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Abstract: - This paper presents the development and validation of a semi-automated evacuation route system
designed for rapid response during seismic events. Given Japan’s frequent earthquakes, ensuring timely
evacuation is a critical issue. The proposed system utilizes the Earthquake EarlyWarning (EEW) system to detect
seismic activity and offers residents the option to automatically open doors or windows, securing evacuation
routes before structural deformation occurs. A prototype of the system was developed using a Raspberry Pi
and tested with pre-recorded EEW signals. Results show that while the system reliably detected EEW and
transmitted notifications to residents, the time required for window opening reached 14 seconds, indicating
room for improvement in response time. Future work will focus on reducing this delay through local server
implementation and bypassing cloud-based systems. This system not only aids in disaster response but also has
potential for everyday applications, such as baby cry detection, ensuring its continued relevance in daily life.

Key-Words: - Earthquake, Evacuation system, Semi-automated, Earthquake Early Warning, Raspberry Pi.

Received: March 19, 2024. Revised: August 14, 2024. Accepted: September 11, 2024. Published: November 29, 2024.   

1 Introduction

Earthquakes are among the most devastating natural
disasters in Japan, and due to their frequency
and magnitude, earthquake countermeasures are an
urgent issue that concerns society as a whole.
Geographically, Japan is located at the convergence
of four tectonic plates, making it a country with a very
high frequency of seismic activity. Approximately
18% of the world’s earthquakes with a magnitude of 6
or higher occur in Japan [1], a notably high proportion
compared to other countries, [2]. For instance, in
2023 alone, over 2,000 earthquakes were observed in
Japan, with 19 of them reaching a magnitude of 6 or
higher, [3].

Despite decades of global research, earthquake
prediction technology has yet to achieve full accuracy.
Current earthquake forecasts rely on factors such
as seismic activity history [4], crustal deformation
[5], and the behavior of underground faults [6].
Statistical methods and physical models are employed
to predict the timing, location, and magnitude of
earthquakes, but due to the complex nature of seismic
phenomena, perfect prediction remains technically
challenging, [7]. For example, research based on
plate tectonics theory suggests that earthquakes occur
when stress accumulated along plate boundaries is
released, but the timing and magnitude of such
releases are inherently uncertain, [8].

Additionally, some studies have reported

anomalous geomagnetic variations as potential
precursors to earthquakes, which has led to further
investigation into their predictive capabilities, [9],
[10]. Other phenomena, such as unusual animal
behavior [11], and changes in hot spring activity
[12], have long been regarded as possible earthquake
precursors, and some researchers are exploring the
scientific validity of these observations as predictive
tools.

In terms of post-earthquake response, Japan has
implemented an ”Earthquake EarlyWarning” system,
provided by the Japan Meteorological Agency, to
rapidly disseminate information after an earthquake
has been detected. This system detects the initial
seismic wave (P-wave) and issues an alert before the
more destructive secondary wave (S-wave) arrives,
giving people critical time to take shelter. Unlike
traditional prediction methods, this system focuses on
mitigating damage after the earthquake has occurred,
playing a crucial role in saving lives. However, both
current prediction technologies and the Earthquake
Early Warning system have limitations. Improving
prediction accuracy remains an important goal, and
the development of better preemptive measures for
large-scale earthquakes is necessary.

In earthquake-prone Japan, ensuring rapid
evacuation during seismic events is a critical issue,
and the implementation of systems to aid evacuation
efforts is essential for reducing casualties caused by
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earthquake-related disasters.

In light of this, the goal of this study is to develop
an automatic evacuation door-opening system for use
during earthquakes. Currently, securing evacuation
routes during seismic events relies on manual actions,
such as opening doors or windows. However, when
an Earthquake Early Warning is received, individuals
should prioritize their safety, and many cases have
been reported where building deformation or damage
after the earthquake made it difficult to operate doors
and windows, [13].

To address this issue, this paper proposes a
semi-automated evacuation door-opening system.
Specifically, the system is designed to automatically
open evacuation routes in response to an Earthquake
EarlyWarning, allowing residents to evacuate quickly
and safely. Based on the results of the preliminary
survey described in Chapter 3, concerns were raised
regarding the reliability of a fully automated system
and its functionality during power outages, resulting
in a preference by most users for a semi-automated
approach. In response to these needs, the proposed
system supports residents in securing evacuation
routes promptly in the event of an earthquake while
also allowing for manual intervention. A prototype
of this system, utilizing a Raspberry Pi, has also been
developed and will be introduced in this paper.

If implemented, the proposed system is expected
to contribute to faster evacuation and improved safety,
while also playing a role in preventing secondary
disasters following earthquakes. Furthermore, even
in situations where voluntary evacuation is not
possible, the semi-automated system can facilitate
rescue efforts by allowing emergency responders
swift access to the building interior, thus enhancing
the efficiency of rescue operations.

2 Preliminary

2.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs), a type
of neural network, are widely used for pattern
recognition tasks, particularly in the domains of
image and audio data. CNNs are highly effective in
feature extraction through convolutional operations.
Having demonstrated superior performance in image
processing applications [14], CNNs have been widely
adopted in numerous studies and have significantly
contributed to advancements in processing not only
images but other data types as well.

The basic structure of CNNs consists of
convolutional layers, pooling layers, and fully
connected layers. The convolutional layer applies
filters (kernels) to the input data, performing
convolution operations to extract local features from
image or audio data. The convolution operation can

be expressed by the following equation:

ykij =

M−1∑
m=0

N−1∑
n=0

x(i+m)(j+n)w
k
mn + bk (1)

Here, ykij represents the output from filter k, xij is

the input data, wk
mn are the filter weights, and bk is

the bias. This operation allows CNNs to capture local
features from images or audio signals.

The pooling layer serves to reduce the size
of the feature map extracted by the convolutional
layer. Typically, max pooling is used, which selects
the maximum value within a specific region to
downsample the data, reducing its dimensions and
preventing overfitting. The output of the pooling
layer is defined as:

y
′

ij = max
(m,n)∈P

y(i+m)(j+n) (2)

Here, y
′

ij is the output after pooling, and P
represents the pooling region.

In the fully connected layer, the output from
the pooling layer is flattened and connected to
every node in the next layer. This layer is
responsible for producing the final classification
results. For example, in tasks such as image or speech
recognition, a Softmax function is often applied at
the output layer to compute the probabilities for each
class.

One of the major advantages of CNNs is their
ability to share parameters and utilize a local receptive
field, which significantly improves computational
efficiency. By applying filters to large-scale data like
images, CNNs can efficiently learn local features,
resulting in a substantial reduction in the number of
parameters compared to fully connected networks.
This leads to faster learning and helps prevent
overfitting.

Another key feature of CNNs is their hierarchical
approach to learning. In the early layers, the
network captures low-level features such as edges and
corners, while deeper layers progressively learn more
abstract features, such as object shapes and patterns.
This hierarchical feature extraction is particularly
effective in tasks such as speech recognition and
image classification, [15].

2.2 Speech Recognition using CNN and

Spectrograms
In speech recognition technology, CNNs have found
broad application not only in image recognition but
also in processing audio data. A particularly effective
approach involves converting audio signals into
spectrograms and then inputting these spectrograms
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into a CNN to efficiently learn the frequency
characteristics of the audio, [16].

However, since audio signals exist in the
time domain, they are not directly suitable for
processing by CNNs. To address this, Short-Time
Fourier Transform (STFT) is employed to convert
time-domain signals into the frequency domain,
producing a spectrogram. The formula for STFT is
expressed as follows:

X(t, f) =

∫ ∞

−∞
x(τ)w(τ − t)e−j2πfτdτ (3)

Here, x(τ) represents the audio signal, w(τ − t)
denotes the window function, t represents time, and
f indicates frequency. Through this transformation,
the frequency components of the audio signal
are visualized over time as a spectrogram. The
spectrogram is represented as a three-dimensional
dataset, where the horizontal axis shows time, the
vertical axis represents frequency, and the color
intensity reflects the energy strength. For instance,
a spectrogram created from a recording of an
Earthquake Early Warning is shown in Figure 1. By
feeding the generated spectrogram into a CNN, the
model can learn and infer from the data.

Figure 1: Spectrogram created from a recording of an

Earthquake Early Warning. The horizontal axis

represents time, the vertical axis represents frequency,

and the color intensity reflects energy strength.

CNNs extract features from spectrograms to
use in classification tasks. The convolutional
layers of CNNs typically respond to various
frequency components and temporal variations
in the spectrogram, allowing the model to learn
distinctive audio patterns. For example, the filter w
in the convolutional layer, which reacts to different
frequency components, is expressed as follows:

ykij =

M−1∑
m=0

N−1∑
n=0

X(i+m)(j+n)w
k
mn + bk (4)

Here, X denotes the spectrogram, w is the
convolutional filter, b represents the bias term, and ykij
represents the output feature map.

Additionally, in speech recognition,
Mel-Frequency Cepstral Coefficients (MFCC)
are widely used alongside spectrograms. MFCCs
capture the characteristics of audio signals based on
a nonlinear frequency scale, mimicking the human
auditory system. The process for generating MFCCs
follows these steps:

1. Segment the audio signal into frames

2. Apply Short-Time Fourier Transform (STFT) to
each frame

3. Convert the frequency axis to the mel scale

4. Extract the log-amplitude spectrum

5. Apply the Discrete Cosine Transform (DCT) to
compute MFCCs

MFCCs, which take the logarithm of frequency
components, consider the nonlinearity of human
hearing, contributing to improved accuracy in speech
recognition, [17].

Recently, hybrid models combining CNNs with
Recurrent Neural Networks (RNNs) have also
been applied to speech recognition tasks. While
CNNs extract localized temporal features from
spectrograms, RNNs capture long-term dependencies
in the audio data. This hybrid architecture has been
shown to significantly enhance speech recognition
accuracy compared to traditional models, [18].

In this study, since complex speech recognition
is not required, a simple CNN is used to recognize
Earthquake Early Warnings from spectrograms.

3 Proposed System
This section describes the system proposed in this
study.

3.1 Preliminary Survey via Questionnaire

A preliminary survey was conducted to gather
information relevant to the development of the
system. The survey was conducted online from
February 4, 2020, to February 11, 2020, with a total of
874 respondents, consisting ofmen andwomen across
Japan aged between their teens and seventies.

The survey included the following questions:
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• What is the maximum seismic intensity you have
experienced, and have you ever encountered
difficulty opening doors or windows during an
earthquake?

• If an automatic evacuation door-opening system
were available, would you want to use it?

• Would you prefer a fully automatic or
semi-automatic system for opening evacuation
doors?

The results of the survey are summarized in Table
1, Figure 2, and Figure 3.

Table 1: Percentage of respondents who experienced difficulty

opening doors or windows, based on the maximum

seismic intensity they have experienced. The higher the

seismic intensity, the more likely respondents were to

report difficulty.

Maximum seismic Percentage reporting
intensity experienced difficulty [%]

3 or lower 4.7
4 4.0

5 lower 5.0
5 upper 10.8
6 lower 14.4
6 upper 29.6

7 30.3

Figure 2: Survey results regarding the willingness to use an

automatic evacuation door-opening system.

As shown in Table 1, the percentage of
respondents who experienced difficulty opening
doors or windows increases with the seismic intensity
they experienced. Therefore, the greater the seismic
intensity, the more essential it becomes to secure
evacuation routes by opening doors or windows
in advance. However, in practice, the stronger the
earthquake, the more difficult it becomes to move to

Figure 3: Survey results on preferences for fully automatic or

semi-automatic evacuation door-opening systems.

a safe location while simultaneously opening doors
or windows, as it becomes challenging to walk freely
once the shaking starts.

In Figure 2, approximately 54.2% of respondents
expressed a willingness to use an automatic
evacuation door-opening system, indicating that
securing evacuation routes is a significant concern
for many. Conversely, some respondents provided
reasons for not wanting to use the system, such as:

• Concern that doors or windows might open
automatically when no one is at home.

• The system would be ineffective during power
outages, rendering its installation pointless.

• A desire to maintain manual control over the
opening and closing of doors or windows.

The concern that the system might open doors or
windows when no one is home highlights the need for
the system to confirm whether residents are nearby.
As for concerns regarding power outages, the system
would simply revert to its non-installed state in the
event of a power failure, so this does not present
a significant problem. However, it is important to
avoid mechanisms that lock doors or windows during
a power outage, preventing manual operation. The
possibility of adopting backup power solutions should
also be considered.

For those who wish to control the opening and
closing of doors or windows manually, this issue can
be addressed by opting for a semi-automatic rather
than fully automatic system.

A fully automatic system automatically opens
designated doors or windows without human
intervention when an earthquake occurs. In
contrast, a semi-automatic system prompts human
decision-making during an earthquake, and doors
or windows are mechanically opened only if the
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resident chooses to do so. According to Figure 3,
55.9% of respondents preferred a semi-automatic
system, which slightly outnumbered those who
favored a fully automatic system. This suggests that
a semi-automatic system better aligns with users’
needs.

Based on these results, it was determined that a
semi-automatic system is the preferred option for the
system being developed.

3.2 System Overview
The flow of the proposed system is illustrated in
Figure 4.

Figure 4: Overview of the proposed system. When an

earthquake occurs and the reception of an Earthquake

Early Warning is detected, a confirmation message is

sent to the resident’s smartphone, prompting whether

to open windows or doors. The system will then

execute the opening process based on the resident’s

input.

When an earthquake occurs, an Earthquake
Early Warning is broadcasted via smartphones
or television. This system constantly monitors
environmental sounds using a microphone. Upon
detecting the Earthquake Early Warning sound, the
system sends a confirmation message to the resident’s
smartphone, asking whether they wish to open doors
or windows. If the resident opts to open them, the
system initiates the process to open the specified
doors or windows.

3.3 System Configuration
Aprototype of the system has been created, as shown
in Figure 5. The system is built around a Raspberry
Pi 3 Model B+, with the operating system running
Ubuntu Server. A USB microphone is connected to
monitor environmental sounds.

3.4 Speech Recognition
The environmental sound input from the microphone
is divided into 3-second intervals and converted into
frequency spectrogram images within the Raspberry
Pi. These images are then fed into a machine learning

Figure 5: The developed prototype. The system is based on a

Raspberry Pi running Ubuntu Server with an external

USB microphone connected.

model built using Microsoft’s Azure AI Custom
Vision service. The model was pre-trained using the
following audio sources:

• Earthquake Early Warning sound from
smartphones

• Earthquake EarlyWarning sound from television
broadcasts

• Baby crying sounds

The Earthquake Early Warning sounds from
smartphones and television were treated as separate
audio sources due to their differences. The reason for
including baby crying sounds in the training will be
explained later. When the Azure AI Custom Vision
model predicts the Earthquake Early Warning with
more than 70% confidence, the system determines
that an Earthquake Early Warning has been detected
and sends a confirmation message to the resident
about whether to open the doors or windows. Figure
6 shows a screenshot of the program in operation.

The reason for including baby crying sounds is
as follows: While this system is designed for use
during Earthquake Early Warnings, in reality, such
warnings occur infrequently, and thus, the system
may not often be put to use. There is a concern
that users might forget about the system’s existence,
which could reduce its effectiveness in emergencies.
To mitigate this risk, it is preferable that the system
can be used regularly for other purposes, thereby
maintaining its presence in users’ minds.

For example, in households with infants, the
system could be set to notify residents when a baby
is crying. This would make the system useful in
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Figure 6: Screenshot of the program in operation. The

audio input from the microphone is classified into

four categories: Earthquake Early Warning from

smartphone (eq-phone), Earthquake Early Warning

from television (eq-tv), baby crying (baby), and other

sounds (Negative).

daily life and keep users aware of it. Even in
households without infants, the system could serve
as a general notification service, alerting residents to
various events and making the system more practical
for everyday use.

3.5 Notifications to Residents
In Japan, the SNS application LINE is widely used,
so to lower the barriers to system adoption, a LINE
Bot was implemented. When the system determines
that an Earthquake Early Warning has been detected
via audio recognition, the LINE beacon function is
activated. If residents who have registered their
devices in advance are within the range of the
beacon, the system responds to the beacon signal. A
cloud server, pre-configured with an HTTPS server,
receives the beacon response via Webhook, and
sends a confirmation message to the resident’s LINE
application asking whether to open the doors or
windows (Figure 7). The resident can choose to
tap either ”Open” or ”Don’t open” on the displayed
options to issue a command.

For the cloud server, MicrosoftAzure was utilized.
After receiving the resident’s response, the Webhook
transmits the result to the cloud server. If the resident
chooses to open the doors or windows, the signal is
sent to the local Raspberry Pi to initiate the opening
process.

3.6 Opening Doors and Windows
If the resident opts to open the doors or windows, the
system proceeds with the opening process before the

Figure 7: Screen showing the LINE-based confirmationmessage

asking the resident whether to open the doors or

windows. The message reads ”An Earthquake Early

Warning has been issued. Would you like to open the

evacuation routes?” with options to ”Open” or ”Don’t

open.”

earthquake causes deformation to the door or window
frames. For the prototype, the SAWOACSS product
from Sanko Co., Ltd. was used. SAWOACSS is a
device that allows windows to be opened and closed
via smartphone, and its operation can be controlled
using the Javascript-based TuyAPI. When the system
receives the signal via LINE, TuyAPI is used to
control SAWOACSS to open the windows. Figure
8 shows the installed setup, with the arrow pointing
to the SAWOACSS device mounted at the top of the
window.

Figure 8: The SAWOACSS device from Sanko Co., Ltd.,

installed to automatically open and close windows.

The arrow points to the SAWOACSS, mounted at the

top of the window.

A key point to consider is that TuyAPI is an
API for controlling devices within a local network.
Therefore, both the Raspberry Pi running TuyAPI and
the SAWOACSSmust be on the same network. When
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the cloud server sends the open signal to the local
Raspberry Pi, TuyAPI communicates the command
to the SAWOACSS, triggering the window opening
process.

4 System Verification and Discussion
System verification was conducted using the
developed prototype system.

4.1 System Verification

In this test, pre-recorded Earthquake Early Warning
sounds were played. Two types of recordings were
prepared: one from a television broadcast and the
other from a smartphone. Each recording was played
fifteen times, for a total of thirty trials. The time
required for each process was measured.

When the pre-recorded Earthquake EarlyWarning
sound was played, the Raspberry Pi, running the
sound recognition program, successfully responded.
Subsequently, a message was delivered to the
resident’s smartphone, allowing them to select
whether to open the door or window. Upon selecting
the option to open, the window was successfully
opened.

On average, it took 4.9 seconds from the
Earthquake Early Warning sound to the arrival of
the confirmation message. Additionally, it took an
average of 2.7 seconds from receiving the message
to issuing the command to open the window. From
the time the command was issued, it took 3.4 seconds
for the window opening process to begin. Depending
on the size of the window, it takes approximately 5 to
7 seconds to fully open a large window that connects
to a garden, allowing human passage. However, for
opening to a minimum width sufficient for entry, i.e.,
about 600 mm [19], it took around 3 seconds.

4.2 Discussion

First, all thirty trials successfully detected the
Earthquake Early Warning. Additionally, the system
ran for several hours during the experiment without
any false detections.

Although it took 4.9 seconds for the message to
be delivered via LINE after the Earthquake Early
Warning was triggered, residents would likely need
more than 4.9 seconds to hear the warning and
move to a safe location. Therefore, considering that
this system operates semi-automatically, the response
speed is considered sufficient.

Furthermore, it took a total of 14.0 seconds
from the Earthquake Early Warning sound to the
point where the window was opened to a width of
approximately 600 mm.

Earthquakes generate primary waves (P-waves),
which cause initial minor shaking, followed by

secondary waves (S-waves), which cause the main
shaking and often lead to structural deformations. The
time between receiving an Earthquake EarlyWarning
and the arrival of the S-waves, known as the lead time,
typically ranges from a few seconds to several tens
of seconds, [20]. Thus, it is crucial to complete the
window-opening process in under 10 seconds.

To achieve this, it would be beneficial to establish
the TuyAPI connection as soon as the Earthquake
Early Warning is detected, allowing the system
to initiate the opening process immediately after
receiving the command. Moreover, implementing
a local server instead of relying on a cloud server
or adopting a system independent of LINE could
further reduce latency, improving the system’s overall
response time.

5 Conclusion
In this study, we proposed and developed a
semi-automated evacuation door-opening system
designed to automatically open evacuation routes
during earthquakes and evaluated its prototype.
The system is designed to detect Earthquake Early
Warnings (EEW) and prompt residents with a
confirmation to open evacuation routes, thereby
supporting rapid and safe evacuation. The results
of system verification demonstrated that the system
reliably detected EEW, and the processes leading
to the resident’s decision to open evacuation doors
or windows functioned as expected. However, it
was found that the time required to open doors
or windows reached 14 seconds, indicating that
further improvements are necessary to ensure that
evacuation routes are opened before the arrival of
the primary seismic waves. Future efforts will focus
on optimizing the TuyAPI connection, implementing
local servers, and adopting independent systems
other than LINE to reduce latency and improve
response times.

In addition, this system includes features useful
in daily life. For instance, it can detect a baby’s
cry, offering potential support for child-rearing. With
further development, the system might even assess
why a baby is crying, adding a deeper level of
assistance for caregivers. Furthermore, by detecting
sounds from pets, such as a dog barking, the system
could alert users to possible issues at home when they
are away. Regular use of the system in daily life
would increase familiarity, contributing to smoother
utilization in the event of an earthquake.

In terms of real-world impact, implementing this
system is expected to enable rapid evacuation during
earthquakes, especially in a country like Japan,
where seismic activity is frequent. The system
could potentially become a standard safety feature
in many homes. Moreover, by providing everyday
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functionalities, the system extends its utility beyond
disaster scenarios, offering continuous value in daily
life.

Considering potential user feedback,
improvements based on user concerns are crucial.
Survey results revealed concerns about the reliability
of fully automated systems and functionality
during power outages. Therefore, future system
enhancements should focus on increasing reliability
and safety by incorporating user feedback. Solutions
such as backup power supplies and manual override
features during emergencies are considerations for
future development.

By advancing this system, not only will it
accelerate evacuation during disasters, but it will
also enhance residents’ sense of security, contributing
to both emergency preparedness and everyday
convenience. The system is expected to have broad
societal benefits, potentially becoming a standard
safety feature in many homes.

Declaration of Generative AI and AI-assisted
technologies in the writing process

During the preparation of this work the authors used
Grammarly for language editing. After using this
service, the authors reviewed and edited the content
as needed and take full responsibility for the content
of the publication.

References:

[1] Ministry of Land, Infrastructure, Transport
and Tourism, ”River Data Book 2021,” Water
Management and National Land Conservation
Bureau, 2021.

[2] USGS, ”Lists, Maps, and Statistics,” United
States Geological Survey, 2021.

[3] Japan Meteorological Agency, ”Seismic
Activity in Japan, 2023,” Monthly Report
on Seismology and Volcanology (Disaster
Prevention Edition), pp. 78-94, 2023.

[4] N. Chakraborty, P. Murti, and M. Bueno
Rodriguez, ”Recent advances in earthquake
seismology using machine learning,” Earth,
Planets and Space, vol. 74, no. 1, pp. 1-13, 2022,
doi: 10.1186/s40623-022-01567-x.

[5] J. Lu, Q. Meng, and X. Gu, ”Possibility of
earthquake prediction based on monitoring
crustal deformation anomalies and thermal
anomalies at the epicenter of earthquakes
with oblique thrust faulting,” Acta
Geophysica, vol. 58, pp. 989–1001, 2016,
doi: 10.1515/acgeo-2016-0040.

[6] M. V. Rodkin, ”Earthquake prediction: Old
expectations and new results,” Seismic
Instruments, vol. 58, no. 2, pp. 215–223,
2020, doi: 10.1134/S0747923920020068.

[7] M. Wyss, ”Why is earthquake prediction
research not progressing faster?,”
Tectonophysics, vol.338, no.3-4, pp.217-223,
2001.

[8] T. Okazaki, T. Ito, K. Hirahara, and N. Ueda,
”Physics-informed deep learning approach
for modeling crustal deformation,” Nature
Communications, vol. 13, no. 7092, 2022, doi:
10.1038/s41467-022-34922-1.

[9] G. Cordaro, E. Venegas-Aravena, and D.
Laroze, ”Long-term magnetic anomalies and
their possible relationship to the latest greater
Chilean earthquakes in the context of the
seismo-electromagnetic theory,” Nat. Hazards
Earth Syst. Sci., vol. 21, no. 6, pp. 1785–1806,
2021, doi: 10.5194/nhess-21-1785-2021.

[10] K. Hayakawa and M. Molchanov, ”Monitoring
of ULF magnetic field variations for short-term
earthquake prediction,” Nat. Hazards Earth
Syst. Sci., vol. 15, pp. 745-756, 2015, doi:
10.5194/nhess-15-745-2015.

[11] N. Ueda, T. Okazaki, K. Ito, and K. Hirahara,
”Unusual animal behavior as a possible
candidate of earthquake prediction,” Appl.
Sci., vol. 14, no. 10, 4317, 2024, doi:
10.3390/app14104317.

[12] G. Du, S. Su, X. Chang, H. Ren, Z. Huo, and X.
Zhang, ”Hydrogeochemical characteristics and
genesis of Hongshuilantang Hot Spring and its
water temperature anomalies during the Rushan
earthquake swarm in Eastern China,” Front.
Earth Sci., vol. 14, no. 7, pp. 65-76, 2020, doi:
10.3389/feart.2020.00347.

[13] K. Sato and D. Isobe, ”Motion Behavior
Analysis of Doors in RC Buildings
under Seismic Excitation,” Proceedings of
Computational Engineering Conference, vol.
22, 2017.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
”Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[15] A. Krizhevsky, I. Sutskever, and G. E.
Hinton, ”ImageNet classification with deep
convolutional neural networks,” in Advances in
neural information processing systems, 2012,
pp. 1097–1105.

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2024.20.8 Tatsuki Fukuda

E-ISSN: 2224-3488 76 Volume 20, 2024



[16] O. Abdel-Hamid, A. Mohamed, H. Jiang, and
G. Penn, ”Convolutional neural networks for
speech recognition,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
vol. 22, no. 10, pp. 1533–1545, 2014.

[17] B. H. Rabiner and L. Juang, ”Fundamentals of
speech recognition,” Prentice Hall, 1993.

[18] A. Graves, A.-r. Mohamed, and G. Hinton,
”Speech recognition with deep recurrent
neural networks,” in Proceedings of the IEEE
international conference on acoustics, speech
and signal processing (ICASSP), 2013, pp.
6645–6649.

[19] FUJISAWA KOUGYO Co., Ltd, ”Layout and
Comfortable Space Size,” https://www.
tokio-one.jp/column/layout-size/,
accessed 30th Sep. 2024.

[20] Japan Meteorological Agency, ”Characteristics,
Limitations, and Precautions for Use of
Emergency Earthquake Early Warnings,”
https://www.data.jma.go.jp/eew/data/
nc/shikumi/tokusei.html, accessed 30th
Sep. 2024.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)

The author solely contributed in the present research,
at all stages from the formulation of the problem to
the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflicts of Interest

The author is affiliated with Shimonoseki City
University, a public university corporation located
in Shimonoseki City, which is the subject of this
research.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2024.20.8 Tatsuki Fukuda

E-ISSN: 2224-3488 77 Volume 20, 2024

https://www.tokio-one.jp/column/layout-size/
https://www.tokio-one.jp/column/layout-size/
https://www.data.jma.go.jp/eew/data/nc/shikumi/tokusei.html
https://www.data.jma.go.jp/eew/data/nc/shikumi/tokusei.html
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Preliminary
	Convolutional Neural Network (CNN)
	Speech Recognition using CNN and Spectrograms

	Proposed System
	Preliminary Survey via Questionnaire
	System Overview
	System Configuration
	Speech Recognition
	Notifications to Residents
	Opening Doors and Windows

	System Verification and Discussion
	System Verification
	Discussion

	Conclusion



