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Abstract: - This study develops robust recursive least-squares (RLS) fixed-point smoothing and filtering 
algorithms for signals in linear continuous-time stochastic systems with uncertainties. The algorithms use 
covariance information, such as the cross-covariance function of the signal with the observed value and the 
autocovariance function of the degraded signal. A finite Fourier cosine series expansion approximates these 
functions. Additive white Gaussian noise is present in the observation of the degraded signal. A numerical 
simulation compares the estimation accuracy of the proposed robust RLS filter with the robust RLS Wiener 
filter, showing similar mean square values (MSVs) of the filtering errors. The MSVs of the proposed robust 
RLS fixed-point smoother are also compared to those of the proposed robust RLS filter. 
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1  Introduction 
Over the past two decades, researchers have 
extensively studied robust estimation in continuous-
time stochastic systems with uncertainties, covering 
both linear and nonlinear scenarios. The following is 
one classification for robust estimation problems. 
(1) Norm-bounded parameter uncertainty, [1], [2], 
[3], [4], [5], [6]. (2) Polytope uncertainty, [7], [8], 
[9], [10], [11], [12]. (3) Markovian jumps in the 
parameters [13], [14]. (4) In the presence of both 
parameter uncertainty and a known input signal, [2]. 
(5) Systems with finite frequency specifications, 
[15]. (6) Uncertain nonlinear systems with 
multiplicative observation noise, [16]. (7) Nonlinear 
systems via Takagi–Sugeno (T–S) fuzzy affine 
dynamic models, [17], [18]. (8) Robust finite 
impulse response (FIR) estimators, [5], [6]. (9) 
Recursive least-squares (RLS) Wiener filter, [19]. 

The book, [20], mainly discusses identification 
techniques for linear discrete-time stochastic 
systems. It is presented a method for estimating 
parameters of continuous-time linear systems by 
using differential equations to define the input-
output relationship of the system. Recently, the 
author developed a robust recursive least-squares 
RLS Wiener filter for linear continuous-time 
uncertain stochastic systems by estimating the 

system matrix for the degraded signal, [19]. The 
estimated system matrix elements in [19] are 
unreliable because of negative values of the third 
and seventh powers of 10 in the third and fourth-
order matrices, respectively, caused by large values 
in higher derivatives of the autocovariance function. 
To address this issue, it is recommended to use an 
alternative approach that does not involve 
estimating the system matrix.  

Based on the preceding discussion, this paper 
suggests a novel robust estimation method for 
continuous-time uncertain stochastic systems. The 
observation of the degraded signal includes additive 
white Gaussian noise. Instead of estimating the 
system matrix for the degraded signal in [19], the 
robust RLS fixed-point smoothing and filtering 
algorithms of Theorem 1 are characteristic in that 
they use covariance information. The estimation 
algorithms described in Theorem 1 utilize the cross-
covariance function of the signal with the observed 
value, along with the autocovariance function of the 
degraded signal. The finite Fourier cosine series 
expansion approximates the cross-covariance 
function between the signal and the observed value, 
as well as the autocovariance function of the 
degraded signal.  
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Section 2 introduces the state-space model for 
the signal and its degraded counterpart. In the 
degraded state-space model, uncertain parameters 
are present in both the observation vector and the 
system matrix. Section 3 presents a robust fixed-
point smoothing problem in linear least-squares 
estimation. Theorem 1 in Section 4 presents the 
robust RLS fixed-point smoothing and filtering 
algorithms. Section 5 explains the finite Fourier 
cosine series approximation of the cross-covariance 
function between the signal and the observed value, 
as well as the autocovariance function of the 
degraded signal. In Section 6, we compare the 
estimation accuracy of the proposed robust RLS 
filter with the robust RLS Wiener filter, [19], in the 
first simulation example. The mean square value 
(MSV) of the robust RLS filter in Theorem 1 is 
smaller than that of the robust RLS Wiener filter, 
[19], when the observation noise is white Gaussian 
with variance 0.12. The proposed robust RLS fixed-
point smoother is compared with the proposed 
robust RLS filter in terms of estimation properties. 
 

 

2 State-Space Model and its Degraded 

 State-Space Model with 

 Uncertainties 
Consider a state-space model (1) that satisfies the 
observability condition in linear continuous-time 
stochastic systems. 

 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡), 𝑧(𝑡) = 𝐻𝑥(𝑡),
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + Γ𝑤(𝑡), 𝑥(0) = 𝑐,

𝐸[𝑣(𝑡)𝑣(𝑠)] = 𝑅𝛿(𝑡 − 𝑠),

𝐸[𝑤(𝑡)𝑤𝑇(𝑠)] = 𝑄𝛿(𝑡 − 𝑠),

𝐸[𝑣(𝑡)𝑤𝑇(𝑠)] = 0, 𝐸[𝑥(0)𝑤𝑇(𝑡)] = 0,

  

𝐸[𝑥(0)𝑣(𝑡)] = 0, 0 ≤ s, t 

(1) 

 
𝑥(𝑡) ∈ 𝑅𝑛  is a state vector, and 𝑧(𝑡)  is a scalar 
signal that needs to be estimated. The input noise 
𝑤(𝑡) ∈ 𝑅𝑙  and the observation noise 𝑣(𝑡)  are 
mutually uncorrelated white Gaussian noises with 
zero means. Γ is an 𝑛 × 𝑙  input matrix, and 𝐻  is a 
1 × 𝑛  observation vector. The autocovariance 
functions of the input noise 𝑤(𝑡)  and the 
observation noise 𝑣(𝑡) are expressed in (1) using the 
Dirac delta function. This paper examines the state 
and observation equations with uncertain parameters 
in the state-space model. 

 

𝑦̆(𝑡) = 𝑧̆(𝑡) + 𝑣(𝑡), 

𝑧̆(𝑡) = 𝐻(𝑡)𝑥(𝑡), 𝐻(𝑡) = 𝐻 + 𝛥𝐻(𝑡), 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑥(𝑡) + Γ𝑤(𝑡),  

𝐴(𝑡) = 𝐴 + ΔA(𝑡), 

(2) 

E[∆𝐴(t)𝑤𝑇(s)] = 0, 
𝐸[Δ (𝑡)𝑣(𝑠)] = 0, 𝐸[𝑥(0)𝑤𝑇(𝑡)] = 0,   
𝐸[𝑥(0)𝑣(𝑡)] = 0,  0 ≤ s, t 

 
In

H

 equation (2), the system matrix 𝐴  and 
observation vector 𝐻  from equation (1) are 
substituted with the degraded versions 𝐴(𝑡)  and 
𝐻(𝑡), respectively. The matrix elements of ΔA(𝑡) 
and the vector components of 𝛥𝐻(𝑡)  contain 
uncertain variables. The initial state vector 𝑥(0) is 
randomly generated and independent of input or 
measurement noise. 

The robust RLS Wiener filter, [19], utilizes the 
estimates of the degraded system and observation 
matrices. Estimating the matrices in linear 
continuous-time stochastic systems is more 
challenging than in linear discrete-time stochastic 
systems. Section 3 introduces linear least-squares 
estimation using covariance information without 
explicitly identifying the degraded system matrix 
and measurement vector.  

 
 
3 Robust Least-Squares Fixed-Point 

 Smoothing Problem 
Let the fixed-point smoothing estimate 𝑧̂(𝑡, 𝑇) of the 
signal 𝑧(𝑡) be given by  

 𝑧̂(𝑡, 𝑇) = ∫ ℎ(𝑡, 𝑠, 𝑇)𝑦̆(𝑠)𝑑𝑠
𝑇

0

 (3) 

 
as a linear transformation of the observed value 
𝑦̆(𝑠), 0 ≤ 𝑠 ≤ 𝑇. Here, ℎ(𝑡, 𝑠, 𝑇) represents an 
impulse response function. Let us consider 
minimizing the mean-square value:  
 𝐽 = 𝐸[(𝑧(𝑡) − 𝑧̂(𝑡, 𝑇))2] (4) 
 
of the fixed-point smoothing error 𝑧(𝑡) − 𝑧̂(𝑡, 𝑇) . 
The fixed-point smoothing estimate 𝑧̂(𝑡, 𝑇)  that 
minimizes the cost function 𝐽  satisfies the 
relationship: 
 𝑧(𝑡) − 𝑧̂(𝑡, 𝑇) ⊥ 𝑦̆(𝑠), 0 ≤ 𝑠, 𝑡 ≤ 𝑇, (5) 
 
from the orthogonal projection lemma, [21]. The 
optimal impulse response function satisfies the 
Wiener-Hopf integral equation: 

 

𝐸[𝑧(𝑡)𝑦̆𝑇(𝑠)]

= ∫ ℎ(𝑡, 𝜏, 𝑇)𝐸[𝑦̆(𝜏)𝑦̆𝑇(𝑠)]𝑑𝑠,
𝑇

0

 

0 ≤ 𝑠, 𝑡 ≤ 𝑇. 

(6) 

 
Substituting the degraded observation equation in 
(2) into (6), (6) is transformed into: 
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ℎ(𝑡, 𝑠, 𝑇)𝑅 = 𝐾𝑧𝑦̆(𝑡, 𝑠)

− ∫ ℎ(𝑡, 𝜏, 𝑇)𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏,
𝑇

0

 

𝐾𝑧𝑦̆(𝑡, 𝑠) = 𝐸[𝑧(𝑡)𝑦̆𝑇(𝑠)], 
𝐾𝑧̆(𝑡, 𝑠) = 𝐸[𝑧̆(𝑡)𝑧̆𝑇(𝑠)]. 

(7) 

𝐾𝑧𝑦̆(𝑡, 𝑠) is the cross-covariance function between 
the signal 𝑧(𝑡) and the observed value 𝑦̆(𝑠). Assume 
that the cross-covariance function 𝐾𝑧𝑦̆(𝑡, 𝑠)  is 
expressed as: 

 𝐾𝑧𝑦̆(𝑡, 𝑠) = 𝛼(𝑡)𝛽𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑡. (8) 
 

𝐾𝑧̆(𝑡, 𝑠)  is the autocovariance function of the 
degraded signal 𝑧̆(𝑡), expressed by: 

 𝐾𝑧̆(𝑡, 𝑠) = {
𝐴̆(𝑡)𝐵̆𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑡,

𝐵̆(𝑡)𝐴̆𝑇(𝑠), 0 ≤ 𝑡 ≤ 𝑠.
 

(9) 
 
 

In wide-sense stationary stochastic systems, 
𝐾𝑧𝑦̆(𝑡, 𝑠) and 𝐾𝑧̆(𝑡, 𝑠) are represented as 𝐾𝑧𝑦̆(𝜏) and 
𝐾𝑧̆(𝜏) respectively, with 𝜏 = 𝑡 − 𝑠. 𝐾𝑧̆(𝜏) is an even 
function for every τ in its domain. From (7), Section 
4 introduces Theorem 1 and proposes the robust 
RLS fixed-point smoothing and filtering algorithms 
using the covariance information provided by (8) 
and (9). 
 

 

4 Robust RLS Fixed-Point Smoothing 

 and Filtering Algorithms 

Theorem 1 proposes the robust RLS fixed-point 
smoothing and filtering algorithms for the signal 
𝑧(𝑡) using the covariance information 𝐾𝑧𝑦̆(𝑡, 𝑠) and 
𝐾𝑧̆(𝑡, 𝑠) defined by (8) and (9). 
Theorem 1 Let the state-space model for the signal 
𝑧(𝑡) be given by (1). Let the state-space model for 
the degraded signal 𝑧̆(𝑡) be given by (2). Let the 
cross-covariance function 𝐾𝑧𝑦̆(𝑡, 𝑠)  of the signal 
𝑧(𝑡) with the observed value 𝑦̆(𝑠) be represented as 
(8). Let the autocovariance function 𝐾𝑧̆(𝑡, 𝑠) of the 
degraded signal 𝑧̆(𝑡) be expressed as (9). Then, the 
robust RLS fixed-point smoothing and filtering 
algorithms for the signal 𝑧(𝑡)  from the degraded 
observation 𝑦̆(𝑡)  in (2) using the covariance 
information consist of (10)-(19).  
Fixed-point smoothing estimate of the signal 𝑧(𝑡) at 
the fixed point 𝑡: 𝑧̂(𝑡, 𝑇) 

 
𝜕𝑧̂(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)(𝑦̆(𝑇) − 𝐴̆(𝑇)𝑓(𝑇)) , 

𝑧̂(𝑡, 𝑇)|𝑇=𝑡 = 𝑧̂(𝑡, 𝑡) 
(10) 

 
Smoother gain: ℎ(𝑡, 𝑇, 𝑇) 

 ℎ(𝑡, 𝑇, 𝑇) = (𝐾𝑧𝑦̆(𝑡, 𝑇) − 𝑃(𝑡, 𝑇)𝐴̆𝑇(𝑇))/

𝑅  
(11) 

 

 
𝜕𝑃(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)(𝐵̆(𝑇) − 𝐴̆(𝑇)𝑆(𝑇)), 

𝑃(𝑡, 𝑡) = 𝛼(𝑡)𝑟(𝑡) 
(12) 

 
Filtering estimate of the signal 𝑧(𝑡): 𝑧̂(𝑡, 𝑡) 
 𝑧̂(𝑡, 𝑡) = 𝛼(𝑡)𝑒(𝑡)  (13) 
 
 𝑑𝑒(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)(𝑦̆(𝑡) − 𝐴̆(𝑡)𝑓(𝑡)), e(0)=0 (14) 

 

 
𝑑𝑓(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)(𝑦̆(𝑡) − 𝐴̆(𝑡)𝑓(𝑡)),  

𝑓(0) = 0  
(15) 

 
 𝐽(𝑡, 𝑡) = (𝛽𝑇(𝑡) − 𝑟(𝑡)𝐴̆𝑇(𝑡))/𝑅  (16) 
 
 𝐿(𝑡, 𝑡) = (𝐵̆𝑇(𝑡) − 𝑆(𝑡)𝐴̆𝑇(𝑡))/𝑅 (17) 

 
𝑑𝑟(𝑡)

𝑑𝑇
= 𝐽(𝑡, 𝑡)(𝐵̆(𝑡) − 𝐴̆(𝑡)𝑆(𝑡)),  𝑟(0) =

0 
(18) 

 
Autovariance function of the filtering estimate of 
the degraded signal 𝑧̆(𝑡): 𝑆(𝑡) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)(𝐵̆(𝑡) − 𝐴̆(𝑡)𝑆(𝑡)),  

𝑆(0) = 0 
(19) 

 
In (11), 𝐾𝑧𝑦̆(𝑡, 𝑇)  represents the cross-

covariance function of the signal 𝑧(𝑡)  with the 
observed value 𝑦̆(𝑇), 0 ≤ 𝑡 ≤ 𝑇. 

Theorem 1 is derived based on the invariant 
imbedding method for integral equations, [22], [23]. 
Proof of Theorem 1 is deferred to the Appendix. 

The robust RLS fixed-point smoother and filter 
are designed by minimizing the cost function (4) in 
the linear least-squares sense. In the combined 
Kalman filter and neural network estimation method, 
[24], [25], [26], [27], [28], the neural network 
weights are computed iteratively using a large 
amount of high-quality training data.   
  

 

5 Finite Fourier Series 

 Approximation of Autocovariance 

 Function of Degraded Signal and 

 Cross-Covariance Function of 

 Signal with Observed Value 
The autocovariance function 𝐾𝑧̆(𝑡, 𝑠) of the 
degraded signal 𝑧̆(𝑡)  is represented as 𝐾𝑧̆(𝜏)  in 
wide-sense stationary stochastic systems, with 𝜏 =
𝑡 − 𝑠. 𝐾𝑧̆(𝜏) is an even function for every τ in its 
domain. Let 𝐾𝑧̆(𝜏)  be approximated by the finite 
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Fourier cosine series expansion given in (20). 𝐾̂𝑧̆(𝜏) 
represents a function that approximates 𝐾𝑧̆(𝜏) using 
𝑁 + 1 terms.  

 
𝐾̂𝑧̆(𝜏) ≈

𝑎0

2
+ ∑ 𝑎𝑛 cos(𝑛𝜔0𝜏) ,𝑁

𝑛=1  𝜔0 =
2𝜋

𝑇
, − 𝑇

2
≤ 𝜏 ≤

𝑇

2
 (20) 

 
Here 𝑇 represents the fundamental period of 𝐾𝑧̆(𝜏). 
The finite Fourier cosine coefficients are calculated 
by: 

 𝑎𝑛 =
2

𝑇
∫ 𝐾𝑧̆(𝜏) cos(𝑛𝜔0𝜏) 𝑑𝜏,

𝑇

2

−
𝑇

2

 

𝑛 = 0, 1, 2, ⋯ , 𝑁. 

(21) 

 
After comparing (9) and (20), we can represent 

the vector components of 𝐴̆(𝑡) and 𝐵̆(𝑡) as follows:  
Ă(t) = [𝐴̆1(𝑡) 𝐴̆2(𝑡) 𝐴̆3(𝑡) ⋯ 𝐴̆2𝑁+1(𝑡)], 
B̆(t) = [𝐵̆1(𝑡) 𝐵̆2(𝑡) 𝐵̆3(𝑡) ⋯ 𝐵̆2𝑁+1(𝑡)],  
𝐴̆1(𝑡) =

𝑎0

２
,  

𝐴̆𝑖(𝑡) = 𝑎𝑖−1cos (
2𝜋(𝑖−1)𝑡

𝑇
), 𝑖 = 2, 3, ⋯ , 𝑁 + 1, 

𝐴̆𝑖(𝑡) = 𝑎𝑖−(𝑁+1)sin (
2𝜋(𝑖−(𝑁+1))𝑡

𝑇
) , 𝑖 = 𝑁 + 2, 𝑁 +

3, ⋯ , 2𝑁 + 1, 
𝐵̆1(𝑡) = 1, 
𝐵̆𝑖(𝑡) = cos (

2𝜋(𝑖−1)𝑡

𝑇
), 𝑖 = 2, 3, ⋯ , 𝑁 + 1, 

𝐵̆𝑖(𝑡) = sin (
2𝜋(𝑖−(𝑁+1))𝑡

𝑇
), 

 𝑖 = 𝑁 + 2, 𝑁 + 3, ⋯ , 2𝑁 + 1.      
 

The cross-covariance function 𝐾𝑧𝑦̆(𝑡, 𝑠) of 𝑧(𝑡) 
with 𝑦̆(𝑠)  is given by (8). Let 𝐾𝑧𝑦̆(𝜏)  be 
approximated by the finite Fourier cosine series 
expansion given in (22). 𝐾̂𝑧𝑦̆(𝜏)  represents a 
function that approximates 𝐾𝑧𝑦̆(𝜏)  using 𝑁 + 1 
terms. 

 
𝐾̂𝑧𝑦̆(𝜏) ≈

Ξ0

2
+ ∑ Ξ𝑛 cos(𝑛𝜔0𝜏) ,𝑁

𝑛=1  𝜔0 =
2𝜋

𝑇
, 0 ≤ 𝜏 ≤

𝑇

2
.  (22) 

 
Here, 𝑇  represents the fundamental period of 
𝐾𝑧𝑦̆(𝜏) . The finite Fourier cosine coefficients are 
calculated by: 

 Ξ𝑛 =
2

𝑇
∫ 𝐾𝑧𝑦̆(𝜏) cos(𝑛𝜔0𝜏) 𝑑𝜏

𝑇

2

−
𝑇

2

,  

𝑛 = 0,1,2, ⋯ , 𝑁. 
(23) 

 
After comparing (8) and (22), we can represent 

the vector components of 𝛼(𝑡) and 𝛽(𝑡) as follows:  
α(t) = [𝛼1(𝑡) 𝛼2(𝑡) 𝛼3(𝑡) ⋯ 𝛼2𝑁+1(𝑡)], 
β(t) = [𝛽1(𝑡) 𝛽2(𝑡) 𝛽3(𝑡) ⋯ 𝛽2𝑁+1(𝑡)] , 
𝛼1(𝑡) =

Ξ0

２
,  

𝛼𝑖(𝑡) = Ξ𝑖−1cos (
2𝜋(𝑖−1)𝑡

𝑇
), 𝑖 = 2, 3, ⋯ , 𝑁 + 1, 

𝛼𝑖(𝑡) = Ξ𝑖−(𝑁+1)sin (
2𝜋(𝑖−(𝑁+1))𝑡

𝑇
),  

𝑖 = 𝑁 + 2, 𝑁 + 3, ⋯ , 2𝑁 + 1, 
𝛽1(𝑡) = 1, 
𝛽𝑖(𝑡) = cos (

2𝜋(𝑖−1)𝑡

𝑇
), 𝑖 = 2, 3, ⋯ , 𝑁 + 1, 

𝛽𝑖(𝑡) = sin (
2𝜋(𝑖 − (𝑁 + 1))𝑡

𝑇
), 

𝑖 = 𝑁 + 2, 𝑁 + 3, ⋯ , 2𝑁 + 1. 
 

By substituting the functions Ă(t), B̆(t), α(t), 
β(t) , and the values of 𝐾𝑧𝑦̆(𝑡, 𝑇)  into the robust 
RLS fixed-point smoothing and filtering algorithms 
of Theorem 1, we can recursively compute the 
fixed-point and filtering estimates of the signal 𝑧(𝑡). 
 
 
6 Numerical Simulation 

 Examples 
 

Example 1 

Let the observation equation for the signal 𝑧(𝑡) and 
the state differential equations for 𝑥(𝑡) be given by 

 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡), 𝑧(𝑡) = 𝐻𝑥(𝑡), 
𝐻 = [1 0], 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + Γ𝑤(𝑡), 

𝑥(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
] , 𝑥(0) = [

0.6
0.8

] , 

𝐴 = [
0 1

−𝑎2 −𝑎1
] , 𝑎1 = 4, 𝑎2 = 3, 

Γ = [
1

−2
] , 

𝐸[𝑣(𝑡)𝑣(𝑠)] = 𝑅𝛿(𝑡 − 𝑠),  
𝐸[𝑤(𝑡)𝑤(𝑠)] = 𝑄𝛿(𝑡 − 𝑠), 𝑄 = 1, 
𝐸[𝑣(𝑡)𝑤(𝑠)] = 0, 𝐸[𝑥(0)𝑤(𝑡)] = 0,  
𝐸[𝑥(0)𝑣(𝑡)] = 0. 

(24) 

 
Let the observation equation for the degraded 

signal 𝑧̆(𝑡), and the state differential equations for 
the degraded state 𝑥(𝑡) be given by: 

 

𝑦̆(𝑡) = 𝑧̆(𝑡) + 𝑣(𝑡), 𝑧̆(𝑡) = 𝐻(𝑡)𝑥(𝑡), 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑥(𝑡) + Γ𝑤(𝑡), 

𝐴(𝑡) = 𝐴 + ΔA(𝑡), 𝐻(𝑡) = 𝐻 + 𝛥𝐻(𝑡), 
ΔA(𝑡) = [

0 0
−0.1 ∗ 𝑟𝑎𝑛𝑑 −0.1 ∗ 𝑟𝑎𝑛𝑑

] , 

𝛥𝐻(𝑡) = [0.1 0], 
𝐸[𝑥(0)𝑤(𝑡)] = 0, 𝐸[𝑥(0)𝑣(𝑡)] = 0. 
 

(25) 

𝛥𝐴(𝑡)  represents an uncertain matrix that is 
additional to the system matrix 𝐴. "𝑟𝑎𝑛𝑑" represents 
a scalar random number from a uniform distribution 
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in (0,1). The value of 𝑁 for the finite Fourier cosine 
series approximations in (20) and (22) is 15 in this 
simulation. Figure 1 illustrates the autocovariance 
function 𝐾𝑧̆(𝜏)  of the degraded signal 𝑧̆(𝑡)  vs. τ , 
0 ≤ τ ≤

𝑇

2
, 𝑇 = 8. The MSV of the finite Fourier 

cosine series approximation errors for 𝐾𝑧̆(𝑖∆)  is 
evaluated as  1

4001
∑ (𝐾𝑧̆(𝑖∆) − 𝐾̂𝑧̆(𝑖∆))24000

𝑖=0  
= 1.038245914754162 × 10−7, ∆= 0.001.  

Figure 2 illustrates the cross-covariance 
function 𝐾𝑧𝑦̆(𝜏) of the signal z(𝑡) with the observed 
value 𝑦̆(𝑡) vs. τ, 0 ≤ τ ≤

𝑇

2
. Here, the fundamental 

period of 𝐾𝑧̆(𝜏) and 𝐾𝑧𝑦̆(𝜏) is 𝑇 = 8. The MSV of 
the finite Fourier cosine series approximation errors 
for 𝐾𝑧𝑦̆(𝑖∆) is evaluated as 1

4001
∑ (𝐾𝑧𝑦̆(𝑖∆) −4000

𝑖=0

𝐾̂𝑧𝑦̆(𝑖∆))2 =8.103093306645037 × 10−8.  From the 
MSVs, the finite Fourier cosine series expansions 
accurately approximate 𝐾𝑧̆(𝑖∆) and 𝐾𝑧𝑦̆(𝑖∆),  𝑖 =

0, ⋯ , 4000. Here, the Midpoint Rule calculates the 
numerical integration of (21) and (23) for the finite 
Fourier cosine series coefficients 𝑎𝑛 and Ξ𝑛 , 𝑛 =
0, 1, 2, ⋯ , 𝑁,  with subintervals [0 + 𝑘ℎ, 0 +

(𝑘 + 1)ℎ] ⊂ [0,4], ℎ =
4

4000
, 𝑘 = 0, 1, ⋯ 3999. By 

substituting the autocovariance information 𝐴̆(𝑡) 
and 𝐵̆(𝑡), the cross-covariance information 𝛼(𝑡) and 
𝛽(𝑡) , and the values of 𝐾𝑧𝑦̆(𝑡, 𝑇)  into the robust 
RLS fixed-point smoothing and filtering algorithms 
of Theorem 1, the fixed-point smoothing and 
filtering estimates are computed recursively.  

Figure 3 illustrates the signal 𝑧(𝑡)  and its 
filtering estimate 𝑧̂(𝑡, 𝑡) vs 𝑡 for the white Gaussian 
observation noise𝑁(0,0. 12).  

Figure 4 illustrates the signal 𝑧(𝑡)  and its 
filtering estimate 𝑧̂(𝑡, 𝑡) vs t for the white Gaussian 
observation noise N(0,0. 32) . From Figure 3 and 
Figure 4, the filtering estimate for 𝑁(0,0. 12)  is 
closer to the signal process than for N(0,0. 32). 

Figure 5 illustrates the signal 𝑧(𝑡) and its fixed-
point smoothing estimate 𝑧̂(𝑡, 𝑡 + 0.005)  vs 𝑡  for 
the white Gaussian observation noise 𝑁(0,0. 12) . 
Figure 3 and Figure 5 show that the fixed-point 
smoothing and filtering estimates have nearly 
identical waveforms. Table 1 shows the MSVs of 
filtering errors z(𝑡) − 𝑧̂(𝑡, 𝑡)  by the robust RLS 
filter in Theorem 1 and the robust RLS Wiener filter 
[19], and those of fixed-point smoothing errors 
𝑧(𝑡) − 𝑧̂(𝑡, 𝑡 + 0.005)  by the robust RLS fixed-
point smoother in Theorem 1 for the white Gaussian 
observation noises 𝑁(0, 0.12) , 𝑁(0, 0.32) , and 
𝑁(0, 0.52). The MSV by the robust RLS filter in 
Theorem 1 is smaller than that by the robust RLS 
Wiener filter, [19], for the white Gaussian 

observation noise 𝑁(0, 0.12) . The MSV of the 
filtering errors by the robust RLS filter in Theorem 
1 is almost the same as that of the fixed-point 
smoothing errors by the robust RLS fixed-point 
smoother in Theorem 1 for each white Gaussian 
observation noise.  

Figure 6 illustrates the MSVs of the filtering 
and fixed-point smoothing errors by the robust RLS 
filter and the robust RLS fixed-point smoother in 
Theorem 1 vs. 𝐿𝑎𝑔  for the white Gaussian 
observation noises 𝑁(0, 0.12) , 𝑁(0, 0.32) , and 
𝑁(0, 0.52). Here, the MSV for the filtering errors is 
evaluated by 1

2500
∑ (𝑧(𝑖∆) − 𝑧̂(𝑖∆, 𝑖∆))2.2500

𝑖=1  The 
evaluation of the MSV for the fixed-point 
smoothing errors is carried out by 

1

2500
∑ (𝑧(𝑖∆) − 𝑧̂(𝑖∆, 𝑖∆ + 𝐿𝑎𝑔))2,2500

𝑖=1 0.001 ≤

𝐿𝑎𝑔 ≤ 0.005 . From Figure 6, for the white 
Gaussian observation noise 𝑁(0, 0.52), the MSV of 
the fixed-point smoothing errors z(t) − 𝑧̂(𝑡, 𝑡 +
0.002) is slightly smaller than that of the filtering 
errors. For the white Gaussian observation noises 
𝑁(0, 0.12) and 𝑁(0, 0.32), the MSVs of the filtering 
errors are almost the same as those of the fixed-
point smoothing errors z(t) − 𝑧̂(𝑡, 𝑡 + 𝐿𝑎𝑔)  for 
0.001 ≤ 𝐿𝑎𝑔 ≤ 0.005. 

In the simulation example, 1,984  differential 
equations run simultaneously for each filtering 
estimation update. In updating the fixed-point 
smoothing estimate, 2,016 differential equations are 
computed recursively. 
 
 

 
Fig. 1: Autocovariance function 𝐾𝑧̆(𝜏)  of the 
degraded signal 𝑧̆(𝑡) vs. τ 
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Fig. 2: Cross-covariance function 𝐾𝑧𝑦̆(𝜏)  of the 
signal z(𝑡) with the observed value 𝑦̆(𝑡) vs. τ 
 
 

 
Fig. 3: Signal 𝑧(𝑡) and its filtering estimate 𝑧̂(𝑡, 𝑡) 
vs. 𝑡  for the white Gaussian observation noise 
𝑁(0,0. 12) 
 
 

 
Fig. 4: Signal 𝑧(𝑡) and its filtering estimate 𝑧̂(𝑡, 𝑡) 
vs. 𝑡  for the white Gaussian observation noise 
𝑁(0,0. 32) 
 
 

 

 
Fig. 5: Signal 𝑧(𝑡)  and its fixed-point smoothing 
estimate 𝑧̂(𝑡, 𝑡 + 0.005) vs. 𝑡 for the white Gaussian 
observation noise 𝑁(0,0. 12) 

 
 

Table 1. MSVs of filtering errors z(𝑡) − 𝑧̂(𝑡, 𝑡) by 
the robust RLS filter in Theorem 1 and the robust 
RLS Wiener filter [19], and those of fixed-point 
smoothing errors 𝑧(𝑡) − 𝑧̂(𝑡, 𝑡 + 0.005) by the 

robust RLS fixed-point smoother in Theorem 1 for 
the white Gaussian observation noises 𝑁(0, 0.12), 

𝑁(0, 0.32), and 𝑁(0, 0.52). 

 
 

 
Fig. 6: MSVs of the filtering and fixed-point 
smoothing errors by the robust RLS filter and the 
robust RLS fixed-point smoother in Theorem 1 vs. 
𝐿𝑎𝑔  for the white Gaussian observation noises 
𝑁(0, 0.12), 𝑁(0, 0.32), and 𝑁(0, 0.52) 
Example 2 

White Gaussian 
observation 

noise 

MSV of z(𝑡) −
𝑧̂(𝑡, 𝑡) by filter 

in [19] 

MSV of z(𝑡) −
𝑧̂(𝑡, 𝑡) by filter 
in Theorem 1 

MSV of z(𝑡) −
𝑧̂(𝑡, 𝑡 + 0.005)  
by fixed-point 
smoother in 
Theorem 1 

𝑁(0, 0.12) 6.707662×
10−2 

1.131457×
10−2 

1.035210×
10−2 

𝑁(0, 0.32) 4.526449×
10−2 

8.441589×
10−2 

8.337765×
10−2 

𝑁(0, 52) 8.558077×
10−2 

1.350774×
10−1 

1.344245×
10−1 
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Let us consider the second-order mass-spring 
system driven by zero-mean white Gaussian noise 
[29], [30]. 

 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡), 𝑧(𝑡) = 𝐻𝑥(𝑡), 
𝐻 = [1 0], 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + Γ𝑤(𝑡), 

𝑥(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
] , 𝑥(0) = [

1.0
1.0

] , 

𝐴 = [
0 1

−𝜔𝑛
2 −2𝜁𝜔𝑛

] , 𝜔𝑛 = √3, 

𝜁 =
2

𝜔𝑛
, Γ = [

0
𝜔𝑛

2],      

𝐸[𝑣(𝑡)𝑣(𝑠)] = 𝑅𝛿(𝑡 − 𝑠),  
𝐸[𝑤(𝑡)𝑤(𝑠)] = 𝑄𝛿(𝑡 − 𝑠), 𝑄 = 1, 
𝐸[𝑣(𝑡)𝑤(𝑠)] = 0, 𝐸[𝑥(0)𝑤(𝑡)] = 0,  
𝐸[𝑥(0)𝑣(𝑡)] = 0. 

(26) 

 

 
Fig. 7: Signal 𝑧(𝑡)  and its fixed-point smoothing 
estimate 𝑧̂(𝑡, 𝑡 + 0.005) vs. 𝑡 for the white Gaussian 
observation noise 𝑁(0,0. 12) 
 

 
Fig. 8: MSVs of the filtering and fixed-point 
smoothing errors by the robust RLS filter and the 
robust RLS fixed-point smoother in Theorem 1 vs. 
𝐿𝑎𝑔  for the white Gaussian observation noises 
𝑁(0, 0.12), 𝑁(0, 0.32), and 𝑁(0, 0.52) 
 
 

The state-space model is equivalently expressed 
by series RLC circuit, [29].  

Figure 7 illustrates the signal 𝑧(𝑡) and its fixed-
point smoothing estimate 𝑧̂(𝑡, 𝑡 + 0.005)  vs. 𝑡  for 
the white Gaussian observation noise 𝑁(0,0. 12) . 
Figure 7 shows that 𝑧̂(𝑡, 𝑡 + 0.005) estimates 𝑧(𝑡) 
feasibly.  

Figure 8 illustrates the MSVs of the filtering 
and fixed-point smoothing errors by the robust RLS 
filter and the robust RLS fixed-point smoother in 
Theorem 1 vs. 𝐿𝑎𝑔  for the white Gaussian 
observation noises 𝑁(0, 0.12) , 𝑁(0, 0.32) , and 
𝑁(0, 0.52). From Figure 8, for the white Gaussian 
observation noise 𝑁(0, 0.52), the MSV of the fixed-
point smoothing errors z(t) − 𝑧̂(𝑡, 𝑡 + 0.002)  is 
slightly smaller than that of the filtering errors. For 
the white Gaussian observation noises 𝑁(0, 0.12) 
and 𝑁(0, 0.32), the MSVs of the filtering errors are 
almost the same as those of the fixed-point 
smoothing errors z(t) − 𝑧̂(𝑡, 𝑡 + 𝐿𝑎𝑔)  for 0.001 ≤
𝐿𝑎𝑔 ≤ 0.005. 

 
 

7  Conclusion 
This paper has proposed a novel robust estimation 
technique for continuous-time uncertain stochastic 
systems. In the degraded state-space model, the 
observation vector and the system matrix include 
uncertain parameters. Additive white Gaussian noise 
is present in the observation of the degraded signal. 
The feature of utilizing covariance information is 
present in the robust RLS fixed-point smoothing and 
filtering algorithms in Theorem 1. The finite Fourier 
cosine series expansion approximates the cross-
covariance function of the signal with the observed 
value, as well as the autocovariance function of the 
degraded signal.  

In the first simulation example, the MSV by the 
robust RLS filter in Theorem 1 is smaller than that 
by the robust RLS Wiener filter for the white 
Gaussian observation noise 𝑁(0, 0.12). In the two 
simulation examples, by using the robust RLS fixed-
point smoother and filter in Theorem 1, for the 
white Gaussian observation noise 𝑁(0, 0.52) , the 
MSV of the fixed-point smoothing errors z(t) −
𝑧̂(𝑡, 𝑡 + 0.002) is slightly smaller than that of the 
filtering errors. For the white Gaussian observation 
noises 𝑁(0, 0.12) and 𝑁(0, 0.32), the MSVs of the 
filtering errors are nearly identical to those of the 
fixed-point smoothing errors z(t) − 𝑧̂(𝑡, 𝑡 + 𝐿𝑎𝑔) 
for Lag values between 0.001 and 0.005. Based on 
these results, the proposed fixed-point smoothing 
and filtering method utilizing covariance 
information is valid. 
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The proposed robust estimation method using 
covariance information leads to the development of 
new robust estimators for continuous-time 
stochastic systems. 
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APPENDIX 
Proof of Theorem 1 

Differentiating (7) with respect to 𝑇, we have 

 

𝜕ℎ(𝑡, 𝑠, 𝑇)

𝜕𝑇
𝑅

= −ℎ(𝑡, 𝑇, 𝑇)𝐾𝑧̆(𝑇, 𝑠)

− ∫
𝜕ℎ(𝑡, 𝜏, 𝑇)

𝜕𝑇
𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏

𝑇

0

. 

(A-1) 

Introducing a function 𝐿(𝑠, 𝑡) satisfying  

 
𝐿(𝑠, 𝑇)𝑅 = 𝐵̆𝑇(𝑠) 
− ∫ 𝐿(𝜏, 𝑇)𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏

𝑇

0
, 

(A-2) 

we obtain 

 𝜕ℎ(𝑡, 𝑠, 𝑇)

𝜕𝑇
= −ℎ(𝑡, 𝑇, 𝑇)𝐴̆(𝑇)𝐿(𝑠, 𝑇). (A-3) 

From (7), ℎ(𝑡, 𝑇, 𝑇) satisfies 

 
ℎ(𝑡, 𝑇, 𝑇)𝑅 = 𝐾𝑧𝑦̆(𝑡, 𝑇) −

∫ ℎ(𝑡, 𝜏, 𝑇)𝐾𝑧̆(𝜏, 𝑇)𝑑𝜏
𝑇

0
. 

(A-4) 

From (9), (A-4) is transformed into 

 
ℎ(𝑡, 𝑇, 𝑇)𝑅 = 𝐾𝑧𝑦̆(𝑡, 𝑇) −

∫ ℎ(𝑡, 𝜏, 𝑇)𝐵̆(𝜏)𝐴̆𝑇(𝑇)𝑑𝜏
𝑇

0
. 

(A-5) 

Introducing a function 
 𝑃(𝑡, 𝑇) = ∫ ℎ(𝑡, 𝜏, 𝑇)𝐵̆(𝜏)𝑑𝜏

𝑇

0
, (A-6) 

ℎ(𝑡, 𝑇, 𝑇) is given by 

 
ℎ(𝑡, 𝑇, 𝑇) = (𝐾𝑧𝑦̆(𝑡, 𝑇) −

𝑃(𝑡, 𝑇)𝐴̆𝑇(𝑇))/𝑅. 
(A-7) 

Differentiating (A-6) with respect to 𝑇, we have 

 
𝜕𝑃(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)𝐵̆(𝑇) +

∫
𝜕ℎ(𝑡,𝜏,𝑇)

𝜕𝑇
𝐵̆(𝜏)𝑑𝜏

𝑇

0
. 

(A-8) 
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Substituting (A-3) into (A-8) and introducing a 
function 
 𝑆(𝑇) = ∫ 𝐿(𝜏, 𝑇)𝐵̆(𝜏)𝑑𝜏

𝑇

0
, (A-9) 

we have 

 
𝜕𝑃(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)(𝐵̆(𝑇) −

𝐴̆(𝑇)𝑆(𝑇)). (A-10) 

The fixed-point smoothing estimate 𝑧̂(𝑡, 𝑇) of the 
signal 𝑧(𝑡) is given by (3). Differentiating (3) with 
respect to 𝑇, we have 

 
𝜕𝑧̂(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)𝑦̆(𝑇) +

∫
𝜕ℎ(𝑡,𝑠,𝑇)

𝜕𝑇
𝑦̆(𝑠)𝑑𝑠

𝑇

0
. 

(A-11) 

Substituting (A-3) into (A-11), we have 

 
𝜕𝑧̂(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)𝑦̆(𝑇) −

ℎ(𝑡, 𝑇, 𝑇)𝐴̆(𝑇) ∫ 𝐿(𝑠, 𝑇)𝑦̆(𝑠)𝑑𝑠
𝑇

0
. 

(A-12) 

Introducing 𝑓(𝑇) given by 
 𝑓(𝑇) = ∫ 𝐿(𝑠, 𝑇)𝑦̆(𝑠)𝑑𝑠

𝑇

0
, (A-13) 

(A-12) is transformed into 

 
𝜕𝑧̂(𝑡,𝑇)

𝜕𝑇
= ℎ(𝑡, 𝑇, 𝑇)(𝑦̆(𝑇) −

𝐴̆(𝑇)𝑓(𝑇)), 𝑧̂(𝑡, 𝑇)|𝑇=𝑡 = 𝑧̂(𝑡, 𝑡). 
(A-14) 

From (7), the impulse response function ℎ(𝑡, 𝑠, 𝑡) 
for the filtering estimate 𝑧̂(𝑡, 𝑡) of 𝑧(𝑡) satisfies 

 
ℎ(𝑡, 𝑠, 𝑡)𝑅 = 𝐾𝑧𝑦̆(𝑡, 𝑠) −

∫ ℎ(𝑡, 𝜏, 𝑡)𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏
𝑡

0
, 0≤s≤t. 

(A-15) 

Introducing a function 𝐽(𝑠, 𝑡) satisfying 

 
𝐽(𝑠, 𝑡)𝑅 = 𝛽𝑇(𝑠) 

− ∫ 𝐽(𝜏, 𝑡)𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏.
𝑡

0

 (A-16) 

ℎ(𝑡, 𝑠, 𝑡) is given by 
 ℎ(𝑡, 𝑠, 𝑡) = 𝛼(𝑡)𝐽(𝑠, 𝑡). (A-17) 
Differentiating (A-16) with respect to 𝑡, we have 

 

𝜕𝐽(𝑠, 𝑡)

𝜕𝑡
𝑅

= −𝐽(𝑡, 𝑡)𝐾𝑧̆(𝑡, 𝑠)

− ∫
𝜕𝐽(𝜏, 𝑡)

𝜕𝑡
𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏.

𝑡

0

 

(A-18) 

From (A-2) and (A-18), 𝜕𝐽(𝑠,𝑡)

𝜕𝑡
 satisfies 

 𝜕𝐽(𝑠,𝑡)

𝜕𝑡
= −𝐽(𝑡, 𝑡)𝐴̆(𝑡)𝐿(𝑠, 𝑡). (A-19) 

From (A-16), 𝐽(𝑡, 𝑡) satisfies 

 
𝐽(𝑡, 𝑡)𝑅 = 𝛽𝑇(𝑡) 

− ∫ 𝐽(𝜏, 𝑡)𝐾𝑧̆(𝜏, 𝑡)𝑑𝜏.
𝑡

0

 (A-20) 

From (9), (A-20) is rewritten as 

 
𝐽(𝑡, 𝑡)𝑅

= 𝛽𝑇(𝑡) − ∫ 𝐽(𝜏, 𝑡)𝐵̆(𝜏)𝐴̆𝑇(𝑡)𝑑𝜏.
𝑡

0

 (A-21) 

Introducing a function  

 𝑟(𝑡) = ∫ 𝐽(𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏,
𝑡

0

 (A-22) 

𝐽(𝑡, 𝑡) is given by 
 𝐽(𝑡, 𝑡) = (𝛽𝑇(𝑡) − 𝑟(𝑡)𝐴̆𝑇(𝑡))/𝑅. (A-23) 
Differentiating (A-22) with respect to 𝑡, we have 

 

𝑑𝑟(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)𝐵̆(𝑡) 

+ ∫
𝜕𝐽(𝜏, 𝑡)

𝜕𝑡
𝐵̆(𝜏)𝑑𝜏.

𝑡

0

 
(A-24) 

Substituting (A-19) into (A-24), we have 

 

𝑑𝑟(𝑡)

𝑑𝑇
= 𝐽(𝑡, 𝑡)𝐵̆(𝑡)

− 𝐽(𝑡, 𝑡)𝐴̆(𝑡) ∫ 𝐿(𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏.
𝑡

0

 

(A-25) 

Introducing a function 
 𝑆(𝑡) = ∫ 𝐿(𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏

𝑡

0
, (A-26) 

we obtain 

 
𝑑𝑟(𝑡)

𝑑𝑇
= 𝐽(𝑡, 𝑡)(𝐵̆(𝑡) − 𝐴̆(𝑡)𝑆(𝑡)),  

r(0) = 0. 
(A-27) 

From (A-2), 𝐿(𝑠, 𝑡) satisfies 

 
𝐿(𝑠, 𝑡)𝑅 = 𝐵̆𝑇(𝑠) −

∫ 𝐿(𝜏, 𝑡)𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏
𝑡

0
. (A-28) 

Differentiating (A-28) with respect to 𝑡, we have 

 

𝜕𝐿(𝑠, 𝑡)

𝜕𝑡
𝑅 = −𝐿(𝑡, 𝑡)𝐾𝑧̆(𝑡, 𝑠) 

− ∫
𝜕𝐿(𝜏, 𝑡)

𝜕𝑡
𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏.

𝑡

0

 
(A-29) 

From (9), (A-29) is transformed into 

 

𝜕𝐿(𝑠, 𝑡)

𝜕𝑡
𝑅 = −𝐿(𝑡, 𝑡)𝐴̆(𝑡)𝐵̆𝑇(𝑠) 

− ∫
𝜕𝐿(𝜏, 𝑡)

𝜕𝑇
𝐾𝑧̆(𝜏, 𝑠)𝑑𝜏.

𝑡

0

 
(A-30) 

From (A-28), we obtain 

 𝜕𝐿(𝑠, 𝑡)

𝜕𝑡
= −𝐿(𝑡, 𝑡)𝐴̆(𝑡)𝐿(𝑠, 𝑡). (A-31) 

From (A-28), 𝐿(𝑡, 𝑡) satisfies 

 
𝐿(𝑡, 𝑡)𝑅 = 𝐵̆𝑇(𝑡) 

− ∫ 𝐿(𝜏, 𝑡)𝐾𝑧̆(𝜏, 𝑡)𝑑𝜏.
𝑡

0

 
(A-32) 

From (9), (A-32) is rewritten as  

 
𝐿(𝑡, 𝑡)𝑅 = 𝐵̆𝑇(𝑡) 

− ∫ 𝐿(𝜏, 𝑡)𝐵̆(𝜏)𝐴̆𝑇(𝑡)𝑑𝜏.
𝑡

0

 (A-33) 

From (A-26), 𝐿(𝑡, 𝑡) is given by 
 𝐿(𝑡, 𝑡) = (𝐵̆𝑇(𝑡) − 𝑆(𝑡)𝐴̆𝑇(𝑡))/𝑅. (A-34) 

The filtering estimate 𝑧̂(𝑡, 𝑡) of the signal 𝑧(𝑡) is 
given by 
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 𝑧̂(𝑡, 𝑡) = ∫ ℎ(𝑡, 𝑠, 𝑡)𝑦̆(𝑠)𝑑𝑠
𝑡

0

 (A-35) 

Substituting (A-17) into (A-35), we have 
 𝑧̂(𝑡, 𝑡) = 𝛼(𝑡) ∫ 𝐽(𝑠, 𝑡)𝑦̆(𝑠)𝑑𝑠

𝑡

0
. (A-36) 

Introducing a function 𝑒(𝑇) given by 
 𝑒(𝑡) = ∫ 𝐽(𝑠, 𝑡)𝑦̆(𝑠)𝑑𝑠

𝑡

0
, (A-37) 

𝑧̂(𝑡, 𝑡) is given by 
 𝑧̂(𝑡, 𝑡) = 𝛼(𝑡)𝑒(𝑡). (A-38) 
Differentiating (A-37) with respect to 𝑡, we have 

 
𝑑𝑒(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)𝑦̆(𝑡) 

+ ∫
𝜕𝐽(𝑠,𝑡)

𝜕𝑡
𝑦̆(𝑠)𝑑𝑠

𝑡

0
. 

(A-39) 

Substituting (A-19) into (A-39), we have 

 
𝑑𝑒(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)𝑦̆(𝑡) −

𝐽(𝑡, 𝑡)𝐴̆(𝑡) ∫ 𝐿(𝑠, 𝑡)𝑦̆(𝑠)𝑑𝑠
𝑡

0
. 

(A-40) 

From (A-13), we obtain 

 
𝑑𝑒(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)(𝑦̆(𝑡) − 𝐴̆(𝑡)𝑓(𝑡)),  

e(0)=0. 
(A-41) 

From (A-13), differentiating 𝑓(𝑡) with respect to 𝑡, 
we have 

 
𝑑𝑓(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)𝑦̆(𝑡) 

+ ∫
𝜕𝐿(𝑠,𝑡)

𝜕𝑡
𝑦̆(𝑠)𝑑𝑠

𝑡

0
. 

(A-42) 

Substituting (A-31) into (A-42), we have 

 
𝑑𝑓(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)𝑦̆(𝑡) −

𝐿(𝑡, 𝑡)𝐴̆(𝑡) ∫ 𝐿(𝑠, 𝑡)𝑦̆(𝑠)𝑑𝑠
𝑡

0
. 

(A-43) 

From (A-13), we obtain 

 
𝑑𝑓(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)(𝑦̆(𝑡) − 𝐴̆(𝑡)𝑓(𝑡)), 

 𝑓(0) = 0. 
(A-44) 

Differentiating (A-26) with respect to 𝑡, we have 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)𝐵̆(𝑡) 

+ ∫
𝜕𝐿(𝜏,𝑡)

𝜕𝑡
𝐵̆(𝜏)𝑑𝜏

𝑡

0
. 

(A-45) 

Substituting (A-31) into (A-45), we have 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)𝐵̆(𝑡) 

−𝐿(𝑡, 𝑡)𝐴̆(𝑡) ∫ 𝐿(𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏
𝑡

0
. 

(A-46) 

From (A-26), we obtain 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)(𝐵̆(𝑡) − 𝐴̆(𝑡)𝑆(𝑡)), 

 𝑆(0) = 0. 
(A-47) 

From (A-6), 𝑃(𝑡, 𝑡) is given by 
 𝑃(𝑡, 𝑡) = ∫ ℎ(𝑡, 𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏

𝑡

0
. (A-48) 

Substituting (A-17) into (A-48), we have 
 𝑃(𝑡, 𝑡) = 𝛼(𝑡) ∫ 𝐽(𝜏, 𝑡)𝐵̆(𝜏)𝑑𝜏

𝑡

0
. (A-49) 

From (A-22), 𝑃(𝑡, 𝑡) is given by 

 𝑃(𝑡, 𝑡) = 𝛼(𝑡)𝑟(𝑡). (A-50) 
(Q.E.D.) 
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