here is an overview of the AKF and its 

advantages: 
Adaptability: The key advantage of the AKF over 
the standard EKF is its adaptability. The AKF can 
adjust its filter parameters (such as process and 
measurement noise covariance matrices) based on 
the evolving noise and uncertainties in the system. 
This adaptability allows the filter to respond to 
changing conditions and provide more accurate state 
estimates. 
Handling Changing Noise Levels: In practical 
applications, the levels of system and sensor noise 
can change over time due to various factors such as 
environmental conditions, sensor degradation, or 
system component wear and tear. The AKF is 
designed to continuously update its noise models, 
ensuring that it can effectively estimate the state 
even when noise levels are not constant. 
Robustness: By adapting to changing noise 
characteristics, the AKF can provide more robust 
and accurate state estimation in challenging 
environments. It can effectively deal with 
disturbances and sensor noise that may cause 
problems for traditional fixed-parameter filters like 
the EKF. 
Improved Convergence: The adaptability of the 
AKF can help improve convergence and reduce the 
time it takes for the filter to provide accurate state 
estimates, especially in situations where noise levels 
change rapidly or unpredictably. 
Reduced Tuning Requirements: Unlike traditional 
Kalman filters, which often require manual tuning 
of the noise covariance matrices, the AKF reduces 
the need for extensive tuning. This can be 
particularly advantageous in scenarios where 
obtaining accurate noise models is challenging. 

Real-Time Applications: The AKF is well-suited 
for real-time applications, including autonomous 
navigation, robotics, and aviation, where 
adaptability and robustness are critical for safe and 
accurate operation, [7]. 

It is important to note that the choice between 
the EKF and the AKF depends on the specific 
requirements and characteristics of the system, as 
well as the nature of the noise and disturbances 
encountered in practical applications. The AKF's 
adaptability can be an asset in scenarios where noise 
levels are dynamic and not easily predictable, 
making it a suitable choice for applications where 
maintaining accurate state estimates is essential. 

A novel multiple fading factors Kalman filtering 
technique is provided in the research "Multiple 
Fading Factors Kalman Filter for SINS Static 
Alignment Application" by, [8]. The fading factor 
matrix is created by computing the unbiased 
estimate of the innovation sequence covariance 
using fenestration. The technique offers various 
rates of fading for various filter channels by 
adjusting the covariance matrix of prediction error 
and fading factor matrix. The strap-down inertial 
navigation devices are used using the suggested 
approach. It is discovered that the suggested 
technique has superior parameter estimation in real-
world settings and is more effective against noise. 

A further work, [9], examined the same topic. A 
sequential technique is presented to concurrently 
calculate the orbit and attitude of a small spacecraft 
based on magnetometer and gyro measurements, 
[9]. A robust adaptive Kalman filter is developed to 
reduce the effect of orbital errors on attitude 
prediction. 

For altering the measurement covariance matrix 
®, Almagbile, Wang, and Al-Rawabdeh examined 
the Sage Husa adaptive Kalman filter (SHAKF) and 
innovation-based adaptive Kalman filter (IAKF) 
techniques, [10]. 

A strong tracking variational Bayes adaptive 
Kalman filter based on multiple damping factors 
was proposed by Pan and colleagues in a study that 
was published in 2020, [11]. This filter takes into 
account the fact that if the system model or the 
statistical properties of the noise are inaccurate, past 
measurements will directly affect the accuracy of 
the current state estimation and may even lead to 
filtering bias. 

The system errors have been increased beyond 
the predetermined simulation duration, and the 
filters' responses to the faults were observed. In the 
event of a potential rise in inaccuracy in the 
systems, it was attempted to show which filter 
produced superior outcomes. 
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In this study, the scaling adaptive Kalman filter, 
residual adaptive Kalman filter, and conventional 
Kalman filter are compared for the single and 
double-sensor fault scenarios applied to aircraft 
dynamics. 

 
 

2   Problem Formulation 
In this part, the mathematical model of the motion 
of the aircraft is explained. 
Longitudinal motion, [12]. 
 

𝑋̇𝑙𝑜𝑛𝑔 = [

𝑋𝑢 𝑋𝑤 0 −𝑔𝑐𝑜𝑠𝜒0

𝑍𝑢 𝑍𝑤 𝑈0 −𝑔𝑠𝑖𝑛𝜒0

𝑀𝑢̃ 𝑀𝑤̃ 𝑀𝑞̃ 𝑀ɵ̃
0 0 1 0

] . 𝑋𝑙𝑜𝑛𝑔 + [

𝑋𝛿𝐸

𝑍𝛿𝐸

𝑀𝛿𝐸̃

0

] . 𝑢 

𝑋𝑙𝑜𝑛𝑔
𝑇 = [𝑢 𝑤 𝑞 Ɵ] 

 
Here, 𝑢 longitudinal velocity, w vertical velocity, q 
pitch velocity, Ɵ pitch angle and 𝛿𝐸  is the tilt angle 
of the elevator. 

𝑢 = [𝛿𝐸]  

𝑋̇𝑙𝑜𝑛𝑔 = 𝐴. 𝑋𝑙𝑜𝑛𝑔 + 𝐵. 𝑢  

𝑀𝑢̃ = 𝑀𝑢 + 𝑀𝑤̇. 𝑍𝑢 
𝑀𝑤̃ = 𝑀𝑤 + 𝑀𝑤̇. 𝑍𝑢 
𝑀𝑞̃ = 𝑀𝑞 + 𝑈0. 𝑀𝑤̇ 
𝑀ɵ = −𝑔.𝑀𝑤. 𝑠𝑖𝑛𝜒0 
𝑀𝛿𝐸̃ = 𝑀𝛿𝐸 + 𝑀𝑤̇. 𝑍𝛿𝐸

 

 

 
Latitudinal motion, [12]. 

𝑋̇𝑙𝑎𝑡 =

[
 
 
 
 
 𝑌𝑣 0 −1

𝑔

𝑈0

𝐿𝛽
′ 𝐿𝑝

′ 𝐿𝑟
′ 0

𝑁𝛽
′ 𝑁𝑝

′ 𝑁𝑟
′ 0

0 1 𝑡𝑎𝑛𝜒0 0 ]
 
 
 
 
 

. 𝑋𝑙𝑎𝑡 +

[
 
 
 
 

0 𝑌𝛿𝑅

∗

𝐿𝛿𝐴

′ 𝐿𝛿𝑟

′

𝑁𝛿𝐴

′ 𝑁𝛿𝑟

′

0 0 ]
 
 
 
 

. [
𝛿𝐴

𝛿𝑅
]  

𝑋𝑙𝑎𝑡 = [𝛽 𝑝 𝑟 𝜙]𝑇  

 
Here, 𝛽 is the yaw angle, p is the roll angular 
velocity, r is the yaw angular velocity, 𝜙 is the roll 
angle. 
 
The longitudinal and latitudinal state vectors can be 
obtained as follows 

𝑋 = [𝑢 𝑤 𝑞 Ɵ 𝛽 𝑝 𝑟 𝜙]𝑇 

The longitudinal and latitudinal system matrices are 
combined as following 

𝐴 = [
𝐴𝑙𝑜𝑛𝑔 0

0 𝐴𝑙𝑎𝑡
]  

The combined control vector is, 

𝑢 = [

𝛿𝐸

𝛿𝐴

𝛿𝑅

] 
 

where 𝛿𝐴 and 𝛿𝑅 are the tilt angles of the ailerons 
and rudder respectively 

The combined control distribution matrix, 

𝐵 = [
𝐵𝑙𝑜𝑛𝑔 (4𝑥1) 04𝑥2

04𝑥1 𝐵𝑙𝑎𝑡 (4𝑥2)
] 

 

 
The equation of aircraft full motion can be written 
in the form as follows. 

𝑋̇ = 𝐴. 𝑋 + 𝐵. 𝑢 
 
After the discretization of Eq. (12) we 
have 



𝑋̇𝑖 =
𝑋𝑖+1 − 𝑋𝑖

𝛥𝑡
= 𝐴. 𝑋𝑖 + 𝐵. 𝑢 

𝑋𝑖+1 − 𝑋𝑖 = 𝛥𝑡. 𝐴. 𝑋𝑖 + 𝛥𝑡. 𝐵. 𝑢 

 
After mathematical transformations, the 
mathematical model of the motion of the aircraft 
was obtained as 

𝑋𝑖+1 = (𝐼 + 𝛥𝑡. 𝐴)𝑋𝑖 + 𝛥𝑡. 𝐵. 𝑢 

 
Substituting 

𝐴∗ = (𝐼 + 𝛥𝑡. 𝐴) 

𝐵∗ = (𝛥𝑡. 𝐵)  

 
into equation 15, we can obtain the mathematical 
model of the motion of aircraft as follows. 

𝑋𝑖+1 = 𝐴∗𝑋𝑖 + 𝐵∗𝑢  

 
 
3  Kalman Filter for Aircraft State 

Estimation 
Kalman Filter is an estimation approach for linear 
systems, [13]. As the model is linear, by processing 
noisy measurements, KF estimates the state vectors 
with high accuracy. 
 
Estimation equation of the filter 

𝑥̂(𝑘/𝑘) = 𝑥̂(𝑘/𝑘 − 1) + 𝐾(𝑘)𝑧̃(𝑘)  

 
The extrapolation equation is shown as 

𝑥̂(𝑘/𝑘 − 1) = 𝐴∗𝑥̂(𝑘 − 1/𝑘 − 1) + 𝐵∗. 𝑢  

 
Innovation sequence 

𝑧̃(𝑘) = 𝑍(𝑘) − 𝐻𝑥̂(𝑘, 𝑘 − 1)  

 
Z(k) is the measurement vector. Kalman gain matrix 
can be expressed as 
𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝐻𝑃(𝑘/𝑘 − 1)𝐻𝑇 + 𝑅)−1  

Predicted covariance matrix of estimation error, 

𝑃(𝑘/𝑘 − 1) = 𝐴∗𝑃(𝑘 − 1/𝑘 − 1)𝐴∗𝑇

+ 𝐺(𝑘, 𝑘 − 1)𝑄(𝑘 − 1)𝐺(𝑘, 𝑘 − 1)𝑇 
 

Here Q is the system noise covariance matrix. The 
covariance matrix of Estimation error is, 

𝑃(𝑘/𝑘) = (𝐼 − 𝐾(𝑘)𝐻(𝑘)𝑃(𝑘/𝑘 − 1))  
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Measurement matrix 
𝐻 = 𝐼8𝑥8 

 
Measurement error covariance matrix 

𝑅 =

[
 
 
 
 
 
 
 
 
 
𝜎𝑢

2 0 0 0 0 0 0 0

0 𝜎𝑤
2 0 0 0 0 0 0

0 0 𝜎𝑞
2 0 0 0 0 0

0 0 0 𝜎Ɵ
2 0 0 0 0

0 0 0 0 𝜎𝛽
2 0 0 0

0 0 0 0 0 𝜎𝑝
2 0 0

0 0 0 0 0 0 𝜎𝑟
2 0

0 0 0 0 0 0 0 𝜎𝜙
2
]
 
 
 
 
 
 
 
 
 

  

 
Transition matrix of system noise 

𝐺(𝑘, 𝑘 − 1) = 𝐼8𝑥8  

 

 

4  Adaptive Kalman Filter 
 
4.1   Residual Adaptive Kalman Filter 
The Residual Adaptive Kalman Filter is a filter that 
adaptably calculates the R matrices during the 
simulation. R matrix undergoes iterative alterations 
in contrast to KF. This enhancement makes the filter 
less susceptible to potential faults, [14]. 
 
Innovation 

𝑑(𝑘) = [𝑍(𝑘) − 𝐻𝑥̂(𝑘/𝑘 − 1)]  

 
Estimation equation 

𝑥̂(𝑘/𝑘) = 𝑥̂(𝑘/𝑘 − 1) + 𝐾(𝑘)𝑑(𝑘)  

 
Residual 

ɛ(𝑘) = [𝑍(𝑘) − 𝐻𝑥̂(𝑘/𝑘)] 

 
Measurement error covariance matrix 
𝑅(𝑘) = 𝛼𝑅(𝑘 − 1) + (1 − 𝛼)𝑥 

(ɛ(𝑘)ɛ(𝑘)𝑇 + 𝐻(𝑘)𝑃(𝑘/𝑘 − 1)𝐻(𝑘)𝑇) 


 
Kalman gain matrix, 
𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝐻𝑃(𝑘/𝑘 − 1)𝐻𝑇 + 𝑅(𝑘))−1 

 
Here, 𝛼 = 0.3 according to previous studies, [15]. 
The rest of the KF equations are the same as in the 
previous section. 
 
4.2    Scaling Adaptive Kalman Filter 
The multiple measurement noise scale factor 
technique has been found to produce superior 
outcomes in multivariate systems in earlier 
investigations. The technique of choice fixes the 
measurement noise-covariance matrix and Kalman 
gain using a matrix known as the scale factor, [15]. 

Scale matrix S(k) is incorporated into the method in 
contrast to the Kalman filter. 

𝑆(𝑘) = (
1

𝜇
∑ 𝑧̃(𝑘)𝑧̃(𝑘)𝑇

𝑘

𝑗=𝑘−𝜇+1

− 𝐻(𝑘)𝑃(𝑘 ⁄ (𝑘 − 1)𝐻𝑇(𝑘)))𝑅−1 

 
Here μis the width of the moving window. The 
diagonal elements of the scale matrix may not be 
less than one, so the following rule is suggested to 
avoid this situation. 
 

𝑆∗ = 𝑑𝑖𝑎𝑔(𝑠1
∗ , 𝑠2

∗ , 𝑠3
∗ … , 𝑠𝑛

∗) 

and,  
𝑠𝑖

∗ = 𝑚𝑎𝑥{1, 𝑠𝑖𝑖}                  𝑖 = 1, 𝑛 

 
Here 𝑠𝑖𝑖 represents the i’th diagonal element of the 
matrix S(k). By using scale factor Kalman gain 
matrix can be expressed as, 
 

𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝐻𝑃(𝑘/𝑘 − 1)𝐻𝑇

+ 𝑆∗(𝑘)𝑅)−1 


 
As with section 3, the remaining Kalman filter 
formulas are identical. Any system fault increases 
the corresponding diagonal matrix element. Scale 
factor increases lower the Kalman gain and the 
impact of innovation on the state update process. 
With this concept, estimates may be obtained with 
more accuracy, [16].  
 

 

5   Simulation Results and Discussion 
In this study, the motion of the aircraft is simulated 
by using MATLAB. The measurement vector is, 
 

𝑍 = [𝑍𝑢 𝑍𝑤 𝑍𝑞 𝑍Ɵ 𝑍𝛽 𝑍𝑝 𝑍𝑟 𝑍𝜙]𝑇 
 
The measurements are simulated via the formulas 
below, 

𝑍𝑢 = 𝑢 + 𝜎𝑢. 𝑟𝑎𝑛𝑑𝑛 
𝑍𝑤 = 𝑤 + 𝜎𝑤 . 𝑟𝑎𝑛𝑑𝑛 
𝑍𝑞 = 𝑞 + 𝜎𝑞 . 𝑟𝑎𝑛𝑑𝑛 

𝑍Ɵ = Ɵ + 𝜎Ɵ. 𝑟𝑎𝑛𝑑𝑛 
𝑍𝛽 = 𝛽 + 𝜎𝛽 . 𝑟𝑎𝑛𝑑𝑛 

𝑍𝑝 = 𝑝 + 𝜎𝑝. 𝑟𝑎𝑛𝑑𝑛 

𝑍𝑟 = 𝑟 + 𝜎𝑟 . 𝑟𝑎𝑛𝑑𝑛 
𝑍𝜙 = 𝜙 + 𝜎𝜙 . 𝑟𝑎𝑛𝑑𝑛 



Here 𝜎 is the standard deviation of the measurement 
error. 
 
𝜎𝑢 = 𝜎𝑤 = 0.92𝑚, 𝜎𝑞 = 𝜎𝑝 = 𝜎𝑟 = 0.0083 𝑟𝑎𝑑,

𝜎Ɵ = 𝜎𝜙 = 0.017 𝑟𝑎𝑑𝑎𝑛𝑑𝜎𝛽

= 0.005 𝑟𝑎𝑑. 
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After a specified time, it's simulated that the pitch 
angle sensor and roll rate sensor were broken.  
 
5.1  Single Sensor Fault Results 
Cases involving pitch angle fault and roll rate fault 
are covered individually. State vector and scale 
factor graphs for each normalized innovation under 
each case are shown. 
 
5.1.1 Noise Increment Fault Scenario 

In this scenario, to simulate faulty measurements, 𝜎Ɵ 
and 𝜎𝑝are multiplied by 50 for each case.  
 
i) Noise Increment Type Pitch Angle Gyro Fault  

 
Fig. 1: Conventional KF normalized innovations in 
the presence of pitch angle gyro noise increment 
fault 
 

As shown in Figure 1, because of the fault on 
the pitch angle gyroscope, after 0.05 seconds, the 
normalized innovation of the pitch angle (theta) 
exceeds the threshold which is ± 3.  

Pitch angle estimation results and pitch angle 
scaling factor graph in the case of noise increment 
fault are given in Figure 2 and Figure 3 respectively.  

 
Fig. 2: Pitch angle estimation results in the presence 
of pitch angle gyro noise increment fault  

The root mean square errors (RMSE) for pitch 
angle estimation in the presence of pitch angle gyro 
noise increment fault are given in Table 1. 

 
Table 1. RMSE for pitch angle in the case of noise 

increment fault 
Filter / State KF Residual AKF Scaling AKF 

Theta 0.711162 0.317198 0.040281 

 

 
Fig. 3: Pitch angle scaling factor in the case of noise 
increment fault    
 

The pitch angle scaling factor rises as a result of 
the pitch angle gyro fault, leading to more precise 
pitch angle calculations.  

 
ii) Noise Increment Type Rate Gyro Fault 

The conventional KF normalized innovation results 
for the case of roll rate gyro noise increment fault 
are given in Figure 4. 

 
Fig. 4: Conventional KF normalized innovations in 
the presence of roll rate gyro noise increment fault 
 

As can be seen in the figure, because of the fault 
on the roll rate gyroscope, after 0.05 seconds of 
simulation, the normalized innovation of the roll 
angle (p) exceeds the threshold which is ± 3.  
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Figure 5, Figure 6 show the roll rate estimation 
results and roll rate scaling factor graph for the case 
of noise increment fault respectively. The scaling 
factor of the roll rate improves as a result of the roll 
rate gyro's fault, allowing for more precise roll rate 
calculations. 

 
Fig. 5: Roll rate estimation results for noise 
increment fault case 
 

The roll rate root mean square errors in the case 
of noise increment for KF, residual AKF, and 
scaling AKF are given in Table 2. 

 
Table 2. RMSE for roll rate in the case of noise 

increment fault 
Filter / State KF Residual AKF Scaling AKF 

p 0.364050 0.152013 0.074246 

 

 
Fig. 6: Roll rate scaling factor graph for noise 
increment fault case 
 

Scaling AKF is the most effective method for 
tolerating the system malfunction for noise 
increment faulty systems, as demonstrated by 
graphs and root mean square errors (Table 1, Table 
2). Compared to KF, adaptive approaches produce 

superior outcomes. Scaling AKF tolerates the 
system error in the system better than the residual 
AKF technique, according to comparisons between 
adaptive approaches. 

 
5.1.2  Bias Noise Fault Scenario 

In this scenario, to simulate faulty measurements, 
𝑍Ɵ and 𝑍𝑝are summed with 0.1 radians for each 
case. 
  
iii) Bias Noise Type Pitch Angle Gyro Fault  

Pitch angle estimation results in case of bias noise 
are given in Figure 7.  

 
Fig. 7: Pitch angle estimation results in case of bias 
noise  
 

The pitch angle root mean square errors under 
the condition of bias noise for KF, residual AKF, 
and scaling AKF are given in Table 3. 

 
Table 3. RMSE for pitch angle in the case of bias 

noise fault 
Filter / State KF Residual AKF Scaling AKF 

Theta 0.052242 0.050676 0.042016 
. 

iv) Bias Noise Type Roll Rate Gyro Fault 

Roll rate estimation results in the case of bias noise 
fault are given in Figure 8.  

 
Fig. 8: Roll rate estimation results in the case of a 
bias noise fault 
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The roll rate root mean square errors under the 
condition of bias noise for KF, residual AKF, and 
scaling AKF are given in Table 4. 

 
Table 4. RMSE for roll rate in the case of a bias 

noise fault 
Filter / State KF Residual AKF Scaling AKF 

p 0.587203 0.510237 0.423295 

 
Scaling AKF is the most effective method for 

tolerating system malfunction for bias noise faulty 
systems, as demonstrated by graphs and root mean 
square errors (Table 3, Table 4). Compared to KF, 
adaptive approaches give better estimations. When 
we rank the methods, scaling AKF achieved the best 
result while conventional KF achieved the worst 
result. 

 
5.2   Double Sensor Fault Results 
Pitch angle and roll rate sensors are faulty 
simultaneously in this manner. At the end of the 
specified time (0.05 seconds after the simulation 
starts), distortion is introduced to the pitch angle and 
rotation speed gyroscopes. Considering this 
situation, the following scenarios are applied. 

a. Noise increment fault for both sensors 
b. Bias noise fault for both sensors 
c. Noise increment fault for pitch angle gyro 

and bias noise fault for roll rate gyro 
 

5.2.1  Noise Increment Fault for Both Sensors 

In this scenario, to simulate faulty measurements, 𝜎Ɵ 
and 𝜎𝑝 are simultaneously multiplied by 50.  

Figure 9, Figure 10, Figure 11, Figure 12 and 
Figure 13 show the graphs for normalized 
innovation, state estimation, and scale factor 
respectively. Additionally, the RMSE results for the 
noise increment type double sensor faults are 
provided (Table 5). 

Figure 9 presents the Conventional KF 
normalized innovations for the case of double noise 
increment sensor faults. Pitch angle gyro (theta) and 
roll rate gyro (p) were found to be greater than the 
threshold of 3 after the fault occurred at 0.05 
seconds of the simulation. 

Figure 10, Figure 12 and Figure 13 show the 
results of the pitch angle and roll rate estimations as 
well as scale factor graphs for the case of noise 
increment type sensor faults. The results indicated 
that the scaling factor grows as system malfunction 
increases. 

 

 
Fig. 9: Conventional KF normalized innovations for 
the case of noise increment type double sensor faults 
 

 
Fig. 10: Pitch angle estimation results for the case of 
noise increment type double sensor faults  
 

 
Fig. 11: Roll rate estimation results for the case of 
noise increment type double sensor faults  
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Fig. 12: Pitch angle scaling factor graph for the case 
of noise increment type double sensor faults 

 
Fig. 13: Roll rate scaling factor graph for the case of 
noise increment type double sensor faults 

 
Table 5 provides pitch angle and roll rate root 

mean square errors for each filter in the case of 
noise increment type double sensor faults scenario. 

 
Table 5. RMSE of the pitch angle and roll rate in the 

case of noise increment type double sensor faults.  
Filter / State KF Residual AKF Scaling AKF 

Theta 0.716393 0.201855 0.066984 
p  0.371447 0.222162 0.073049 

 
As demonstrated by plots (Figure 9, Figure 10, 

Figure 11, Figure 12, Figure 13) and root mean 
square errors (Table 5 and Table 6), scaling AKF is 
the best method for tolerating the failure in case of 
noise increment type double sensor fault. Adaptive 
approaches produce more precise estimates than 
traditional KF. Scaling AKF is more tolerant of the 
system flaw than other adaptive techniques. 

 
5.2.2   Bias Noise Type Double Sensor Faults 

In this scenario, to simulate faulty measurements,  
𝑍Ɵ and 𝑍𝑝 are simultaneously summed with 0.1 
radians.  

Figure. 14, Figure 15 and Figure 16 show the 
graphs for state estimations. Additionally, the 
RMSE results for the bias noise type double sensor 
faults are provided (Table 6). 

Figure 14 represents the pitch angle estimation 
results for the case of bias noise type double sensor 
faults. 

 
Fig. 14: Pitch angle estimation results for the case of 
bias noise type double sensor faults  
 

Figure 15 represents the roll rate estimation 
results for the case of bias noise type double sensor 
faults. 
 

 
Fig. 15: Roll rate estimation results for the case of 
bias noise type double sensor faults  
 

Table 6 provides pitch angle and roll rate root 
mean square errors for each filter for the scenario of 
bias noise type double sensor faults.  

 
Table 6. RMSE of the pitch angle and roll rate for 

the bias noise type double sensor faults. 
Filter / State KF Residual AKF Scaling AKF 

theta 0.151124 0.123794 0.098763 
p  0.173246 0.132962 0.088937 
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5.2.3  Different Types of Double Sensor Faults 

In this scenario, to simulate pitch angle gyro and roll 
rate gyro measurements, 𝜎Ɵ multiplied by 50 and 𝑍𝑝 
is summed with 0.1 radians. 

Figure 16 presents the Conventional KF 
normalized innovations for the case of double 
sensor faults, noise increment fault for pitch angle 
gyro, and bias noise fault for roll rate gyro. The 
pitch angle gyro (theta) and roll rate gyro (p) are 
found to be greater than the threshold, which is 3. 
As seen, the normalized innovations of the pitch 
angle and roll angle channels exceed the threshold 
which is ± 3 after the fault occurs at 0.05 seconds of 
the simulation. 

 

 
Fig. 16: Conventional KF normalized innovations 
for the case of double sensor faults (noise increment 
fault for pitch angle gyro and bias noise fault for roll 
rate gyro) 
 

Figure 17 and Figure 18 represent the pitch 
angle and roll rate estimation results for the case of 
double sensor faults (noise increment fault for pitch 
angle gyro and bias noise fault for roll rate gyro). 
 

 
Fig. 17: Pitch angle estimation results for the case of 
double sensor faults (noise increment fault for pitch 
angle gyro and bias noise fault for roll rate gyro). 

 
Fig. 18: Roll rate estimation results for the case of 
double sensor faults (noise increment fault for pitch 
angle gyro and bias noise fault for roll rate gyro). 

 
Figure 19 and Figure 20 show the results of the 

pitch angle and roll rate estimations as well as scale 
factor graphs. According to the obtained results, the 
scaling factor increases as system malfunction 
increases. 

 
Fig. 19: Pitch angle scaling factor graph for the case 
of double sensor faults (noise increment fault for 
pitch angle gyro and bias noise fault for roll rate 
gyro). 

 
Fig. 20: Roll rate scaling factor graph for the case of 
double sensor faults (noise increment fault for pitch 
angle gyro and bias noise fault for roll rate gyro). 
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Table 7 provides pitch angle and roll rate root 
mean square errors for each filter in this scenario. 

 
Table 7. RMSE of the pitch angle and roll rate for 
the double sensor faults (noise increment fault for 
pitch angle gyro and bias noise fault for roll rate 

gyro) 
Filter / State KF Residual AKF Scaling AKF 

Theta 0.0.644407 0.264420 0.216585 
p  0.0.012244 0.015997 0.010125 

 
When both noise approaches are compared, it 

was found that noise increment is a more realistic 
approach than bias noise for simulating the system 
noise. The adaptive filters give better results for the 
noise increment type scenario. Moreover, the results 
revealed that scaling AKF is still the best filter for 
not only both noise increment and bias noise 
systems but also complex double-sensor fault 
systems. 

Increasing the vector sensitivity is crucial for 
the direction control of fast-moving aircraft. An 
increase in mistakes in aircraft status detection and 
control is brought on by high-value error rates that 
may arise in the estimate of aircraft orientation 
states. 

This study has established the significance of 
adopting the scaling AKF estimate technique rather 
than residual AKF and traditional KF, particularly in 
aircraft orientation and control systems with high 
noise ratios. 

 
 

6   Conclusions 
In this study, the motion of the airplane was 
examined by estimating the state vector using the 
Conventional Kalman Filter and Adaptive Kalman 
Filters and comparing various estimation 
techniques. 

Utilizing the scaling adaptive Kalman filter, 
residual adaptive Kalman filter, and conventional 
Kalman filter, measurements were processed. 
Investigations were conducted into the single-sensor 
fault and double-sensor fault sensor failure 
scenarios. For both single-sensor fault and double-
sensor fault scenarios, it was concluded that 
predicted results by scaling AKF are more accurate 
than those from the other two approaches. 

Additionally, it was discovered that the KF and 
residual AKF errors rise when a system fault occurs, 
but the scaling AKF filter is adaptively self-
adjusting and is not as significantly impacted by the 
increasing error as other systems. Scaling AKF 
estimate remains more stable as a result. After 

scaling the AKF technique, residual AKF provides 
the second-best estimation.  

This study may be used for UAV and aircraft 
missions to improve system accuracy. Additionally, it 
has been demonstrated via the use of this study that 
scaling the AKF allows for the tolerability of large 
system faults. The impact of KF and AKF approaches 
on multi-satellite flight issues will be investigated in 
the future.  
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