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Abstract: - Surface electromyography (sEMG) signal has been a hot research topic in the field of human-

computer interaction technology in recent years, It is not disturbed by environmental factors such as light, 

temperature, and humidity, and has the advantages of high precision, fast response and non-intrusiveness. 

Through the application of sEMG signals, the intelligent device can accurately judge the person's movement 

intention. Convolutional neural networks (CNNs) and long short-term memory networks (LSTM) are 

considered to have better performance on sequence data. In this paper, three deep learning frameworks (1-

dimensional CNN, 2-dimensional CNN, and CNN-LSTM) are used for the gesture recognition task of 

continuous sEMG signals and evaluated for recognition performance separately. The results show that the 2D-

CNN has the best recognition effect, which achieved average recognition accuracy of 90.36%. The average 

recognition accuracy of the CNN-LSTM and 1D-CNN is 89.37% and 80.21%, respectively. In addition, the 

time-domain sliding window segmentation method was used to process the EMG signal sequences to ensure the 

objectivity of the evaluation processes of CNN-LSTM. 
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1  Introduction 
Surface electromyography is a bioelectric signal of 

muscle movement recorded by surface electrodes, 

which can reflect the functional status of nerves and 

muscles. With the development of information 

technology and artificial intelligence, the use of 

computer processing of surface EMG signals will 

help to better interpret the relationship between 

signals and physiological performance or to predict 

and identify various actions, which has an important 

role in the field of medical rehabilitation and sports 

health. There are already many researchers working 

on the application of computer and artificial 

intelligence technologies to the processing and 

recognition of sEMG data. In 2014, [1] used a PSD 

featuring four gesture actions as the input support 

vector machine for recognition, and the recognition 

rate reached 91.97%. [2], used RMS, HIST, and 

other features to classify and recognize the gestures 

provided by Ninapro, and the highest accuracy of 52 

types of actions was 75.27% by using a random 

forest neural network. In 2016, [3] used ANN to 

identify 72 eigenvalues extracted from sEMG 

signals, and the recognition accuracy of 16 hand 

movements could reach 87.8%. In 2017, [4] used 

RMS and other features to classify and recognize 52 

gestures of 27 people in the Ninapro database, with 

the highest classification accuracy of 69.13%. [5], 

applied the deep learning model to gesture 

recognition, using the method based on the deep 

convolutional network, through the comparison 

experiment of gesture actions provided by the 

Ninapro database, and the trained classifier 

classified the input EMG images frame by frame. In 

2018, [6] used a moving average energy method to 

segment the data of 8-channel sEMG signals from 

subjects, extracted the mean absolute value (MAV) 

of time-domain features, and then used the dynamic 

time warping (DTW) algorithm to classify four 

commonly used gestures. [7], combined the root 

mean square (RMS) and integrated EMG values in 

the time-domain features extracted from the sEMG 

signal and used PNNs to classify the four commonly 

used gestures. In 2023, [8], achieved an accuracy of 

91.27% on the ninapro’s 9-class classification task 

by using large convolutional kernels and large 

pooling in CNNs to reduce the feature map size, and 
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by using a cascaded network to mitigate feature 

loss. [9] proposed an association model based on a 

two-level structure of CNN with an accuracy of 

85.5% for 52 gesture classifications on Ninapro. 

This study aims to realize and evaluate deep 

learning frameworks for gesture recognition based 

on sEMG signals, explore three current main 

architectures, namely 1-dimensional CNN, 2-

dimensional CNN, and hybrid network of CNN and 

LSTM, and determine the model that is best suited 

for sEMG signal data. 

 

 

 

2  Material and Methods 
Please, leave two blank lines between successive 

sections as here.  

Mathematical Equations must be numbered as 

follows: (1), (2), …, (99) and not (1.1), (1.2),…, 

(2.1), (2.2),… depending on your various Sections. 

 

2.1 Dataset Description and Processing 
The surface EMG signal data used in this paper 

were obtained from the Ninapro database, which is 

intended to be a benchmark database in the field of 

non-invasive adaptive hand prosthetics, [10]. The 

dataset 2 and 3 were selected for study, which 

includes complete subjects and amputees in total 40, 

respectively. Each subject was asked to perform 12 

basic gestures, and the surface electromyography 

signal generated by each gesture was recorded. The 

12 basic gestures and rest movements are shown in 

Figure 1. 

 

 
Fig. 1: 12 basic gestures and rest diagrams 
 

Since the raw data does not distinguish between 

the signals of each gesture, the data needs to be 

cleaned before the model can be applied. Clustering 

algorithms can be used to distinguish the 

characteristics of different gesture signals, such as 

amplitude, number, etc. Rectifying via RMS makes 

the input data correspond to a time window of 

150ms, spanning all available electrode 

measurements, i.e., 10 electrodes for delays. This 

choice is very much in line with the work that is 

typically done, and only the time window that 

reflects an effective gesture will be analyzed. The 

original signal and the clustered gesture signal are 

shown in Figure 2 (Appendix). To facilitate the 

evaluation of the model in the later stage, the dataset 

must be divided, and Table 1 shows the distribution 

of datasets used for 1D-CNN and 2D-CNN training 

and testing. 

 

Table 1. The dataset distribution of 1D-CNN and 

2D-CNN is divided into 70%, 15%, and 15% 

respectively for the training set, validation set, and 

test set 

Data set 
Percentage of 

data(%) 

1D-CNN 

data 

volume 

2D-CNN 

data 

volume 

Training 70.0 43268 40580 

Validation 15.0 9272 8696 

Test 15.0 9272 8696 

 

2.2  Three Pre-Selected Model Structures 
Based on previous literature results, three different 

network architectures were designed: 1-dimensional 

convolutional neural network (1D-CNN), 2-

dimensional convolutional neural network (2D-

CNN), and network model mixed with 

convolutional network and long and short memory 

network (CNN-LSTM). In 1D-CNN, the input 

dimension was 10, which corresponds to 10 gestures 

representing numbers, the convolutional kernel size 

was set to 1x3, a total of 4 convolutional layers were 

used, and the activation function has used Tanh. The 

2D-CNN is the same as 1D-CNN, but the kernel 

size was set to 3x3, and added BatchNorm layer and 

Dropout layer. For CNN-LSTM, we replaced the 

fully connected layer with the LSTM structure 

based on 2D-CNN, and other parameters were the 

same as those of 2D-CNN. The structure diagrams 

of the three networks are shown in Appendix in 

Figure 3, Figure 4 and Figure 5. 

 

2.3  Experimental Environment 
Hardware devices used in this study are AMD 

Ryzen 7 5800H with 32GB of memory, NVIDIA 

GeForce RTX 3050 graphics card with 4G video 

memory, and Windows 11-x64 operating system. 

Visual Studio Code is used as the experimental 

platform, Python language is used for programming, 

and Pytorch (2.0.1+cu118) is used as the basic 

framework for deep learning. All data were loaded 

onto the GPU via CUDA for model training. 
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3  Results 
 

3.1 The Training Performance of Each 

Model 
The hyperparameters used in the training of models 

were the same, with a learning rate of 0.1, a 

momentum of 0.8, and a batch number of 256.  The 

recognition performance changes of the models 

during the training process were recorded, which 

were represented by Cross-entropy loss and 

accuracy. Table 2 shows the average recognition 

accuracy of models on the test set. In Appendix, 

Figure 6, Figure 7 and Figure 8 illustrate the 

performance of three methods during training, 

respectively. It is worth noting that although the 

recognition accuracy of CNN-LSTM is not the 

highest, it performs best in the early training stage, 

and the convergence speed of the model is relatively 

smoother and faster. 

 

Table 2. The gesture recognition results on the test 

dataset 

Methods Average recognition accuracy(%) 

1D-CNN 80.21 

2D-CNN 90.36 

CNN-LSTM 89.37 

 

3.2 A Time-Domain Sliding Window 

Segmentation Method for CNN-LSTM 

Evaluation 
For the generation of training samples of two-

dimensional data, the time-domain sliding window 

segmentation method was adopted, and the 

recognition accuracy of the generated samples under 

different sampling repetition rates (overlap) was 

studied. Due to the limitation of experimental 

research hardware, we only carried out experimental 

research on CNN-LSTM with the recognition effect 

in the middle. Table 3 shows the recognition 

accuracy results. 

With the decrease of the repetition rate, the 

recognition accuracy of CNN-LSTM on the test set 

shows a downward trend, which indicates the 

importance of step size based on the time domain 

sliding window to a certain extent, which reflects 

the resolution/response rate of the gesture 

recognition instrument in practical application, and 

the higher the response rate of the instrument, the 

lower the corresponding value step, and the higher 

the recognition accuracy. 

 

Table 3. The recognition accuracy of CNN-LSTM 

with different coverage rates is based on the time-

domain sliding window segmentation method 

Model 
Repetition 

rate(%) 

The average 

recognition 

accuracy of 

the train(%) 

Average 

recognition 

accuracy of 

tests(%) 

CNN-

LSTM 

75.0 90.13 87.41 

50.0 91.29 81.87 

25.0 92.71 77.35 

0.0 90.93 76.65 

 

 

4  Conclusion 
In this study, three classical deep learning 

frameworks were used to recognize gesture 

movements using surface EMG signal data. The 

results show that 2D-CNN shows higher accuracy 

when processing time-scale data such as EMG 

signals, and the recognition accuracy of gestures 

reaches 90.36%. However, CNN-LSTM has better 

performance in convergence speed, and the average 

accuracy also reaches 89.37%, which means that 

LSTM is better at processing time series while 

maintaining a high level of recognition. In addition, 

by applying the time-domain sliding window 

segmentation method, it can be observed that the 

performance of CNN-LSTM is affected by the 

sampling repetition rate, which has an enlightening 

effect on data acquisition engineering, because the 

response rate of the sampling device may improve 

the performance of the software. 

Nowadays, surface EMG signal gesture 

recognition is a research field that has attracted 

much attention in the field of human-computer 

interaction, and the continuous development of deep 

learning technology has also greatly promoted 

research in this field. With the continuous progress 

and optimization of deep learning technology, we 

expect to achieve more in-depth research results in 

the field of surface EMG signal gesture recognition 

in the future. 
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APPENDIX 

 
Fig. 2: Diagram with resting raw signal (left) and single gesture raw signal (right) 

 

 

 
Fig. 3: Schematic diagram of the structure of 1D-CNN 

 

 

 
Fig. 4: Schematic diagram of the structure of 2D-CNN 
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Fig. 5: Schematic diagram of the structure of CNN-LSTM 

 

 

 
Fig. 6: Changes in the training loss (left) and validation accuracy (right) of the  

1D-CNN model 

 

 

 
Fig. 7: Changes in the training loss (left) and validation accuracy (right) of the  

2D-CNN model 
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Fig. 8: Changes in the training loss (left) and validation accuracy (right) of the  

CNN-LSTM model 
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