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Abstract: - As a first approach to estimating the signal and the state, Theorem 1 proposes recursive least-
squares (RLS) Wiener fixed-point smoothing and filtering algorithms that are robust to missing measurements 
in linear discrete-time stochastic systems with uncertainties. The degraded quantity is given by multiplying the 
Bernoulli random variable by the degraded signal caused by the uncertainties in the system and observation 
matrices. The degraded quantity is observed with additional white observation noise. The probability that the 
degraded signal is present in the observation equation is assumed to be known. The design feature of the 
proposed robust estimators is the fitting of the degraded signal to a finite-order autoregressive (AR) model. 
Theorem 1 is transformed into Corollary 1, which expresses the covariance information in a semi-degenerate 
kernel form. The autocovariance function of the degraded state and the cross-covariance function between the 
nominal state and the degraded state is expressed in semi-degenerate kernel forms. Theorem 2 shows the robust 
RLS Wiener fixed-point and filtering algorithms for estimating the signal and state from degraded observations 
in the second method. The robust estimation algorithm of Theorem 2 has the advantage that, unlike Theorem 1 
and the usual studies, it does not use information on the existence probability of the degraded signal. This is a 
unique feature of Theorem 2.  
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1   Introduction 
 
1.1   Brief Literature Review 
In sensor network systems, missing measurements 
are often due to the limited bandwidth of the 
network. Missing measurements occur at random 
rates. The presence of the degraded signal in the 
observation equation is described by the Bernoulli 
random variable. It takes the value 1 or 0 with a 
known probability. This study aims to develop a 
new robust estimation technique for missing 
measurements.  

A variety of estimation problems for systems 
with missing measurements have been studied in 
detail, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], 
[11], [12], [13], [14], [15], [16], [17], [18]. For 
nonlinear stochastic systems without uncertainties, 
estimators for missing measurements have been 
developed, [10], [11]. A robust filter for nonlinear 
time-delayed stochastic systems with uncertainties 
was developed in, [12]. In, [13], a robust finite-
horizon Kalman filter was presented for systems 
with norm-bounded parameter uncertainty and 

missing measurements with a random N-step 
observation delay. Missing probabilities are used for 
the robust Kalman filter. Robust fusion estimation 
problems with missing measurements have been 
studied in multisensor network systems, [2], [7], 
[14], [15], [16], [17], [18]. In, [7], [16], robust 
centralized fusion (CF) and weighted measurement 
fusion (WMF) Kalman estimators were designed for 
missing measurements in linear stochastic systems 
with uncertainties. In, [2], robust fusion Kalman 
estimators were proposed for stochastic systems 
with uncertainties in the system and input matrices. 
Observations are delayed by one randomly 
occurring step and missing observations occur. 

In linear discrete-time stochastic systems with 
uncertainties, robust recursive least-squares (RLS) 
Wiener estimators are developed as follows: (1) 
Robust RLS Wiener fixed-point smoother and filter 
for signal estimation, [19], (2) Robust RLS Wiener 
finite impulse response (FIR) predictor, [20], (3) 
Centralized multisensor robust Chandrasekhar-type 
RLS Wiener filter, [21]. In, [22], robust RLS 
Wiener estimators, [19], were applied to the 
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estimation problem for random delays, packet 
dropouts, and out-of-order packets in observed data 
when the system matrix and observation vector have 
uncertain parameters. 

 
1.2 Current Study 
As the first approach for estimating the signal and 
state, Theorem 1 proposes RLS Wiener fixed-point 
smoothing and filtering algorithms that are robust to 
missing measurements in linear discrete-time 
stochastic systems with uncertainties. The Bernoulli 
random variable is multiplied by the degraded signal 
due to the uncertainties in the system and 
observation matrices. It is assumed that the 
probability of the degraded signal being present in 
the observation equation is known. Theorem 1 
presents the RLS Wiener fixed-point smoothing and 
filtering algorithms that estimate the signal and the 
state from the missing measurements using 
information on the probability and without using 
any information on the uncertainties. The design 
feature of the proposed robust estimators is to fit the 
degraded signal to an autoregressive (AR) model of 
a finite order. Theorem 1 is transformed into 
Corollary 1, which expresses the covariance 
information in a semi-degenerate kernel form. The 
autocovariance function of the degraded state and 
the cross-covariance function between the nominal 
state and the degraded state is expressed in semi-
degenerate kernel forms. Theorem 2 shows the 
robust RLS Wiener fixed-point smoothing and 
filtering algorithms, [19], or estimating the signal 
and the state from degraded observations in the 
second method. A degraded quantity is given by 
multiplying the Bernoulli random variable by the 
degraded signal caused by the uncertainties in the 
system and observation matrices. The degraded 
quantity is observed with additional white 
observation noise. In contrast to Theorem 1 and 
other studies, e.g., [10], [11], [12], [13], the robust 
estimation algorithms of Theorem 2 have the 
advantage of not using information on the existence 
probability of the degraded signal. This is a unique 
feature of Theorem 2. 

By the way, a combination of an unscented 
Kalman filter and a back-propagation neural 
network has been applied to GPS/SINS integrated 
navigation, [23]. In order to predict the traffic state 
of the entire network by modeling the dependencies 
of individual self and neighbors, a deep learning 
framework called Deep Kalman Filtering Network 
has been studied, [24]. In, [25], the extended 
estimators using covariance information are 
presented. Its estimation accuracy is superior to the 

Kalman filter neuro-computing and maximum a 
posteriori (MAP) estimation methods. 

The numerical simulation example in Section 4 
compares the estimation accuracies of the robust 
RLS Wiener estimators in Theorem 1 with those of 
the robust RLS Wiener estimators in Theorem 2. 
The estimation accuracies of the robust RLS Wiener 
estimators in Theorem 2 are superior to those of the 
robust RLS Wiener estimators in Theorem 1. 
 

 

2 Recursive Least-Squares Fixed-Point 

Smoothing Problem 
Let the state-space model for the signal 𝑧(𝑘)  be 
given by (1).  
 

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘),

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),
 

𝐸[𝑥(𝑘)𝑣𝑇(𝑠)] = 0, 𝐸[𝑥(𝑘)𝑤𝑇(𝑠)] = 0, 
𝐸[𝑣(𝑘)𝑤𝑇(𝑠)] = 0, 
𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 
𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠) 

𝑦(𝑘): 𝑚 × 1 observation vector; 𝑧(𝑘): 𝑚 ×
1  signal vector; 𝑥(𝑘) : n × 1  state vector; 
𝑣(𝑘) : 𝑚 × 1  white observation noise with 
mean zero; 𝑤(𝑘) : 𝑙 × 1  input noise vector 
with mean zero; Φ: n × 𝑛 system matrix; 𝐻: 
𝑚 × 𝑛 observation matrix.  
 

(1) 

𝑧(𝑘)  is the signal to be estimated. Here, the 
following assumptions are introduced.  
(1)  𝑣(𝑘)  is the white observation noise with the 

variance 𝑅. 𝑤(𝑘) is the white input noise with 
the variance 𝑄.  𝛿𝐾(𝑘 − 𝑠) denotes the 
Kronecker delta function. 𝑣(𝑘) and 𝑤(𝑘) have 
mean zeros. 

(2) The state 𝑥(𝑘), the observation noise 𝑣(𝑘), and 
the input noise 𝑤(𝑘) are mutually independent. 

 
Consider the degraded state-space model (2) with 

uncertainties in the system and observation matrices 
for the system (1).  

 

 

�̆�(𝑘) = 𝛾(𝑘)�̆�(𝑘) + 𝑣(𝑘),

�̆�(𝑘) = �̄�(𝑘)�̄�(𝑘), �̄�(𝑘) = 𝐻 + 𝛥𝐻(𝑘),

 �̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + 𝛤𝑤(𝑘),

 

Φ̄(𝑘) = Φ + 𝛥Φ(𝑘), 
𝑃𝑟[𝛾(𝑘) = 1] = 𝑝(𝑘)   

(2) 

�̆�(𝑘) : 𝑚 × 1  degraded observation vector; �̆�(𝑘) : 

𝑚 × 1 degraded signal vector; �̄�(𝑘): 𝑛 × 1 degraded 
state vector; Φ̄(𝑘): 𝑛 × 𝑛  degraded system matrix; 
�̄�(𝑘) : 𝑚 × 𝑛  degraded observation matrix; 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2023.19.18 Seiichi Nakamori

E-ISSN: 2224-3488 169 Volume 19, 2023



𝛥𝐻(𝑘) :  𝑚 × 𝑛  uncertain matrix; 𝛥Φ(𝑘) : 𝑛 × 𝑛 
uncertain matrix 
 

The degraded observed value �̆�(𝑘) is given as 
the sum of the degraded quantity 𝛾(𝑘)�̆�(𝑘) and the 
observation noise 𝑣(𝑘) . The Bernoulli random 
variable 𝛾(𝑘)  in the observation equation has the 
probabilities 𝑃𝑟[𝛾(𝑘) = 1] = 𝑝(𝑘)  and 𝑃𝑟[𝛾(𝑘) =
0] = 1 − 𝑝(𝑘) . The probability that 𝛾(𝑘) = 1  is 
𝑝(𝑘) . For 𝛾(𝑘) = 1 , the observation equation is 
given by �̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘). The probability that 
𝛾(𝑘) = 0 is 1 − 𝑝(𝑘). For 𝛾(𝑘) = 0, the observed 
value �̆�(𝑘)  consists only of the observation noise 
𝑣(𝑘). The degraded system matrix Φ̄(𝑘) is given as 
a sum of the system matrix Φ  and the uncertain 
matrix 𝛥Φ(𝑘) . The degraded observation matrix 
�̄�(𝑘) is given as a sum of the system matrix 𝐻 and 
the uncertain matrix 𝛥𝐻(𝑘) . Assume that 𝛥𝐻(𝑘) 
and 𝛥Φ(𝑘)  contain uncertain parameters, 
respectively.  

The first objective of this study is to design the 
RLS Wiener fixed-point smoothing and filtering 
algorithms that estimate the signal from the 
observed value �̆�(𝑘) using information such as the 
probability 𝑝(𝑘) and without using any information 
on the uncertain matrices 𝛥Φ(𝑘) and 𝛥𝐻(𝑘). 

 
Let the sequence of the degraded signal �̆�(𝑘) be 

fitted to a 𝑁th-order AR model. 

 
�̆�(𝑘) = −𝑎1�̆�(𝑘 − 1) − 𝑎2�̆�(𝑘 − 2)⋯

−𝑎𝑁�̆�(𝑘 − 𝑁) + �̆�(𝑘),
 

𝐸[�̆�(𝑘)�̆�𝑇(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠) 
(3) 

Let �̆�(𝑘) be expressed as  

 

�̆�(𝑘) = �̆��̆�(𝑘),

�̆�(𝑘) =

[
 
 
 
 

�̆�1(𝑘)
�̆�2(𝑘)

⋮
�̆�𝑁−1(𝑘)
�̆�𝑁(𝑘) ]

 
 
 
 

=

[
 
 
 
 

�̆�(𝑘)
�̆�(𝑘 + 1)

⋮
�̆�(𝑘 + 𝑁 − 2)
�̆�(𝑘 + 𝑁 − 1)]

 
 
 
 

,

�̆� = [𝐼𝑚×𝑚 0 0 ⋯ 0 0].

 (4) 

From (3) and (4), the state equation for �̆�(𝑘)  is 
given by  

 [
 
 
 
 

�̆�1(𝑘 + 1)

�̆�2(𝑘 + 1)
⋮

�̆�𝑁−1(𝑘 + 1)

�̆�𝑁(𝑘 + 1) ]
 
 
 
 

 

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−�̆�𝑁 −�̆�𝑁−1 −�̆�𝑁−2 ⋯ −�̆�1 ]
 
 
 
 

 

(5) 

×

[
 
 
 
 

�̆�1(𝑘)
�̆�2(𝑘)

⋮
�̆�𝑁−1(𝑘)
�̆�𝑁(𝑘) ]

 
 
 
 

+

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

𝜁(𝑘), 

𝜁(𝑘) = �̆�(𝑘 + 𝑁), 
𝐸[𝜁(𝑘)𝜁𝑇(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠), 

 
Let �̆�(𝑘, 𝑠)  be the autocovariance function of the 
state �̆�(𝑘) . �̆�(𝑘, 𝑠)  has the wide-sense stationarity 
(WSS) �̆�(𝑘, 𝑠) = �̆�(𝑘 − 𝑠),  [26]. �̆�(𝑘, 𝑠)  is 
expressed in the semi-degenerate functional form as 
follows: 
 

 �̆�(𝑘, 𝑠) = {
𝐴(𝑘)𝐵𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑘,

𝐵(𝑘)𝐴𝑇(𝑠), 0 ≤ 𝑘 ≤ 𝑠,
 

𝐴(𝑘) = Φ̆𝑘 , 𝐵𝑇(𝑠) = Φ̆−𝑠�̆�(𝑠, 𝑠). 

(6) 

 
Here Φ̆  denotes the system matrix of the state 
equation (5). Φ̆ is given by  

 

Φ̆

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−�̆�𝑁 −�̆�𝑁−1 −�̆�𝑁−2 ⋯ −�̆�1 ]
 
 
 
 

. 
(7) 

 
From the relation 𝐾�̆�(𝑘, 𝑠) = 𝐾�̆�(𝑘 − 𝑠) =
𝐸[�̆�(𝑘)�̆�𝑇(𝑠)]  in wide-sense stationary stochastic 
systems, [26], and (4), the autovariance function 
�̆�(𝑘, 𝑘) of the state �̆�(𝑘) becomes 
 

 
�̆�(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

× [�̆�𝑇(𝑘) �̆�𝑇(𝑘 + 1) ⋯

�̆�𝑇(𝑘 + 𝑁 − 2) �̆�𝑇(𝑘 + 𝑁 − 1)].

 (8) 

 
 
Then 

 

�̆�(𝑘, 𝑘) =

[
 
 
 
 

𝐾�̆�(0) 𝐾�̆�(−1) ⋯
𝐾�̆�(1) 𝐾�̆�(0) ⋯

⋮
𝐾�̆�(𝑁 − 2)
𝐾�̆�(𝑁 − 1)

⋮
𝐾�̆�(𝑁 − 3)
𝐾�̆�(𝑁 − 2)

⋱
⋯
⋯

 

𝐾�̆�(−𝑁 + 2) 𝐾�̆�(−𝑁 + 1)
𝐾�̆�(−𝑁 + 3) 𝐾�̆�(−𝑁 + 2)

⋮
𝐾�̆�(0)
𝐾�̆�(1)

⋮
𝐾�̆�(−1)
𝐾�̆�(0) ]

 
 
 
 

. 
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The Yule-Walker equations for the AR parameters 
are the following: 

 �̂�(𝑘, 𝑘)

[
 
 
 
 
 

�̆�1
𝑇

�̆�2
𝑇

⋮
�̆�𝑁−1

𝑇

�̆�𝑁
𝑇 ]

 
 
 
 
 

= −

[
 
 
 
 
 

𝐾�̆�
𝑇(1)

𝐾�̆�
𝑇(2)
⋮

𝐾�̆�
𝑇(𝑁 − 1)

𝐾�̆�
𝑇(𝑁) ]

 
 
 
 
 

. (9) 

Here, 

�̂�(𝑘, 𝑘) =

[
 
 
 
 
 

𝐾�̆�(0) 𝐾�̆�(1) ⋯

𝐾�̆�
𝑇(1) 𝐾�̆�(0) ⋯
⋮

𝐾�̆�
𝑇(𝑁 − 2)

𝐾�̆�
𝑇(𝑁 − 1)

⋮
𝐾�̆�

𝑇(𝑁 − 3)

𝐾�̆�
𝑇(𝑁 − 2)

⋱
⋯
⋯

 

𝐾�̆�(𝑁 − 2) 𝐾�̆�(𝑁 − 1)

𝐾�̆�(𝑁 − 3) 𝐾�̆�(𝑁 − 2)
⋮

𝐾�̆�(0)

𝐾�̆�
𝑇(1)

⋮
𝐾�̆�(1)

𝐾�̆�(0) ]
 
 
 
 

. 

 
Let 𝐾𝑥�̆�(𝑘, 𝑠) denote the cross-covariance function 
between the state 𝑥(𝑘) and the observed value �̆�(𝑠). 
𝐾𝑥�̆�(𝑘, 𝑠) satisfies the relation 𝐾𝑥�̆�(𝑘, 𝑠) = 𝐾𝑥�̆�(𝑘 −

𝑠) = 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)]  in wide-sense stationary 
stochastic systems, [26]. Let 𝐾𝑥�̆�(𝑘, 𝑠)  denote the 
cross-covariance function between the state 𝑥(𝑘) 
and the degraded state �̆�(𝑠). 𝐾𝑥�̆�(𝑘, 𝑠) is expressed 
in the following functional form:  
 

 𝐾𝑥�̆�(𝑘, 𝑠) = 𝛼(𝑘)𝛽𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑘,   
𝛼(𝑘) = Φ𝑘, 𝛽𝑇(𝑠) = Φ−𝑠𝐾𝑥�̆�(𝑠, 𝑠). (10) 

 
From (1), Φ  represents the system matrix for the 
state 𝑥(𝑘).  
 
Let the fixed-point smoothing estimate 𝑥(𝑘, 𝐿) of 
the state 𝑥(𝑘) at the fixed point 𝑘 be given by  

 
 𝑥(𝑘, 𝐿) = ∑ ℎ𝐿

𝑖=1 (𝑘, 𝑖, 𝐿)�̆�(𝑖), (11) 
 
using the observed values {�̆�(𝑖),1 ≤ 𝑖 ≤ 𝐿}. In (11), 
ℎ(𝑘, 𝑖, 𝐿) denotes a time-varying impulse response 
function. Consider the estimation problem of 
minimizing the mean square value (MSV)  
 
 𝐽 = 𝐸[||𝑥(𝑘) − 𝑥(𝑘, 𝐿)||2] (12) 
 
of fixed-point smoothing errors. By the orthogonal 
projection lemma, [26],  
 

 𝑥(𝑘) − ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)�̆�(𝑖) ⊥ �̆�(𝑠), (13) 

1 ≤ 𝑠 ≤ 𝐿, 
 
the impulse response function satisfies the Wiener-
Hopf equation  

 
𝐸[𝑥(𝑘)�̆�𝑇(𝑠)]

= ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)𝐸[�̆�(𝑖)�̆�𝑇(𝑠)]. 
(14) 

Here, ‘⊥’ denotes the orthogonality notation. From 
(1), (2), (4), (8), and the relation 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)] =
𝐾𝑥�̆�(𝑘, 𝑠)�̆�𝑇𝑝(𝑠) = 𝐾𝑥�̆�(𝑘, 𝑠)𝑝(𝑠), we get  
 

 

ℎ(𝑘, 𝑠, 𝐿)𝑅
= 𝐾𝑥�̆�(𝑘, 𝑠)�̆�𝑇𝑝(𝑠)

− ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)�̆�𝑝(𝑖)�̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠). 
(15) 

 
Here, 𝐾𝑥�̆�(𝑘, 𝑠) = 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)]  is the cross-
covariance function between the state 𝑥(𝑘) and the 
degraded signal �̆�(𝑠) . Clearly, 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)] =
𝐸[𝑥(𝑘)�̆�𝑇(𝑠)]�̆�𝑇. 
 

 

3 Robust RLS Wiener Fixed-Point 

Smoothing and Filtering 

Algorithms 
In (2), the degraded observation �̆�(𝑘) is given as the 
sum of the degraded quantity 𝛾(𝑘)�̆�(𝑘)  and the 
observation noise 𝑣(𝑘) . The Bernoulli random 
variable 𝛾(𝑘)  in the observation equation has the 
probabilities 𝑃𝑟[𝛾(𝑘) = 1] = 𝑝(𝑘)  and 𝑃𝑟[𝛾(𝑘) =
0] = 1 − 𝑝(𝑘) . Theorem 1 assumes that 𝑝(𝑘)  is 
known. The degraded signal �̆�(𝑘) in (2) is affected 
by the uncertain matrices 𝛥𝐻(𝑘) and 𝛥Φ(𝑘). The 
sequence of �̆�(𝑘) is fitted to the 𝑁 th-order AR 
model (3). The AR model corresponds to the state-
space model (5) for �̆�(𝑘). The model parameters are 
calculated using the Yule-Walker equation (9). The 
observation matrix �̆�  and the system matrix Φ̆ do 
not use any information about 𝛥𝐻(𝑘) and 𝛥Φ(𝑘). �̆� 
and Φ̆ are used in the robust RLS Wiener algorithms 
for the fixed-point smoothing estimate �̂�(𝑘, 𝐿) at the 
fixed point 𝑘 and the filtering estimate �̂�(𝑘, 𝑘) of the 
signal 𝑧(𝑘) in Theorem 1. 

Based on the linear estimation problem for the 
state 𝑥(𝑘)  in Section 2, Theorem 1 proposes the 
robust RLS Wiener fixed-point smoothing and 
filtering algorithms. 
Theorem 1 Let Φ  and 𝐻  denote the system and 
observation matrices, respectively, for the signal 
𝑧(𝑘) in the state-space model (1). In the state-space 
model (2), the system and observation matrices 
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Φ̄(𝑘) and �̄�(𝑘) contain the uncertain matrices ΔΦ 
and Δ𝐻 , respectively. Φ̆  and �̆�  denote the system 
and observation matrices, respectively, when the 
degraded signal process in �̆�(𝑘) is fitted to the AR 
model (3) of order 𝑁. Let �̆�(𝑘, 𝑘) be the variance of 
the state �̆�(𝑘)  for the degraded signal �̆�(𝑘)  and 
𝐾𝑥�̆�(𝑘, 𝑘) the cross-variance function between the 
state 𝑥(𝑘)  and the degraded state �̆�(𝑘) . In the 
observation equation (2) for �̆�(𝑘), the presence of 
the degraded signal �̆�(𝑘) depends on the values of 
the Bernoulli random variable 𝛾(𝑘). Let 𝑅  be the 
variance of the white observation noise 𝑣(𝑘). Then 
the robust RLS Wiener algorithms for the fixed-
point smoothing estimate �̂�(𝑘, 𝐿) at the fixed point 𝑘 
and the filtering estimate �̂�(𝑘, 𝑘) of the signal 𝑧(𝑘) 
consist of (16)-(26) in linear discrete-time stochastic 
systems with uncertainties. 
 
Fixed-point smoothing estimate of the signal 𝑧(𝑘) at 
the fixed point 𝑘: �̂�(𝑘, 𝐿)  
 
 �̂�(𝑘, 𝐿) = 𝐻𝑥(𝑘, 𝐿) (16) 
 
Fixed-point smoothing estimate of the state 𝑥(𝑘) at 
the fixed point 𝑘: 𝑥(𝑘, 𝐿) 
 

 
𝑥(𝑘, 𝐿) = 𝑥(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿)

−𝑝(𝐿)�̆�Φ̆�̂̆�(𝐿 − 1, 𝐿 − 1)),
 

𝑥(𝑘, 𝐿)|𝐿=𝑘 = 𝑥(𝑘, 𝑘) 
(17) 

 
Smoother gain for 𝑥(𝑘, 𝐿) in (17): ℎ(𝑘, 𝐿, 𝐿)  

 

ℎ(𝑘, 𝐿, 𝐿)
= [𝐾𝑥�̆�(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿) 
−𝑞(𝑘, 𝐿 − 1)Φ̆𝑇�̆�𝑇𝑝(𝐿)] 
× {𝑅 + 𝑝(𝐿)�̆�[�̆�(𝐿, 𝐿) − 
Φ̆𝑆0(𝐿 − 1)Φ̆𝑇𝑝(𝐿)]�̆�𝑇}−1 

(18) 

 

 

𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ̆𝑇

+ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�
 

× [�̆�(𝐿, 𝐿) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇], 

𝑞(𝑘, 𝑘) = 𝑆(𝑘) 

(19) 

 
Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  
 �̂�(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘) (20) 
 
Filtering estimate of the state 𝑥(𝑘): 𝑥(𝑘, 𝑘)  

 

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1)
+𝐺(𝑘)(�̆�(𝑘)

 

−𝑝(𝑘)�̆�Φ̆�̆̂�(𝑘 − 1, 𝑘 − 1)), 
𝑥(0,0) = 0 

(21) 

 
Filter gain for 𝑥(𝑘, 𝑘) in (21): 𝐺(𝑘)  

 

𝐺(𝑘) = [𝐾𝑥�̆�(𝑘, 𝑘)

−Φ𝑆(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]

× {𝑅 + 𝑝(𝑘)�̆�[�̆�(𝑘, 𝑘)

 

−Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]�̆�𝑇𝑝(𝑘)}−1, 
𝐾𝑥�̆�(𝑘, 𝑘) = 𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
= 𝐾𝑥�̆�(𝑘, 𝑘)𝑝(𝑘) 

(22) 

 
Filtering estimate of the degraded state �̆�(𝑘) : 
�̆̂�(𝑘, 𝑘)  

 
�̆̂�(𝑘, 𝑘) = Φ̆�̆̂�(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)

× (�̆�(𝑘) − 𝑝(𝑘)�̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)) ,
 

�̆̂�(0,0) = 0 

(23) 

 
Filter gain for �̆̂�(𝑘, 𝑘) in (23): 𝑔(𝑘) 

 

𝑔(𝑘) = [�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

−Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]
 

× {𝑅 + 𝑝(𝑘)�̆�[�̆�(𝑘, 𝑘) 
−Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]�̆�𝑇𝑝(𝑘)}−1 

(24) 

 
Autovariance function of �̆̂�(𝑘, 𝑘) : 𝑆0(𝑘) =
𝐸[�̆̂�(𝑘, 𝑘)�̆̂�𝑇(𝑘, 𝑘)]  

 

𝑆0(𝑘) = Φ̆𝑆0(𝑘 − 1)Φ̆𝑇

+𝑔(𝑘)𝑝(𝑘)�̆�
 

× [�̆�(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇], 
𝑆0(0) = 0 

(25) 

 
Cross-variance function between 𝑥(𝑘, 𝑘)  and 
�̆̂�(𝑘, 𝑘): 𝑆(𝑘) = 𝐸[𝑥(𝑘, 𝑘)�̆̂�𝑇(𝑘, 𝑘)]  

 

𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ̆𝑇

+𝐺(𝑘)𝑝(𝑘)�̆�
 

× [�̆�(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇], 
𝑆(0) = 0 

(26) 

 
Proof of Theorem 1 is deferred to the Appendix. 
 
The conditions for the stability of the fixed-

point smoothing and filtering algorithms of 
Theorem 1 are as follows:  

1. All the eigenvalues of the matrix Φ lie 
within the unit circle. 

2. All the eigenvalues of the matrix Φ̆ −
𝑔(𝑘)𝑝(𝑘)�̆�Φ̆ lie within the unit circle.  

3. 𝑅 + 𝑝(𝑘)�̆�(�̆�(𝑘, 𝑘) − Φ̆𝑆0(𝐿 −
1)Φ̆𝑇)�̆�𝑇𝑝(𝑘) is a positive definite matrix, 
and its inverse exists.  

 
Instead of Theorem 1, Corollary 1 presents 

robust RLS Wiener fixed-point smoothing and 
filtering algorithms using covariance information. 
Corollary 1 Let the autocovariance function �̆�(𝑘, 𝑠) 
of the state �̆�(𝑘)  be given by (6). Let the cross-
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covariance function between the state 𝑥(𝑘) and the 
degraded state �̆�(𝑠) be given by (10). Let the state-
space model for the signal 𝑧(𝑘) be given by (1). Let 
the degraded state and observation equations 
containing the uncertain matrices ΔΦ  and Δ𝐻  be 
given by (2). In the observation equation (2) for 
�̆�(𝑘) , the presence of the degraded signal �̆�(𝑘) 
depends on the values of the Bernoulli random 
variable 𝛾(𝑘) . Let the variance of the white 
observation noise be 𝑅 . Using the covariance 
information, the robust RLS Wiener algorithms for 
the fixed-point smoothing estimate �̂�(𝑘, 𝐿)  at the 
fixed point 𝑘 and the filtering estimate �̂�(𝑘, 𝑘) of the 
signal 𝑧(𝑘) consist of (27)-(39) in linear discrete-
time stochastic systems with uncertainties.  
Fixed-point smoothing estimate of the signal 𝑧(𝑘) at 
the fixed point 𝑘: �̂�(𝑘, 𝐿)  
 
 �̂�(𝑘, 𝐿) = 𝐻𝑥(𝑘, 𝐿) (27) 
 
Fixed-point smoothing estimate of the state 𝑥(𝑘) at 
the fixed point 𝑘: 𝑥(𝑘, 𝐿)  

 
𝑥(𝑘, 𝐿) = 𝑥(𝑘, 𝐿 − 1) 
+ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) 
−𝑝(𝐿)�̆�𝐴(𝐿)𝑒0(𝐿 − 1)) 

(28) 

 
Smoother gain for 𝑥(𝑘, 𝐿) in (28): ℎ(𝑘, 𝐿, 𝐿) 

 

ℎ(𝑘, 𝐿, 𝐿)

= [𝛼(𝑘)𝛽𝑇(𝑘)(𝐴𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿)
 

−𝑃(𝑘, 𝐿 − 1)𝐴𝑇(𝐿)�̆�𝑇𝑝(𝐿)] 
× [𝑅 + 𝑝(𝐿)�̆�[𝐵(𝐿) 
−𝐴(𝐿)𝑟0(𝐿 − 1)]𝐴𝑇(𝐿)�̆�𝑇𝑝(𝐿)]−1 

 

(29) 

 

 

𝑃(𝑘, 𝐿) = 𝑃(𝑘, 𝐿 − 1)

+ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)𝐻[̆𝐵(𝐿)
 

−𝐴(𝐿)𝑟0(𝐿 − 1)], 
𝑃(𝑘, 𝑘) = 𝛼(𝑘)𝑟(𝑘) 

(30) 

 
Filtering estimate of 𝑧(𝑘): �̂�(𝑘, 𝑘)  
 �̂�(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘) (31) 
 
Filtering estimate of 𝑥(𝑘): 𝑥(𝑘, 𝑘)  
 𝑥(𝑘, 𝑘) = 𝛼(𝑘)𝑒(𝑘) (32) 
 

 
𝑒(𝑘) = 𝑒(𝑘 − 1) + 𝐽(𝑘, 𝑘)(�̆�(𝑘)

−𝑝(𝑘)�̆�𝐴(𝑘)𝑒0(𝑘 − 1)),
 

𝑒(0) = 0 
(33) 

 

 

𝐽(𝑘, 𝑘) = [𝛽𝑇(𝑘)�̆�𝑇𝑝(𝑘)

−𝑟(𝑘 − 1)𝐴𝑇(𝑘)�̆�𝑝(𝑘)]
 

× {𝑅 + 𝑝(𝑘)�̆�[𝐵(𝑘) 
−𝐴𝑘𝑟0(𝑘 − 1)]𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)}−1 

(34) 

 
𝑟(𝑘) = 𝑟(𝑘 − 1) + 𝐽(𝑘, 𝑘)𝑝(𝑘)�̆�(𝐵(𝑘)

−𝐴(𝑘)𝑟0(𝑘 − 1)),
 

𝑟(0) = 0. 
(35) 

 
Filtering estimate of �̆�(𝑘): �̆̂�(𝑘, 𝑘) 
 �̆̂�(𝑘, 𝑘) = 𝐴(𝑘)𝑒0(𝑘) (36) 
 
 

 
𝑒0(𝑘) = 𝑒0(𝑘 − 1) + 𝐽0(𝑘, 𝑘)(�̆�(𝑘)

−𝑝(𝑘)�̆�𝐴(𝑘)𝑒0(𝑘 − 1)),
 

𝑒0(0) = 0 
(37) 

 

 

𝐽0(𝑘, 𝑘) = [𝐵𝑇(𝑘)�̆�𝑇𝑝(𝑘)

−𝑟0(𝑘 − 1)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)]
 

× {𝑅 + 𝑝(𝑘)�̆�[𝐵(𝑘) 
−𝐴𝑘𝑟0(𝑘 − 1)]𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)}−1 

(38) 

 

 

𝑟0(𝑘) = 𝑟0(𝑘 − 1)

+𝐽0(𝑘, 𝑘)𝑝(𝑘)�̆�(𝐵(𝑘)
 

−𝐴(𝑘)𝑟0(𝑘 − 1)), 
𝑟0(0) = 0 

(39) 

 

Proof  
(28) is obtained from (6), (A-30), and (A-48). (29) is 
obtained from (6), (10), (A-16), (A-41), and (A-42). 
(30) is obtained from (A-42). From (10), (A-9), (A-
13), and (A-40), 𝑃(𝑘, 𝑘) is obtained. From (A-27) 
and (A-28), (32) is obtained. From (6), (A-30), and 
(A-31) we get (33). The initial condition 𝑒(0) = 0 is 
clear from (A-28). From (6), (10), and (A-18) we 
get (34). From (6) and (A-17) we get (35). From (A-
13) the initial condition 𝑟(0) = 0 is clear. From (6) 
and (A-32) we get (36). From (6), (A-32), and (A-
33) we get (37). From (6), (A-19), and (A-23), (38) 
is obtained. (A-21) is equivalent to (39). The initial 
condition 𝑟0(0) = 0 is clear from (A-16).  

(Q.E.D.) 
Note that the robust fixed-point smoother and the 
filter in Theorem 1 use information about the 
existence probability 𝑝(𝑘) of 𝛾(𝑘) and the degraded 
signal �̆�(𝑘) . Suppose that the degraded quantity 
𝑧⏞ (𝑘)  is defined as the multiplication of the 
Bernoulli random variable 𝛾(𝑘)  by the degraded 
signal �̆�(𝑘). The observation equation for �̆�(𝑘) and 
the state equation for �̄�(𝑘) in (2) are rewritten as 
 

 

�̆�(𝑘) = 𝑧⏞ (𝑘) + 𝑣(𝑘),

𝑧⏞ (𝑘) = 𝛾(𝑘)�̆�(𝑘),

�̆�(𝑘) = �̅�(𝑘)�̄�(𝑘), �̅�(𝑘) = 𝐻 + 𝛥𝐻(𝑘),

 

�̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + 𝛤𝑤(𝑘), 
Φ̄(𝑘) = Φ + 𝛥Φ(𝑘), 
𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 
𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 

(40) 
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in linear discrete-time stochastic systems with 
uncertainties. Assume that the sequence of the 
degraded signal 𝑧⏞ (𝑘) is fitted to the 𝑁th-order AR 
model.  

 
𝑧⏞ (𝑘) = − 𝑎⏞1 𝑧⏞ (𝑘 − 1) − 𝑎⏞2 𝑧⏞ (𝑘 − 2)

⋯− 𝑎⏞𝑁 𝑧⏞ (𝑘 − 𝑁) + 𝑒⏞ (𝑘),
 

𝐸[𝜀(𝑘)𝜀𝑇(𝑠)] = 𝑄⏞ 𝛿𝐾(𝑘 − 𝑠) 
(41) 

Suppose that 𝑧⏞ (𝑘) is represented by  

 

𝑧⏞ (𝑘) = �̆� 𝑥⏞ (𝑘),

𝑥⏞ (𝑘) =

[
 
 
 
 
 

𝑥⏞1 (𝑘)

𝑥⏞2 (𝑘)
⋮

𝑥⏞𝑁−1 (𝑘)

𝑥⏞𝑁 (𝑘) ]
 
 
 
 
 

=

[
 
 
 
 
 

𝑧⏞ (𝑘)

𝑧⏞ (𝑘 + 1)
⋮

𝑧⏞ (𝑘 + 𝑁 − 2)

𝑧⏞ (𝑘 + 𝑁 − 1)]
 
 
 
 
 

,

�̆� = [𝐼𝑚×𝑚 0 0 ⋯ 0 0].

 (42) 

 
From (41) and (42), the state equation for the 
degraded state 𝑥⏞ (𝑘) becomes 

 

[
 
 
 
 
 

𝑥⏞1 (𝑘 + 1)

𝑥⏞2 (𝑘 + 1)
⋮

𝑥⏞𝑁−1 (𝑘 + 1)

𝑥⏞𝑁 (𝑘 + 1) ]
 
 
 
 
 

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0
0 0 𝐼𝑚×𝑚

⋮
0

− 𝑎⏞𝑁

⋮
0

− 𝑎⏞𝑁−1

⋮
0

− 𝑎⏞𝑁−2

 

⋯ 0
⋯ 0

⋱
⋯
⋯

⋮
𝐼𝑚×𝑚

− 𝑎⏞1 ]
 
 
 
 

[
 
 
 
 
 

𝑥⏞1 (𝑘)

𝑥⏞2 (𝑘)
⋮

𝑥⏞𝑁−1 (𝑘)

𝑥⏞𝑁 (𝑘) ]
 
 
 
 
 

 

+

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

𝜁⏞ (𝑘), 𝜁⏞ (𝑘) = e⏞ (𝑘 + 𝑁), 

𝐸 [e⏞ (𝑘) e⏞
𝑇
(𝑠)] = 𝑄⏞ 𝛿𝐾(𝑘 − 𝑠). 

(43) 

 
The relation 𝐾⏞ (𝑘, 𝑠) = 𝐾⏞ (𝑘 − 𝑠)  holds for the 
autocovariance function of the state  𝑥⏞ (𝑘) in wide-
sense stationary stochastic systems, [26]. Let 
𝐾⏞ (𝑘, 𝑠)  be expressed in the following semi-
degenerate functional form:  

 

𝐾⏞ (𝑘, 𝑠)

= {
𝐴⏞ (𝑘) 𝐵⏞

𝑇
(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐵⏞ (𝑘)𝐴⏞
𝑇
(𝑠), 0 ≤ 𝑘 ≤ 𝑠,

 

𝐴⏞ (𝑘) = Φ⏞
𝑘
, 

𝐵⏞
𝑇
(𝑠) = Φ⏞

−𝑠
𝐾⏞ (𝑠, 𝑠). 

(44) 

Here, Φ⏞  is the state transition matrix for the state 
𝑥⏞ (𝑘) . The system matrix Φ⏞  in the state equation 
(43) is given by  

 

Φ⏞

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎⏞𝑁 −𝑎⏞𝑁−1 −𝑎⏞𝑁−2 ⋯ −𝑎⏞1 ]
 
 
 
 

. 
(45) 

 
By letting 𝐾𝑧⏞(𝑘, 𝑠) = 𝐾𝑧⏞(𝑘 − 𝑠) =

𝐸 [𝑧⏞ (𝑘) 𝑧⏞
𝑇
(𝑠)], the autovariance function 𝐾⏞ (𝑘, 𝑘) 

of the state  𝑥⏞ (𝑘) is given by  

 
𝐾⏞ (𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑧⏞ (𝑘)

𝑧⏞ (𝑘 + 1)
⋮

𝑧⏞ (𝑘 + 𝑁 − 2)

𝑧⏞ (𝑘 + 𝑁 − 1)]
 
 
 
 

× [𝑧⏞
𝑇
(𝑘) 𝑧⏞

𝑇
(𝑘 + 1) ⋯

𝑧⏞
𝑇
(𝑘 + 𝑁 − 2) 𝑧⏞

𝑇
(𝑘 + 𝑁 − 1)].

 (46) 

Then 

 

𝐾⏞ (𝑘, 𝑘) 

=

[
 
 
 
 

𝐾𝑧⏞(0) 𝐾𝑧⏞(−1) ⋯

𝐾𝑧⏞(1) 𝐾𝑧⏞(0) ⋯
⋮

𝐾𝑧⏞(𝑁 − 2)

𝐾𝑧⏞(𝑁 − 1)

⋮
𝐾𝑧⏞(𝑁 − 3)

𝐾𝑧⏞(𝑁 − 2)

⋱
⋯
⋯

 

𝐾𝑧⏞(−𝑁 + 2) 𝐾𝑧⏞(−𝑁 + 1)

𝐾𝑧⏞(−𝑁 + 3) 𝐾𝑧⏞(−𝑁 + 2)
⋮

𝐾𝑧⏞(0)

𝐾𝑧⏞(1)

⋮
𝐾𝑧⏞(−1)

𝐾𝑧⏞(0) ]
 
 
 
 

. 

 

 
Using 𝐾𝑧⏞(𝑘 − 𝑠), the Yule-Walker equations for the 
AR parameters are given by  

 𝐾⏞ (𝑘, 𝑘)

[
 
 
 
 
 𝑎⏞1

𝑇

𝑎⏞2
𝑇

⋮

𝑎⏞𝑁−1
𝑇

𝑎⏞𝑁
𝑇

]
 
 
 
 
 

= −

[
 
 
 
 
 

𝐾𝑧⏞
𝑇(1)

𝐾𝑧⏞
𝑇(2)

⋮
𝐾𝑧⏞

𝑇(𝑁 − 1)

𝐾𝑧⏞
𝑇(𝑁) ]

 
 
 
 
 

. (47) 

Here, 

 

𝐾⏞ (𝑘, 𝑘)

=

[
 
 
 
 

𝐾𝑧⏞(0) 𝐾𝑧⏞(1) ⋯

𝐾𝑧⏞(1) 𝐾𝑧⏞(0) ⋯
⋮

𝐾𝑧⏞(𝑁 − 2)

𝐾𝑧⏞(𝑁 − 1)

⋮
𝐾𝑧⏞(𝑁 − 3)

𝐾𝑧⏞(𝑁 − 2)

⋱
⋯
⋯
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𝐾𝑧⏞(𝑁 − 2) 𝐾𝑧⏞(𝑁 − 1)

𝐾𝑧⏞(𝑁 − 3) 𝐾𝑧⏞(𝑁 − 2)
⋮

𝐾𝑧⏞(0)

𝐾𝑧⏞(1)

⋮
𝐾𝑧⏞(1)

𝐾𝑧⏞(0) ]
 
 
 
 

. 

 
Let 𝐾𝑥𝑥⏞(𝑘, 𝑠)  represent the cross-covariance 
function between the state 𝑥(𝑘)  and the degraded 
state 𝑥⏞ (𝑠)  in wide-sense stationary stochastic 
systems. Assume that 𝐾𝑥𝑥⏞(𝑘, 𝑠)  has the following 
functional form: 

 

𝐾𝑥𝑥⏞(𝑘, 𝑠) = 𝛼(𝑘) 𝛽⏞
𝑇
(𝑠), 

0 ≤ 𝑠 ≤ 𝑘, 
𝛼(𝑘) = Φ𝑘, 

𝛽⏞
𝑇
(𝑠) = Φ−𝑠𝐾𝑥𝑥⏞(𝑠, 𝑠). 

(48) 

 
Here, Φ is the system matrix for the state 𝑥(𝑘).  
Theorem 2 Let the state-space model containing the 
uncertain matrices ΔΦ and Δ𝐻 be given by (40). Let 
Φ and 𝐻 be the system and observation matrices for 
the signal process in (1) for 𝑧(𝑘) , respectively. 
When the sequence of the degraded signal 𝑧⏞ (𝑘) is 
fitted to the AR model (41) of order 𝑁  and 
represented in the state-space model, Φ⏞  and �̆� stand 
for the system matrix and the observation matrix, 
respectively. Let the variance 𝐾⏞ (𝑘, 𝑘) of the state 
𝑥⏞ (𝑘) for the degraded signal 𝑧⏞ (𝑘) and the cross-
variance function 𝐾𝑥𝑥⏞(𝑘, 𝑘) between the state 𝑥(𝑘) 
for the signal 𝑧(𝑘)  and the state 𝑥⏞ (𝑘)  for the 
degraded signal 𝑧⏞ (𝑘) be given. Let the variance of 
the white observation noise 𝑣(𝑘)  be 𝑅 . Then, the 
robust RLS Wiener algorithms for the fixed-point 
smoothing estimate �̂�(𝑘, 𝐿) at the fixed point 𝑘 and 
the filtering estimate �̂�(𝑘, 𝑘)  of the signal 𝑧(𝑘) 
consist of (49)-(59) in linear discrete-time stochastic 
systems with uncertainties.  
 
Fixed-point smoothing estimate of the signal 𝑧(𝑘) at 
the fixed point 𝑘: �̂�(𝑘, 𝐿)  
 �̂�(𝑘, 𝐿) = 𝐻𝑥(𝑘, 𝐿) (49) 
Fixed-point smoothing estimate of the state 𝑥(𝑘) at 
the fixed point 𝑘: 𝑥(𝑘, 𝐿) 

 
𝑥(𝑘, 𝐿) = 𝑥(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿)

−�̆� Φ⏞ 𝑥⏞̂ (𝐿 − 1, 𝐿 − 1)),
 

𝑥(𝑘, 𝐿)|𝐿=𝑘 = 𝑥(𝑘, 𝑘) 
(50) 

Smoother gain for 𝑥(𝑘, 𝐿) in (50): ℎ(𝑘, 𝐿, 𝐿)  

 

ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥𝑥⏞(𝑘, 𝑘)(Φ⏞
𝑇
)𝐿−𝑘�̆�𝑇

−𝑞(𝑘, 𝐿 − 1)Φ⏞
𝑇
�̆�𝑇]

 

× {𝑅 + �̆�[𝐾⏞ (𝐿, 𝐿) 
−Φ⏞ 𝑆0(𝐿 − 1)Φ⏞

𝑇
]�̆�𝑇}−1 

(51) 

 

 

𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ⏞
𝑇

+ℎ(𝑘, 𝐿, 𝐿)�̆�,
 

× [𝐾⏞ (𝐿, 𝐿) − Φ⏞ 𝑆0(𝐿 − 1)Φ⏞
𝑇
] 

𝑞(𝑘, 𝑘) = 𝑆(𝑘) 

(52) 

Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  
 �̂�(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘) (53) 
Filtering estimate of the state 𝑥(𝑘): 𝑥(𝑘, 𝑘)  

 

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1) +

𝐺(𝑘) (�̆�(𝑘) − �̆� Φ⏞ 𝑥⏞̂ (𝑘 − 1, 𝑘 − 1)) ,
 

𝑥(0,0) = 0 

(54) 

Filter gain for 𝑥(𝑘, 𝑘) in (54): 𝐺(𝑘)  

 

𝐺(𝑘) = [𝐾𝑥�̆�(𝑘, 𝑘)

−Φ𝑆(𝑘 − 1)Φ⏞
𝑇
�̆�𝑇𝑝(𝑘)]

× {𝑅 + �̆�[𝐾⏞ (𝑘, 𝑘)

 

−Φ⏞ 𝑆0(𝐿 − 1)Φ⏞
𝑇
]�̆�𝑇}−1, 

𝐾𝑥�̆�(𝑘, 𝑘) = 𝐾𝑥𝑥⏞(𝑘, 𝑘)�̆�𝑇 

= 𝐾𝑥𝑧⏞(𝑘, 𝑘) 

(55) 

𝐾𝑥𝑧⏞(𝑘, 𝑘)  represents the cross-variance function 
between  𝑥(𝑘) and the degraded signal 𝑧⏞ (𝑘). 
Filtering estimate of  𝑥⏞ (𝑘): 𝑥⏞̂ (𝑘, 𝑘)  

 
𝑥⏞̂ (𝑘, 𝑘) = Φ⏞ 𝑥⏞̂ (𝑘 − 1, 𝑘 − 1)

+𝑔(𝑘) (�̆�(𝑘) − �̆� Φ⏞ 𝑥⏞̂ (𝑘 − 1, 𝑘 − 1)) ,
 

�̆̂�(0,0) = 0 

(56) 

Filter gain for �̆̂�(𝑘, 𝑘) in (56): 𝑔(𝑘) 

 

𝑔(𝑘) = [𝐾⏞ (𝑘, 𝑘)�̆�𝑇

−Φ⏞ 𝑆0(𝑘 − 1)Φ⏞
𝑇
�̆�𝑇]

 

× {𝑅 + �̆�[𝐾⏞ (𝑘, 𝑘) 

−Φ⏞ 𝑆0(𝐿 − 1)Φ⏞
𝑇
]�̆�𝑇}−1 

(57) 

Autovariance function of 𝑥⏞̂ (𝑘, 𝑘) : 𝑆0(𝑘) =

𝐸[𝑥⏞̂ (𝑘, 𝑘) 𝑥⏞̂
𝑇
(𝑘, 𝑘)]  

 
𝑆0(𝑘) = Φ⏞ 𝑆0(𝑘 − 1)Φ⏞

𝑇

+𝑔(𝑘)�̆�[𝐾⏞ (𝑘, 𝑘) − Φ⏞ 𝑆0(𝑘 − 1)Φ⏞
𝑇
],

 

𝑆0(0) = 0 

(58) 

Cross-variance function of 𝑥(𝑘, 𝑘)  with 𝑥⏞̂ (𝑘, 𝑘) : 

𝑆(𝑘) = 𝐸[𝑥(𝑘, 𝑘) 𝑥⏞̂
𝑇
(𝑘, 𝑘)]  

 
 
 
 

 
𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ⏞

𝑇

+𝐺(𝑘)�̆�[𝐾⏞ (𝑘, 𝑘) − Φ⏞ 𝑆0(𝑘 − 1)Φ⏞
𝑇
],

 

𝑆(0) = 0 

(59) 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2023.19.18 Seiichi Nakamori

E-ISSN: 2224-3488 175 Volume 19, 2023



See, [19], for the proof of Theorem 2. 
The conditions for the stability of the fixed-

point smoothing and filtering and algorithms of 
Theorem 2 are as follows:  

1 All eigenvalues of the matrix Φ  lie 
within the unit circle. 

2 All eigenvalues of the matrix Φ⏞ − 𝑔(𝑘)�̆� Φ⏞  
are inside the unit circle.  

3 𝑅 + �̆�(𝐾⏞ (𝑘, 𝑘) − Φ⏞ 𝑆0(𝐿 − 1)Φ⏞
𝑇
)�̆�𝑇  

is a positive definite matrix, and its inverse 
exists.  

 

 

4   Filtering Error Variance Function 

of Signal in Theorem 1 
This section presents the filtering error variance 
function �̃�𝑧(𝑘)  for the filtering estimate �̂�(𝑘, 𝑘) in 
Theorem 1. Let the autocovariance function 𝐾(𝑘, 𝑠) 
of the state 𝑥(𝑘) be expressed by 

 
𝐾(𝑘, 𝑠) = {

𝐴𝑥(𝑘)𝐵𝑥
𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑘,

𝐵𝑥(𝑘)𝐴𝑥
𝑇(𝑠), 0 ≤ 𝑘 ≤ 𝑠,

𝐴𝑥(𝑘) = 𝛼(𝑘) = Φ𝑘 ,

 

𝐵𝑥
𝑇(𝑠) = Φ−𝑠𝐾(𝑠, 𝑠). 

(60) 

 
The filtering error variance function for the filtering 
estimate �̂�(𝑘, 𝑘) is given by 

 
�̃�𝑧(𝑘) = 𝐻[𝐾(𝑘, 𝑘)

−𝐸[𝑥(𝑘, 𝑘)𝑥𝑇(𝑘, 𝑘)]𝐻𝑇 

= 𝐻[𝐾(𝑘, 𝑘) − 𝐸[𝑥(𝑘)𝑥𝑇(𝑘, 𝑘)]𝐻𝑇 . 
(61) 

 
From (10) and (A-27), and introducing a function, 

 𝑟𝑠(𝑘) = ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)𝛽(𝑖), (62) 

(61) is rewritten as  

 �̃�𝑧(𝑘)
= 𝐻(𝐾(𝑘, 𝑘) − 𝛼(𝑘)𝑟𝑠

𝑇(𝑘)(𝛼𝑇)𝑘)𝐻𝑇 . (63) 

 
Subtracting 𝑟𝑠(𝑘 − 1) from 𝑟𝑠(𝑘), using (A-11) and 
introducing a function  

 𝑟0(𝑘) = ∑𝐽0

𝑘

𝑖=1

(𝑘, 𝑖)𝛽(𝑖), (64) 

we have 

 
𝑟𝑠(𝑘) = 𝑟𝑠(𝑘 − 1) + 𝐽(𝑘, 𝑘)(𝛽(𝑘)

−𝑝(𝑘)�̆�Φ̆𝑘𝑟0(𝑘 − 1)),
 

𝑟𝑠(0) = 0. 
(65) 

 
Subtracting 𝑟0(𝑘 − 1) from 𝑟0(𝑘) and using (A-5), 
we have 

 
𝑟0(𝑘) = 𝑟0(𝑘 − 1) + 𝐽0(𝑘, 𝑘)(𝛽(𝑘)

−𝑝(𝑘)�̆�Φ̆𝑘𝑟0(𝑘 − 1)),
 (66) 

𝑟𝑠(0) = 0. 
 
Therefore, the filtering error variance function �̃�𝑧(𝑘) 
is calculated by (63) with (34), (35), (38), (39), (65), 
and (66) recursively.  

Since �̃�𝑧(𝑘)  is the semidefinite function, the 
filtering variance function 
𝐻𝐸[𝑥(𝑘, 𝑘)𝑥𝑇(𝑘, 𝑘)]𝐻𝑇 = 𝐻Φ𝑘𝑟𝑠

𝑇(𝑘)(Φ𝑇)𝑘𝐻𝑇  is 
upper bounded by 𝐻𝐾(𝑘, 𝑘)𝐻𝑇 and lower bounded 
by the zero matrix as follows: 

 0 ≤ 𝐻𝐸[𝑥(𝑘, 𝑘)𝑥𝑇(𝑘, 𝑘)]𝐻𝑇

≤ 𝐻𝐾(𝑘, 𝑘)𝐻𝑇 . (67) 

 
This shows the existence of a robust filtering 
estimate �̂�(𝑘, 𝑘) of the signal 𝑧(𝑘). 
 
 
5   A Numerical Simulation Example  
Suppose that the scalar observation and state 
equations for the state 𝑥(𝑘) are given by  

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘),

𝐻 = [1 0], 𝑥(𝑘) = [
𝑥1(𝑘)

𝑥2(𝑘)
] ,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),

 

Φ = [
0 1

−𝑎2 −𝑎1
] , 

𝑎1 = −0.1, 𝑎2 = −0.8, Γ = [
0
1
] , 

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 
𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0. 52. 

(68) 

 
In (68), the signal process for 𝑧(𝑘) is represented by 
a second-order AR model. Suppose that the state-
space model containing the uncertain matrices 
Δ𝐻(𝑘) and ΔΦ(𝑘) is given by  

 

�̆�(𝑘) = 𝛾(𝑘)�̆�(𝑘) + 𝑣(𝑘),

�̆�(𝑘) = �̄�(𝑘)�̄�(𝑘), �̄�(𝑘) = [
�̄�1(𝑘)

�̄�2(𝑘)
] ,

�̄�(𝑘) = 𝐻 + Δ𝐻(𝑘) = [1 + Δ3(𝑘) 0],

Δ𝐻(𝑘) = [Δ3(𝑘) 0], Δ3(𝑘) = 0.05𝜁(𝑘),

 

�̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + Γ𝑤(𝑘), 
Φ̄(𝑘) = Φ + ΔΦ(𝑘), 

ΔΦ(𝑘) = [
0 0

Δ2(𝑘) Δ1(𝑘)] , 

Δ1(𝑘) = 0.01𝜁(𝑘), Δ2(𝑘) = −0.1𝜁(𝑘), 
Pr{𝛾(𝑘) = 1} = 0.9, 

(69) 

 
In linear discrete-time stochastic systems. The 
observed value �̆�(𝑘)  is given by the sum of the 
degraded quantity 𝛾(𝑘)�̆�(𝑘)  and the observation 
noise 𝑣(𝑘) . It should be noted that the matrices 
Δ𝐻(𝑘)  and ΔΦ(𝑘)  are uncertain. ζ(k) in (69) 
denotes the random variable generated by the “rand" 
command in MATLAB or Octave. Let the 
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probability that 𝛾(𝑘) = 1  be 𝑝(𝑘) = 0.9 .  Δ1(𝑘) , 
Δ2(𝑘), and Δ3(𝑘) consist of the mean values and 
zero mean stochastic variables, respectively. The 
task is to recursively estimate the signal 𝑧(𝑘) from 
the observed value �̆�(𝑘). Suppose that �̆�(𝑘) is fitted 
to the 𝑁th -order AR model: 
 

  

�̆�(𝑘)

= −�̆�1�̆�(𝑘 − 1) − �̆�2�̆�(𝑘 − 2) − ⋯
 

−�̆�𝑁�̆�(𝑘 − 𝑁) + �̆�(𝑘), 
𝐸[�̆�(𝑘)�̆�(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠),𝑁 = 10. 

(70) 

 
From (4), for the scalar observation equation in (69), 
�̆�(𝑘) is given by 

 
�̆�(𝑘) = �̆��̆�(𝑘), 

�̆� = [1 0 0 ⋯ 0 0], 
�̆�: m × 𝑁 vector. 

(71) 

 
The state equation for �̆�(𝑘) is given by (5). In this 
example, this equation corresponds to the case 𝑚 =
1. The autocovariance function �̆�(𝑘, 𝑠) of the state 
�̆�(𝑘)  is expressed in the form of the semi-
degenerate function in (6) and has the property 
�̆�(𝑘, 𝑠) = �̆�(𝑘 − 𝑠) in the wide sense of stationary 
stochastic systems. In (6), Φ̆ is the system matrix for 
the state �̆�(𝑘). Φ̆ is given by (7). �̆�(𝑘, 𝑘) of the state 
�̆�(𝑘) is described as follows: 

 

�̆�(𝑘, 𝑘)

=

[
 
 
 
 
 

𝐾�̆�(0) 𝐾�̆�(1) ⋯

𝐾�̆�
𝑇(1) 𝐾�̆�(0) ⋯
⋮

𝐾�̆�
𝑇(𝑁 − 2)

𝐾�̆�
𝑇(𝑁 − 1)

⋮
𝐾�̆�

𝑇(𝑁 − 3)

𝐾�̆�
𝑇(𝑁 − 2)

⋱
⋯
⋯

 

𝐾�̆�(𝑁 − 2) 𝐾�̆�(𝑁 − 1)

𝐾�̆�(𝑁 − 3) 𝐾�̆�(𝑁 − 2)
⋮

𝐾�̆�(0)

𝐾�̆�
𝑇(1)

⋮
𝐾�̆�(1)

𝐾�̆�(0) ]
 
 
 
 

. 

(72) 

 
Suppose that 𝐾𝑧�̆�(𝑘, 𝑠) = 𝐸[𝑧(𝑘)�̆�(𝑠)]  represents 
the cross-covariance function between the signal 
𝑧(𝑘) and the degraded signal �̆�(𝑠) . From (4) and 
(68), the cross-covariance function 𝐾𝑥�̆�(𝑘, 𝑠)  is 
given by  
 

 

𝐾𝑥𝑥(𝑘, 𝑠) = Φ𝑘−𝑠𝐾𝑥𝑥(𝑠, 𝑠), 0 ≤ 𝑠 ≤ 𝑘, 

𝐾𝑥𝑥(𝑘, 𝑘) = 𝐸 [[
𝑥1(𝑘)

𝑥2(𝑘)
] [�̆�(𝑘) �̆�(𝑘 + 1) 

⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)] 

= 𝐸 [[
𝑧(𝑘)

𝑧(𝑘 + 1)
] [�̆�(𝑘) �̆�(𝑘 + 1) 

⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]] 

=[
𝐾𝑧𝑧(𝑘, 𝑘) 𝐾𝑧𝑧(𝑘, 𝑘 + 1) ⋯

𝐾𝑧𝑧(𝑘 + 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 1) ⋯
            

(73) 

𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 1)

𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 1)
]. 

 
The Yule-Walker equations (9) calculate the AR 
parameters �̆�1, �̆�2,⋯ , �̆�𝑁−1, �̆�𝑁  in (70). Substituting 
𝐻 , �̆� , Φ , Φ̆ , 𝐾𝑥�̆�(𝑘, 𝑘) , �̆�(𝑘, 𝑘) = �̆�(𝐿, 𝐿) , 𝑅  and 
𝑝(𝑘)  into the robust RLS Wiener estimation 
algorithms of Theorem 1, the fixed-point smoothing 
and filtering estimates are recursively computed. In 
evaluating Φ̆ in (7), �̆�(𝑘, 𝑘) in (72), and 𝐾𝑥�̆�(𝑘, 𝑘) 
in (73), 2,000 data sets of signal and degraded signal 
are used, respectively. The computation of 
𝐾𝑥�̆�(𝑘, 𝑘) in (22) uses 2,000 data sets of signal and 
observation, respectively. Figure 1 illustrates the 
fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 5) and the 
filtering estimate �̂�(𝑘, 𝑘)  of the signal 𝑧(𝑘)  by 
Theorem 1 vs. 𝑘 for the white Gaussian observation 
noise 𝑁(0,0. 32) in the case of the AR model order 
𝑁 = 10. Figure 2 illustrates the mean square values 
of the filtering errors 𝑧(𝑘) − �̂�(𝑘, 𝑘) and the fixed-
point smoothing errors 𝑧(𝑘) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔)  vs. 
𝐿𝑎𝑔 , 0 ≤ 𝐿𝑎𝑔 ≤ 5 , by Theorem 1 for the white 
Gaussian observation noises 𝑁(0,0. 12), 𝑁(0,0. 32), 
𝑁(0,0. 52), and 𝑁(0,0. 72) in the case of the AR 
model order 𝑁 = 10. Figure 3 illustrates the fixed-
point smoothing estimate �̂�(𝑘, 𝑘 + 5)  and the 
filtering estimate �̂�(𝑘, 𝑘)  of the signal 𝑧(𝑘)  by 
Theorem 2, [19], vs. 𝑘  for the white Gaussian 
observation noise 𝑁(0,0. 32) in the case of the AR 
model order 𝑁 = 10. Figure 4 illustrates the mean 
square values of the filtering errors 𝑧(𝑘) − �̂�(𝑘, 𝑘) 
and the fixed-point smoothing errors 𝑧(𝑘) −
�̂�(𝑘, 𝑘 + 𝐿𝑎𝑔) vs. 𝐿𝑎𝑔, 0 ≤ 𝐿𝑎𝑔 ≤ 5, by Theorem 
2 for the white Gaussian observation noises 
𝑁(0,0. 12), 𝑁(0,0. 32) , 𝑁(0,0. 52) , and 𝑁(0,0. 72) 
in the case of the AR model order 𝑁 = 10.  As 
shown in Figure 2 and Figure 4, the estimation 
accuracies of the RLS Wiener filter and fixed-point 
smoother of Theorem 2 are superior to those of 
Theorem 1 for each observation noise. In Figure 4, 
the MSV decreases as 𝐿𝑎𝑔  increases. This shows 
the smoothing effect of the RLS Wiener fixed-point 
smoother by Theorem 2. Figure 2 shows the 
smoothing effect by Theorem 1 only for the 
observation noise 𝑁(0,0. 72). In Figure 2 and Figure 
4, the MSVs of the fixed-point smoothing and 
filtering errors are evaluated by 
 
∑ (2000

𝑖=1 𝑧(𝑘) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔))2/2000,1 ≤ 𝐿𝑎𝑔 ≤

5, and ∑ (2000
𝑖=1 𝑧(𝑘) − �̂�(𝑘, 𝑘))2/2000, respectively.  
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Fig. 1: Fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 5) 
and filtering estimate �̂�(𝑘, 𝑘) of the signal 𝑧(𝑘) by 
Theorem 1 vs. 𝑘 for the white Gaussian observation 
noise 𝑁(0,0. 32) in the case of the AR model order 
𝑁 = 10. 
 

 
Fig. 2: MSVs of the filtering errors 𝑧(𝑘) − �̂�(𝑘, 𝑘) 
and the fixed-point smoothing errors 𝑧(𝑘) −
�̂�(𝑘, 𝑘 + 𝐿𝑎𝑔) vs. 𝐿𝑎𝑔, 0 ≤ 𝐿𝑎𝑔 ≤ 5, by Theorem 
1 for the white Gaussian observation noises 
𝑁(0,0. 12), 𝑁(0,0. 32), 𝑁(0,0. 52) , and 𝑁(0,0. 72) 
in the case of the AR model order 𝑁 = 10. 
 

 
Fig. 3: Fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 5) 
and filtering estimate �̂�(𝑘, 𝑘) of the signal 𝑧(𝑘) by 
Theorem 2, [19], vs. 𝑘  for the white Gaussian 
observation noise 𝑁(0,0. 32) in the case of the AR 
model order 𝑁 = 10. 
 

 
Fig. 4: MSVs of the filtering errors 𝑧(𝑘) − �̂�(𝑘, 𝑘) 
and the fixed-point smoothing errors 𝑧(𝑘) −
�̂�(𝑘, 𝑘 + 𝐿𝑎𝑔) vs. 𝐿𝑎𝑔, 0 ≤ 𝐿𝑎𝑔 ≤ 5, by Theorem 
2, [19], for the white Gaussian observation noises 
𝑁(0,0. 12), 𝑁(0,0. 32), 𝑁(0,0. 52) and 𝑁(0,0. 72) in 
the case of the AR model order 𝑁 = 10. 
 
 

6   Conclusion 
Theorem 1 proposed the robust RLS Wiener fixed-
point smoother and filter for missing measurements 
in linear discrete-time stochastic systems with 
uncertainties. In (2), the degraded observation �̆�(𝑘) 
is given as the sum of the degraded quantity 
𝛾(𝑘)�̆�(𝑘)  and the observation noise 𝑣(𝑘) . The 
Bernoulli random variable 𝛾(𝑘) in the observation 
equation has the probabilities 𝑃𝑟[𝛾(𝑘) = 1] = 𝑝(𝑘) 
and 𝑃𝑟[𝛾(𝑘) = 0] = 1 − 𝑝(𝑘). Theorem 1 assumes 
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that 𝑝(𝑘) is known. The degraded signal �̆�(𝑘) in (2) 
is affected by the uncertain matrices 𝛥𝐻(𝑘)  and 
𝛥Φ(𝑘). The sequence of �̆�(𝑘) is fitted to the 𝑁th-
order AR model (3). The AR model corresponds to 
the state-space model (5) for �̆�(𝑘) . The model 
parameters are calculated using the Yule-Walker 
equation (9). The observation matrix �̆�  and the 
system matrix Φ̆ do not use any information about 
𝛥𝐻(𝑘) and 𝛥Φ(𝑘). �̆� and Φ̆ are used in the robust 
RLS Wiener algorithms for the fixed-point 
smoothing estimate �̂�(𝑘, 𝐿) at the fixed point 𝑘 and 
the filtering estimate �̂�(𝑘, 𝑘)  of the signal 𝑧(𝑘)  in 
Theorem 1. The design feature of the proposed 
robust estimators is to fit the degraded signal to a 
finite-order AR model. Theorem 1 is transformed 
into Corollary 1, which expresses the covariance 
information in the semi-degenerate kernel form. 
Second, Theorem 2 showed the robust RLS Wiener 
fixed-point smoother and filter, [19]. The robust 
estimation algorithm of Theorem 2 has the 
advantage that, unlike Theorem 1 and conventional 
studies, it does not use information on the existence 
probability 𝑝(𝑘) of the degraded signal. 

As shown in Figure 2 and Figure 4, the 
estimation accuracies of the RLS Wiener filter and 
fixed-point smoother of Theorem 2 are superior to 
those of Theorem 1 for each observation noise. As 
shown in Figure 4, the MSV decreases as the 𝐿𝑎𝑔 
increases. This shows the smoothing effect of the 
RLS Wiener fixed-point smoother by Theorem 2.  

Extending this study to robust fusion estimation 
problems with missing measurements is future work 
in multisensor network systems. The current study is 
based on the least-squares estimation method. The 
neural network-aided Kalman filter is known. A 
combination of the current study with neural 
networks is also left for future work at this time. 

 
 

APPENDIX 
proof of Theorem 1 
The impulse response function ℎ(𝑘, 𝑠, 𝐿)  satisfies 
(15). Subtracting ℎ(𝑘, 𝑠, 𝐿 − 1)𝑅  from ℎ(𝑘, 𝑠, 𝐿)𝑅 , 
we have 
 

 

(ℎ(𝑘, 𝑠, 𝐿) − ℎ(𝑘, 𝑠, 𝐿 − 1))𝑅

= −ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆��̆�(𝐿, 𝑠)�̆�𝑇𝑝(𝑠)
 

− ∑(

𝐿−1

𝑖=1

ℎ(𝑘, 𝑖, 𝐿) − ℎ(𝑘, 𝑖, 𝐿 − 1)) 

× 𝑝(𝑖)�̆��̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠). 

(A-1) 

Introducing 

 

𝐽0(𝐿, 𝑠)𝑅
= Φ̆−𝑠�̆�(𝑠, 𝑠)�̆�𝑇𝑝(𝑠)

− ∑𝐽0

𝐿

𝑖=1

(𝐿, 𝑖)𝑝(𝑖)�̆��̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠), 
(A-2) 

we obtain 

 ℎ(𝑘, 𝑠, 𝐿) − ℎ(𝑘, 𝑠, 𝐿 − 1)
= −ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�Φ̆𝐿𝐽0(𝑠, 𝐿 − 1). (A-3) 

Subtracting 𝐽0(𝑠, 𝐿 − 1)𝑅 from 𝐽0(𝑠, 𝐿)𝑅, we get  

 

(𝐽0(𝐿, 𝑠) − 𝐽0(𝐿 − 1, 𝑠))𝑅

= −𝐽0(𝐿, 𝐿)𝑝(𝐿)�̆��̆�(𝐿, 𝑠)�̆�𝑇𝑝(𝑠)
 

− ∑(

𝐿−1

𝑖=1

𝐽0(𝐿, 𝑖) − 𝐽0(𝐿 − 1, 𝑖)) 

× 𝑝(𝑖)�̆��̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠). 

(A-4) 

From (A-2) and (A-4), we obtain  

 𝐽0(𝐿, 𝑠) − 𝐽0(𝐿 − 1, 𝑠)
= −𝐽0(𝐿, 𝐿)𝑝(𝐿)�̆�Φ̆𝐿𝐽0(𝐿 − 1, 𝑠). (A-5) 

The filtering estimate is given by 

 𝑥(𝑘, 𝑘) = ∑ℎ

𝑘

𝑖=1

(𝑘, 𝑖, 𝑘)�̆�(𝑖). (A-6) 

From (15), the impulse response function ℎ(𝑘, 𝑠, 𝑘) 
satisfies 

 

ℎ(𝑘, 𝑠, 𝑘)𝑅
= 𝐾𝑥�̆�(𝑘, 𝑠)�̆�𝑇𝑝(𝑠)

− ∑ℎ

𝑘

𝑖=1

(𝑘, 𝑖, 𝑘)𝑝(𝑖)�̆��̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠). 
(A-7) 

Introducing 

 

𝐽(𝑘, 𝑠)𝑅
= Φ−𝑠𝐾𝑥�̆�(𝑠, 𝑠)�̆�

𝑇𝑝(𝑠)

− ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)�̆�𝑝(𝑖)�̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠), 
(A-8) 

we obtain 
 ℎ(𝑘, 𝑠, 𝑘) = Φ𝑘𝐽(𝑘, 𝑠). (A-9) 
Subtracting 𝐽(𝑘 − 1, 𝑠)𝑅 from 𝐽(𝑘, 𝑠)𝑅, we have 

 

(𝐽(𝑘, 𝑠) − 𝐽(𝑘 − 1, 𝑠))𝑅

= −𝐽(𝑘, 𝑘)𝑝(𝑘)�̆��̆�(𝑘, 𝑠)�̆�𝑇𝑝(𝑠)
 

− ∑(

𝑘−1

𝑖=1

𝐽(𝑘, 𝑖) − 𝐽(𝑘 − 1, 𝑖)) 

× 𝑝(𝑖)�̆��̆�(𝑖, 𝑠)�̆�𝑇𝑝(𝑠). 

(A-10) 

From (A-2) and (A-10), we obtain 

 𝐽(𝑘, 𝑠) − 𝐽(𝑘 − 1, 𝑠)
= −𝐽(𝑘, 𝑘)𝑝(𝑘)�̆�Φ̆𝑘𝐽0(𝑘 − 1, 𝑠). (A-11) 

From (A-8), 𝐽(𝑘, 𝑘) satisfies 

 

𝐽(𝑘, 𝑘)𝑅
= Φ−𝑘𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

− ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)𝑝(𝑖)�̆��̆�(𝑖, 𝑘)�̆�𝑇𝑝(𝑘). 
(A-12) 

Using (6) and introducing 
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 𝑟(𝑘) = ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)𝑝(𝑖)�̆�𝐵(𝑖), (A-13) 

we obtain 

 
𝐽(𝑘, 𝑘)𝑅
= Φ−𝑘𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)
− 𝑟(𝑘)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘). 

(A-14) 

Subtracting 𝑟(𝑘 − 1) from 𝑟(𝑘), we have 

 

𝑟(𝑘) − 𝑟(𝑘 − 1) 
= 𝐽(𝑘, 𝑘)𝑝(𝑘)�̆�𝐵(𝑘) 

+ ∑(

𝑘−1

𝑖=1

𝐽(𝑘, 𝑖) − 𝐽(𝑘 − 1, 𝑖))𝑝(𝑖)�̆�𝐵(𝑖). 
(A-15) 

Introducing 

 𝑟0(𝑘) = ∑𝐽0

𝑘

𝑖=1

(𝑘, 𝑖)𝑝(𝑖)�̆�𝐵(𝑖), (A-16) 

from (A-11), we obtain 

 

𝑟(𝑘) − 𝑟(𝑘 − 1)

= 𝐽(𝑘, 𝑘)𝑝(𝑘)�̆�𝐵(𝑘)
 

−𝐽(𝑘, 𝑘)𝑝(𝑘)�̆�Φ̆𝑘𝑟0(𝑘 − 1), 
𝑟(0) = 0. 

(A-17) 

Substituting (A-17) into (A-14), we have 

 

𝐽(𝑘, 𝑘) = [Φ−𝑘𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

−𝑟(𝑘 − 1)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)]
 

× [𝑅 + 𝑝(𝑘)�̆��̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
−𝑝(𝑘)�̆�Φ̆𝑘𝑟0(𝑘
− 1)(Φ̆𝑇)𝑘�̆�𝑇𝑝(𝑘)]−1. 

(A-18) 

Introducing a function 

 𝑆0(𝑘) = 𝐴(𝑘)𝑟0(𝑘)𝐴𝑇(𝑘), 
𝐴(𝑘) = Φ̆𝑘 , (A-19) 

we rewrite (A-18) as 

 

𝐽(𝑘, 𝑘) = [Φ−𝑘𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

−𝑟(𝑘 − 1)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)]
 

× [𝑅 + 𝑝(𝑘)�̆�(�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
−𝑝(𝑘)�̆�Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]−1. 

(A-20) 

Subtracting 𝑟0(𝑘 − 1)  from 𝑟0(𝑘) and using (A-5), 
we obtain 

 

𝑟0(𝑘) − 𝑟0(𝑘 − 1)

= 𝐽0(𝑘, 𝑘)𝑝(𝑘)�̆�𝐵(𝑘)

+ ∑(

𝑘−1

𝑖=1

𝐽0(𝑘, 𝑖) − 𝐽0(𝑘 − 1, 𝑖))

 

× 𝑝(𝑖)�̆�𝐵(𝑖) 
= 𝐽0(𝑘, 𝑘)𝑝(𝑘)�̆� 
× (𝐵(𝑘) − 𝐴(𝑘)𝑟0(𝑘 − 1)), 

𝑟0(0) = 0. 

(A-21) 

From (A-2), 𝐽0(𝑘, 𝑘) satisfies 
𝐽0(𝑘, 𝑘)𝑅 = Φ̆−𝑘�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

− ∑𝐽0

𝑘

𝑖=1

(𝑘, 𝑖)𝑝(𝑖)�̆��̆�(𝑖, 𝑘)�̆�𝑇𝑝(𝑘). 

From (6) and (A-16), it follows that 

 
𝐽0(𝑘, 𝑘)𝑅
= Φ̆−𝑘�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)
− 𝑟0(𝑘)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘). 

(A-22) 

Substituting (A-21) into (A-22), we obtain an 
expression for 𝐽0(𝑘, 𝑘) as 

 

𝐽0(𝑘, 𝑘) = [𝐵𝑇(𝑘)�̆�𝑇𝑝(𝑘)

−𝑟0(𝑘 − 1)𝐴𝑇(𝑘)�̆�𝑇𝑝(𝑘)][𝑅
 

+𝑝(𝑘)�̆��̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
−𝑝(𝑘)�̆�Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]−1. 

(A-23) 

From (A-19) and (A-21), it follows that 

 

𝑆0(𝑘) = 𝐴(𝑘)[𝑟0(𝑘 − 1)

+𝐽0(𝑘, 𝑘)𝑝(𝑘)�̆�

× (𝐵(𝑘) − 𝐴(𝑘)𝑟0(𝑘 − 1))]𝐴𝑇(𝑘)

 

= Φ̆𝑆0(𝑘 − 1)Φ̆𝑇 + 
𝐴(𝑘)𝐽0(𝑘, 𝑘)𝑝(𝑘) 
× �̆�(�̆�(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇), 

𝑆(0) = 0. 

(A-24) 

Let us introduce a function 
 𝑔(𝑘) = 𝐴(𝑘)𝐽0(𝑘, 𝑘). (A-25) 
From (A-23) and (A-25), it follows that 

 

𝑔(𝑘) = [�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

−Φ̆𝑆0(𝑘 − 1)Φ̆𝑇(𝑘)�̆�𝑇𝑝(𝑘)]
 

[𝑅 + 𝑝(𝑘)�̆��̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
−𝑝(𝑘)�̆�Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]−1. 

(A-26) 

Now, from (A-6) and (A-9), the filtering estimate 
𝑥(𝑘, 𝑘) of 𝑥(𝑘) is given by 

 𝑥(𝑘, 𝑘) = Φ𝑘 ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)�̆�(𝑖). (A-27) 

Introducing a function 

 𝑒(𝑘) = ∑𝐽

𝑘

𝑖=1

(𝑘, 𝑖)�̆�(𝑖), (A-28) 

the filtering estimate is expressed as 
 𝑥(𝑘, 𝑘) = Φ𝑘𝑒(𝑘). (A-29) 
Subtracting 𝑒(𝑘 − 1)  from 𝑒(𝑘) , using (A-5) and 
(A-11), and introducing a function 

 𝑒0(𝑘) = ∑𝐽0

𝑘

𝑖=1

(𝑘, 𝑖)�̆�(𝑖), (A-30) 

we obtain 

 

𝑒(𝑘) − 𝑒(𝑘 − 1) = 𝐽(𝑘, 𝑘)(�̆�(𝑘)

−𝑝(𝑘)�̆�Φ̆𝑘 ∑ 𝐽0

𝑘−1

𝑖=1

(𝑘 − 1, 𝑖)�̆�(𝑖))

= 𝐽(𝑘, 𝑘)(𝑦(𝑘) − 𝑝(𝑘)�̆�Φ̆𝑒0(𝑘 − 1),

 

𝑒0(0) = 0. 

(A-31) 

Let us introduce a function 
 �̆̂�(𝑘, 𝑘) = Φ̆𝑘𝑒0(𝑘), (A-32) 
which represents the filtering estimate of �̆�(𝑘) . 
Subtracting 𝑒0(𝑘 − 1) from 𝑒0(𝑘) and using (A-5), 
we obtain 
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𝑒0(𝑘) − 𝑒0(𝑘 − 1) = 𝐽0(𝑘, 𝑘)(�̆�(𝑘)

−𝑝(𝑘)�̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)),
 

𝑒0(0) = 0. 
(A-33) 

Substituting (A-31) into (A-29), we have 

 

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1)

+Φ𝑘𝐽(𝑘, 𝑘)

× (�̆�(𝑘) − 𝑝(𝑘)�̆�Φ̆𝑘𝑒0(𝑘 − 1))

= Φ𝑥(𝑘 − 1, 𝑘 − 1)

 

+𝐺(𝑘) 
× (�̆�(𝑘) − 𝑝(𝑘)�̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)), 
𝐺(𝑘) = Φ𝑘𝐽(𝑘, 𝑘), 
𝑥(0,0) = 0. 

(A-34) 

From (A-18), and by introducing a function 
 𝑆(𝑘) = Φ𝑘𝑟(𝑘)(Φ̆𝑇)𝑘 , (A-35) 
𝐺(𝑘) is expressed as 

 

𝐺(𝑘) = [𝐾𝑥�̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘)

−Φ𝑆(𝑘 − 1)Φ̆𝑇�̆�𝑝(𝑘)]
 

× [𝑅 + 𝑝(𝑘)�̆��̆�(𝑘, 𝑘)�̆�𝑇𝑝(𝑘) 
−𝑝(𝑘)�̆�Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇𝑝(𝑘)]−1. 

(A-36) 

From (A-32) and (A-33), it follows that 

 

�̆̂�(𝑘, 𝑘) = Φ̆𝑘𝑒0(𝑘 − 1)

+Φ̆𝑘𝐽0(𝑘, 𝑘)(�̆�(𝑘)

−𝑝(𝑘)�̆�Φ̆�̆̂�(𝑘 − 1, 𝑘 − 1))

 

= Φ̆�̆̂�(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)(�̆�(𝑘) 
−𝑝(𝑘)�̆�Φ̆�̆̂�(𝑘 − 1, 𝑘 − 1)), 
�̆̂�(0,0) = 0. 

(A-37) 

From (A-17) and (A-35), it follows that 

 

𝑆(𝑘) = Φ𝑘𝑟(𝑘 − 1)(Φ̆𝑇)𝑘

+𝐺(𝑘)𝑝(𝑘)(�̆�𝐵(𝑘)

−�̆�Φ̆𝑘𝑟0(𝑘 − 1))(Φ̆𝑇)𝑘

 

= Φ𝑆(𝑘 − 1)Φ̆𝑇

+ 𝐺(𝑘)𝑝(𝑘)�̆�(�̆�(𝑘, 𝑘) 
−Φ̆𝑆0(𝑘 − 1)Φ̆𝑇), 
𝑆(0) = 0. 

(A-38) 

From (15), ℎ(𝑘, 𝐿, 𝐿) satisfies 

 

ℎ(𝑘, 𝐿, 𝐿)𝑅 = 𝐾𝑥�̆�(𝑘, 𝐿)�̆�𝑇𝑝(𝐿)

−∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)𝑝(𝑖)�̆��̆�(𝑖, 𝐿)�̆�𝑇𝑝(𝐿)
 

= 𝐾𝑥�̆�(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿) 

−∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)𝑝(𝑖)�̆�𝐵(𝑖)𝐴𝑇(𝐿) 

× �̆�𝑇𝑝(𝐿). 

(A-39) 

Introducing a function 
 

 𝑃(𝑘, 𝐿) = ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)𝑝(𝑖)�̆�𝐵(𝑖), (A-40) 

we have an expression for ℎ(𝑘, 𝐿, 𝐿)𝑅 as 

 
ℎ(𝑘, 𝐿, 𝐿)𝑅
= 𝐾𝑥�̆�(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿)
− 𝑝(𝑘, 𝐿)(Φ̆𝑇)𝐿�̆�𝑇𝑝(𝐿). 

(A-41) 

Subtracting 𝑃(𝑘, 𝐿 − 1)  from 𝑃(𝑘, 𝐿) , from (A-3) 
and (A-16), we have 

 

𝑃(𝑘, 𝐿) − 𝑃(𝑘, 𝐿 − 1)

= ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�𝐵(𝐿)

+ ∑(

𝐿−1

𝑖=1

ℎ(𝑘, 𝑖, 𝐿) − ℎ(𝑘, 𝑖, 𝐿 − 1))

 

× 𝑝(𝑖)�̆�𝐵(𝑖) 
= ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�𝐵(𝐿) 
−ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�Φ̆𝐿 

× ∑ 𝐽0

𝐿−1

𝑖=1

(𝐿, 𝑖)�̆�𝐵(𝑖) 

= ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�𝐵(𝐿) 
−ℎ(𝑘, 𝐿, 𝐿)𝑝(𝐿)�̆�Φ̆𝐿𝑟0(𝐿 − 1). 

(A-42) 

Let us introduce a function 
 𝑞(𝑘, 𝐿) = 𝑃(𝑘, 𝐿)(Φ̆𝑇)𝐿 . (A-43) 
From (A-19), (A-42), and (A-43), it follows that 

 

𝑞(𝑘, 𝐿)
= 𝑞(𝑘, 𝐿 − 1)Φ̆𝑇

+ ℎ(𝑘, 𝐿, 𝐿)(𝑝(𝐿)�̆��̆�(𝐿, 𝐿)
− 𝑝(𝐿)�̆�Φ̆𝑆0(𝐿 − 1)Φ̆𝑇). 

(A-44) 

From (A-41), it is clear that 

 
ℎ(𝑘, 𝐿, 𝐿)𝑅
= 𝐾𝑥�̆�(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿)
− 𝑞(𝑘, 𝐿)�̆�𝑇𝑝(𝐿). 

(A-45) 

Substituting (A-44) into (A-45), we have 

 

ℎ(𝑘, 𝐿, 𝐿)

= [𝐾𝑥�̆�(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇𝑝(𝐿)
 

−𝑞(𝑘, 𝐿 − 1)Φ̆𝑇�̆�𝑇𝑝(𝐿)] 
× [𝑅 + 𝑝(𝐿)�̆�(�̆�(𝐿, 𝐿) 
−Φ̆𝑆0(𝐿 − 1)Φ̆𝑇)�̆�𝑇𝑝(𝐿)]−1. 

(A-46) 

From (A-9), (A-13), (A-35), (A-40), and (A-43), the 
initial condition 𝑞(𝑘, 𝑘) in (A-44) for 𝑞(𝑘, 𝐿) at 𝐿 =
𝑘 is given by 

 

𝑞(𝑘, 𝑘) = 𝑃(𝑘, 𝑘)(Φ̆𝑇)𝑘

= ∑ℎ

𝑘

𝑖=1

(𝑘, 𝑖, 𝑘)𝑝(𝑖)�̆�𝐵(𝑖)(Φ̆𝑇)𝑘

= Φ𝑘 ∑𝐽

𝑘

𝑖=1

(𝑖, 𝑘)𝑝(𝑖)�̆�𝐵(𝑖)(Φ̆𝑇)𝑘

= Φ𝑘𝑟(𝑘)(Φ̆𝑇)𝑘

= 𝑆(𝑘).

 (A-47) 

The fixed-point smoothing estimate is given by (11). 
Subtracting 𝑥(𝑘, 𝐿 − 1) from 𝑥(𝑘, 𝐿) and using (A-
3), (A-30), and (A-32), we have 
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𝑥(𝑘, 𝐿) = 𝑥(𝑘, 𝐿 − 1)

+ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿)

−𝑝(𝐿)�̆�Φ̆𝐿 ∑ 𝐽0

𝐿−1

𝑖=1

(𝐿 − 1, 𝑖)�̆�(𝑖))

= 𝑥(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿)

 

−𝑝(𝐿)�̆�Φ̆𝐿𝑒0(𝐿 − 1)) 
= 𝑥(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) 
−𝑝(𝐿)�̆�Φ̆�̂̆�(𝐿 − 1, 𝐿 − 1)), 
𝑥(𝑘, 𝐿)|𝐿=𝑘 = 𝑥(𝑘, 𝑘). 

(A-48) 

(Q.E.D.) 
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