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S IR Isaac Newton (1643–1727) proposed centuries ago, in
what has become known as his third law of motion, that an

action force acting on a body has an equal reaction, acting in
the opposite direction. We are of the view that this is a special
case result, and that it is not generally true.

We demonstrate that when two objects collide, with one
having linear momentum and the other angular, then the princi-
ple of conservation of linear momentum will not be observed.
This we do through quantum mechanics for hydrogen atoms.

We had hoped to solve the equations through Sophus Lie’s
symmetry group theoretical methods, unfortunately the pure
approach does not allow for super-positions. To circumvent
this, we introduce what we call modified Lie symmetries, or
simply modified symmetries. We use two concepts to evaluate
the resulting integrals. The first makes use of intermediate
value theorems, and the second is on differentiable topological
manifolds.

The Schrödinger wave equation for the hydrogen atom with
electron mass me and proton mass mp has the form
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Here ψ = ψ(t, r,R) is the probability density function, V is
the potential, E is the energy level, r = (x, y, z) is the position
of the electron, R = (X,Y, Z) is that of the proton, and h̄ is
the reduced Planck constant.

Since the mass of the proton is much larger than that of the
proton, then the electron can be interpreted as moving around
around a positive core frozen in place in the static potential
field V (R, r). This then splits (1) into

− h̄2

2mp

[
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

]
ϕ = ih̄

∂ϕ

∂t
(2)

and

− h̄2

2me

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
φ+ (V − E)φ = ih̄

∂φ

∂t
, (3)

where ψ = ϕ(t,R)φ(t, r). Equation (2) describes the motion
of a free particle, implying that the proton is moving freely.
Equation (3), on the other hand, is that of a forced particle.

Equation (2) is easier to analyze as an Airy-Laguerre-
Gaussian equation. This requires transforming the first two
terms of the Laplacian through polar coordinates X =
ρp cos θp and Y = ρp sin θp, while leaving the third as is.
That is,
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called the Airy-Laguerre-Gaussian equation. Here ϕ =
ϕ(t, ρp, θ, Z).

Letting
ϕ = Vp(t, ρp)Φp(θp)Pp(t, Z), (6)

separates (16) into three simpler components. This has been
executed before, see [1], [2], [3], [4], [5], [6] and [7]. The
simplest is the azimuthal equation,

d2Φp
dθ2p

+ λΦp = 0. (7)
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1. Introduction 

2. The Governing Equations of Motion 

2.1. Equation (2) 
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The parameter m =
√
λ is called the azimuthal mode num-

ber, also known as the topological charge. Next is the 1D
Schrödinger equation,
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and the Laguerre-Scholes equation,
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Equation (3) transforms through the spherical coordinates
x = ρe sin θp cosσe, y = ρe sin θe sinσ and z = ρe cos θe,
with ρe =

√
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Letting φ = Θe(σ)Re(re)Ve(θe) separates it into
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It is assumed that φt = −iEφ/h̄. In the case of a coulombic
force, we have
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where ε0 is the permittivity of free space, q and Q are charges.
The third equation is
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Being able to solve the Schrödinger equation exactly, is the
key to particle states, their superpositions and entanglements.
These assist in the transition from classical to quantum com-
puting; allowing space for faster computers.

However, there are beliefs that this equation can be solved
exactly only for the simplest of systems, such as the particle in
a box problem, the Hydrogen atoms and the free particle, and
not for complex systems. While we may agree with Toli and
Zou [8] that that is the case and that multi-electron systems
may probably be unsolvable, we argue here that even the
simplest case, the free particle, was not solved correctly.

As a precursor to exact solutions, we begin by first pointing
out the mis-steps. In literature, (2) is presented in the form
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and called the Airy-Laguerre-Gaussian equation. It models
the propagation of energy packets in free space. Here u =
u(ζ,R, ϕ, T ) is the complex envelope of the optical field, R =√
X2 + Y 2 = r/r0 is the dimensionless spatial coordinate,

T = t/t0 the retarded time, ζ = z/(kr20) is the longitudinal
propagation distance , k = 2πN/λ0 is the wave number, with
the wavelength λ0, refractive index N and ϕ the azimuthal
angle. The quantities r0 and t0 are scaling parameters.

Letting

u(ζ,R, ϕ, T ) = V (ζ,R)Φ(ϕ)P (ζ, T ), (17)

separates (16) into three simpler components. This has been
executed before, see [1], [2], [3], [4], [5], [6] and [7]. The
simplest is the azimuthal equation,

d2Φ

dϕ2
+ λΦ = 0. (18)

The parameter m =
√
λ is called the azimuthal mode num-

ber, also known as the topological charge. Next is the 1D
Schrödinger equation,
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and the Laguerre-Scholes equation,
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It is thought that the azimuthal equation is solved by letting
φ = exp(λϕ). This gives φ = A exp(−iϕ) +B exp(iϕ), with
A and B as constants. This solution is incorrect.

Leonhard Euler(1707–1783) introduced the formula

Φ = erϕ, (21)

which he purported to be ideal for solving linear ordinary
differential equations with constant coefficients. This formula
appears in elementary texts on the subject [9] and also in texts
on nonlinear differential equations [10]. It can also be found
at the core of some advanced theories, see

1) Euler’s method: As a first step in applying (21) to (18),
we determine φ′′:

Φ′′ = r2erϕ. (22)

Substituting (21) and (22) into (18) gives

(r2 + λ)erϕ = 0. (23)

Or simply
r2 + λ = 0. (24)

For the case λ = −m2 equation (24) gives

r2 −m2 = 0. (25)

2.2. Equation (3) 

3. Solving (2), the Free Particle 
Wave Equation 

 
3.1. A quadrature solution to 
the azimuthal equation (18) 
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That is,
r2 = m2, (26)

from which
r = ±m, (27)

so that
Φ = e±mx, (28)

from (21), which is the solution. The accepted form is

Φ = Ae−mϕ +Bemϕ. (29)

where A and B are constants.
For the case λ = −m2 equation (24) gives

r2 +m2 = 0. (30)

That is,
r2 = −m2, (31)

from which
r = ±

√
−m2 = ±im, (32)

so that
Φ = e±imϕ. (33)

The accepted form is

Φ = C cos(mϕ) +D sin(mϕ), (34)

where C and D are constants.
2) The quadrature solution: Consider (18) in the form
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The chain rule allows it to be expressed in the form
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where E is the constant of integration. That is,
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λ. That is,
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The expression in (56) and (34) differ, because the latter does
not have

√
λ = m in the denominator. In literature (34) is

expressed in the form

Φ = A0e
imlϕ +A0e

−imlϕ, (58)
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which is then reduced to

Φ = A0e
imlϕ, (59)

with ml = 0,±1,±2,±3, · · ·. Equivalently, we can also
reduce our (56) the same way to get

Φ = A0
eimlϕ

iml
. (60)

But this then creates a problem, for it suggests case ml =
±1,±2,±3, · · ·. That is, the case ml = 0 appears to be
excluded. To avoid this situation from arising, it is best to
use (57), as is, without dropping any term. A comparison of
our (57) against (34) appears in Figure 1. The plot of our
solution reflects normality, in that it is finite.

-10 -5 5 10
m

-1.0

-0.5

0.5

1.0

ϕ

Fig. 1. A plot of our solution in (57), compared to the solution in (34).
Ours flattens away from the centre, as expected. The other goes to infinity,
which is impractical. The independent variable is constant, and so are the
other parameters.

Our approach to the 1D Schrödinger equation is through
Sophus Lie group theoretical methods. We will first demon-
strate that the method does lead to an analytical solution, but
the solution is not practical. We then modify Lie’s method,
to deduce a solution that agrees with quantum superposition
principles.

1) The pure Lie approach : Lie symmetry is derived from
the following definition.

Definition 1: Suppose x = (x1, · · · , xN ) is a point in IRN =

IR× · · · ×N thIR, and x̄ = (x̄1, · · · , x̄N ) is a point in ĪR
N

=
ĪR× · · · ×N thR̄. The relations

x̄i = f i(x, ε), i = 1, 2, 3, · · · , N, (61)

where ε is a real parameter, are called a family of one
parameter point transformations, if they are invertible.

Equation (19) is much easier to solve in the form

∂2ψ

∂τ2
=
∂ψ

∂x
. (62)

For it to be so requires setting iζ/2→ x, T → τ and P = ψ.
To apply Lie’s theory to equation (62), we seek to construct

the transformations

τ̄ ≈ τ + εξ1(τ, x, ψ), (63)
x̄ ≈ x+ εξ2(τ, x, ψ), (64)
ψ̄ ≈ ψ + εη(τ, x, ψ), (65)

with

X = ξ1(τ, x, ψ)
∂

∂τ
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∂
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∂

∂ψ
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called the symmetry generator. The function η can be simpli-
fied in advance as η = f(τ, x)ψ + g(τ, x), so that
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∂
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∂
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The second order symmetry generator X [2], derived from it,
satisfies the invariance condition

X [2] (ψττ − ψx) |ψττ=ψx = 0. (68)

The analysis of the expanded form of this invariance lead to
the following Lie symmetries.
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∂
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X∞ = g
∂

∂ψ
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The symmetry G∞ is called the infinite symmetry, because g
is not determined.

2) Solution through X1: Consider the symmetry X1. It
leads to characteristic equations

2dx
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=

2dτ

τx
=

dψ

−
(
τ2

8 + x
4

)
ψ
. (76)

The characteristic equations yield the invariants
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x
, (77)

and

φ(σ) =
√
xe

τ2

4x ψ. (78)

That is,

ψ =
e−

τ2

4x

√
x
φ
(τ
x

)
. (79)

This leads to

φ̈(σ) = 0, (80)

which has the solution

φ = D1σ +D2, (81)

or
√
xe

τ2

4x ψ = D1
τ

x
+D2. (82)

3.2 Solving the 1D Schrodinger equation (19) 
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That is,

ψ =
(
D1

τ

x
+D2

) e− τ24x√
x
, (83)

where D1 and D2 are constants of integration. That is,

P =

(
D1

T

iζ/2
+D2

)
e−

T2

4(iζ/2)√
iζ/2

. (84)
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Fig. 2. A plot of the solution in (84), with D1 = D2 = 1, and T = 1.

As indicated earlier, a pure Lie symmetry approach to (19)
does not lead to any useful results. We shall now treat it
through what we call modified Lie symmetry group theoretical
methods.

3) The modified Lie symmetry approach: Our definition
of modified Lie symmetry, as contrasted from the pure Lie
symmetry Definition 1, is as follows.

Definition 2: Suppose G is a set of local point transforma-
tions from IRN to ĪR

N , and Ḡ is a set of local point transfor-
mations from ĪR

N to ĨR
N

. Then we call the transformations
G̃, from IRN to ĨR

N
, modified local transformations, if they

are invertible.
From this follows the following theorem:
Theorem 1: If ξi and ξ̃i are the Lie and modified infinites-

imals of the same equation, then(
D̄j ξ̄

i −Djξ
i
)∣∣
ω=0

= 0, i, j = 1, 2, 3, . . . , (85)

where ω is the parameter for modified symmetries.
Here D̄j and Dj are the operators of total differentiation, in
their respective spaces. We use it to determine the modified
symmetries from Lie’s symmetries, one of which is

X̃1 =
2eω

2τ

ω4(ω2 − 1)
cos
(ωx
i

) ∂

∂τ

+
ieω

2τ

ω3(ω2 − 1)
sin
(ωx
i

) ∂

∂x

−e
ω2τ

2
cos
(ωx
i

)
ψ
∂

∂ψ
, (86)

from which we get the characteristic equation

ω4(ω2 − 1)e−ω
2τdτ

2 cos(ωx/i)
=
iω3(ω2 − 1)e−ω

2τdx

sin(ωx/i)

=
2e−ω

2τdu

cos(ωx/i)u
. (87)

Consequently, the transforming variables follow from

ω4(ω2 − 1)e−ω
2τdτ

2 cos(ωx/i)
=
iω3(ω2 − 1)e−ω

2τdx

sin(ωx/i)
(88)

and

ω4(ω2 − 1)e−ω
2τdτ

2 cos(ωx/i)
=

2e−ω
2τdu

cos(ωx/i)u
. (89)

From (88), we have

ω2dτ

2
= −ω cos(ωx/i)dx

i sin(ωx/i)
(90)

That is,

σ =
e−ω

2τ/2

sin(ωx/i)
. (91)

From (89), we have

2du

u
=
ω4(ω2 − 1)dτ

2
, (92)

so that

φ = ue
−ω4(ω2−1)τ

4 , (93)

with φ = φ(σ). Eventually, these transform (19) to

2φ̈
(
eω

2τ − σ2
)

+
σ

2
φ̇− ω2(ω2 − 1)

4
φ = 0. (94)

After a long analysis, we get

ψ =
(
D2 +D1

x

τ3/2

)
e

−x2
4τ . (95)

Reverting to the original variables: x → iζ/2, τ → T and
ψ → P ,

P =

(
D2 +D1

iζ

2T 3/2

)
e
ζ2

16T . (96)

Since the particle is in motion, |ζ >= cT , with c being its
speed, we can have T = ζ/c. This suggests (19) can be written
in the form

∂P

∂T
− i c

3

2

∂2P

∂ζ2
= 0. (97)

Hence,

P =

(
D2 +D1

icT

2(ζ/2)3/2

)
e
c3T2

16ζ . (98)

A plot similar to the one in Figure 2 is then
The plot also suggests, in the transition from (96) to

(98), what the quantum principle states about simultaneity of
position, can also be said about time.
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Fig. 3. A plot of the solution in (98), with D1 = D2 = 1, and T = 1. This
plot agrees with the quantum superposition principle: The particle is at two
positions at the same time.

A closer look at the Laguerre-Scholes equation reveals a
striking resemblance to an equation popular in the mathematics
of finance,

Vτ2 +
1

2
A2R2VRR +BRVR − CV = 0, (99)

called the Black-Scholes equation. That is,

∂V

∂τ2
+R2 ∂

2V

∂R2
+R

∂V

∂R
−m2V = 0, (100)

where τ2 = −iζ/(2R2) ∈ R in equation (20), A =
√

2, b = 1
and C = m2. This equation was investigated for solutions,
through symmetry methods, by Gazizov and Ibragimov [11].
They found the symmetries

X1 =
∂

∂τ2
, (101)

X2 = R
∂

∂R
, (102)

X3 = 2τ2
∂

∂τ2
+ (lnR−Dτ2)R

∂

∂R

+2Cτ2V
∂

∂V
, (103)

X4 = A2τ2R
∂

∂R
+ (lnR−Dτ2)V

∂

∂V
, (104)

X5 = 2A2τ22
∂

∂τ2
+ 2A2τ2R lnR

∂

∂R

+ ((lnR−Dτ2)2 + 2A2Cτ22 −A2τ2)V
∂

∂V
,(105)

X6 = V
∂

∂V
, (106)

Xφ = φ(τ2, R)
∂

∂V
, (107)

where D = B − A2/2 and φ(τ2, R) is an arbitrary solution
of (99). For the solution that relates to the Gaussian, they got
results from X3, and has the form

V = eCτ2φ(Z), Z =
χ
√
τ2
−D
√
τ2, (108)

where

φ(Z) = K1

∫ Z

−∞
e
µ2

2 dµ+K2, (109)

where K1 and K2 are integration constants.

The problem is therefore reduced evaluating the integral

U =

∫ Z

−∞
e
µ2

2 dµ, (110)

a form of the Gaussian, with φ(Z) = K1U +K2.
We can express (110) as a differential equation. First we

introduce x, in the exponent, to ensure we get a partial
differential equation. Partial differential equation have many
solutions. From

U =

∫ Z

−∞
e
tµ2

2 dµ, (111)

we then get
Uxz = z2Uz, (112)

with U = U(x, z). It has only one symmetry

X =
∂

∂x
. (113)

This we will address through modified symmetries, and they
are

X̃1 =
sin(ω) cos(ωx)

ω

∂

∂x

+ ln(zz) [sin(ω) sin(ωx)/2]
∂

∂z
, (114)

X̃2 =
sin(ωx)

ω

∂

∂x

− ln(zz) [cos(ωx)/2]
∂

∂z
, (115)

X̃3 = ln(zz)
∂

∂z
, (116)

X̃4 = z
∂

∂z
, (117)

and

X̃5 = u
∂

∂u
. (118)

1) The solution through X̃1 :
The characteristic equations that arise from the symmetry

X̃1 in (114):

ωdx

sin(ω) cos(ωx)
=

dz

ln(zz) [sin(ω) sin(ωx)/2]

=
dv

0
, (119)

leads to
ω sin(ωx)dx

2 cos(ωx)
=

dz

ln(zz)

=
dv

0
, (120)

The equation

ω sin(ωx)dx

2 cos(ωx)
=

dz

ln(zz)
, (121)

arising from it, integrates into

− ln[cos(ωx)]/2 = ln[ln[z]] + d2, (122)

3.3 The Airy-Laguerre-Gaussian equation (20) 
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or simply

η =
√

cos(ωx) ln[z], (123)

where η is an invariant arising out of the integration parameter
d1. On the other hand, the equation

dv = 0, (124)

arising out of the same equation, leads to the invariant

v = φ(η). (125)

The invariant η, leads to

ηz =

√
cos(ωx)

z
, (126)

ηx =
−ω sin(ωx)

2
√

cos(ωx)
ln[z], (127)

and

ηxz =
−ω sin(ωx)

2z
√

cos(ωx)
, (128)

while φ gives

vz = φ̇ηz

= φ̇

√
cos(ωx)

z
(129)

and

vxz = φ̈ηzηx + φ̇ηxz

= −φ̈
√

cos(ωx)

z

ω sin(ωx)

2
√

cos(ωx)
ln[z]

−φ̇ ω sin(ωx)

2z
√

cos(ωx)
. (130)

The latter simplifies into

vxz = −φ̈ω sin(ωx)

2z
ln[z]− φ̇ ω sin(ωx)

2z
√

cos(ωx)
. (131)

Now substituting (131), and (112) gives

−φ̈ω sin(ωx)

2z
ln[z]− φ̇ ω sin(ωx)

2z
√

cos(ωx)
= z2φ̇

√
cos(ωx)

z
.

(132)
That is,

−φ̈ω sin(ωx)

2z
ln[z] = φ̇

ω sin(ωx)

2z
√

cos(ωx)
+ z2φ̇

√
cos(ωx)

z
,

(133)
or

φ̈

φ̇
=

ω sin(ωx)

2z
√

cos(ωx)
+ z2

√
cos(ωx)

z

−ω sin(ωx)
2z ln[z]

, (134)

or

ln
[
φ̇
]

=

∫ − ω sin(ωx)

2z
√

cos(ωx)
+ z2

√
cos(ωx)

z

−ω sin(ωx)
2z ln[z]

dη. (135)

The first integrand of this equation integrates easily. That is,∫ ω sin(ωx)

2z
√

cos(ωx)

−ω sin(ωx)
2z ln[z]

dη =

∫ ω sin(ωx)

2z
√

cos(ωx)

−ω sin(ωx)
2z z ln[z]

√
cos(ωx)dz,

(136)
or∫ ω sin(ωx)

2z
√

cos(ωx)

−ω sin(ωx)
2z ln[z]

dη =

∫
−dz
z ln[z]

= ln

[
1

ln[z]

]
+C1, (137)

where C1 is an integration constant. The second integrand of
(135) requires a different approach to integrate. We note that

∫
z2
√

cos(ωx)

z

−ω sin(ωx)
2z ln[z]

dη =

∫ z2
√

cos(ωx)

z

− sin(ωx)
2z ln[z]

dη

ω
. (138)

The expression on the right invokes L’hopital’s principle for a
zero value of ω:

∫
z2
√

cos(ωx)

z

−ω sin(ωx)
2z ln[z]

dη =

d
dω

∫ z2
√

cos(ωx)

z

− sin(ωx)
2z ln[z]

dη

dω
dω

, (139)

so that

∫
z2
√

cos(ωx)

z

−ω sin(ωx)
2z ln[z]

dη = −
dη
dω

d
dη

∫ z2
√

cos(ωx)

z

− sin(ωx)
2z ln[z]

dη

dω
dω

. (140)

That is,∫
z2
√

cos(ωx)

z

−ω sin(ωx)
2z ln[z]

dη = −x sin(ωx) ln[z]

2
√

cos(ωx)

z2
√

cos(ωx)

z
sin(ωx)

2z ln[z]
= −tz2.

(141)
Hence,

ln[φ̇] = ln

[
1

ln[z]

]
+ C1 − xz2, (142)

or
φ =

∫
1

ln[z]
exp

[
C1 − xz2

]
dη + C2. (143)

That is,

φ =
√

cos(ωx) ln[ln[z]] exp
[
C1 − xz2

]
−
∫

2z2 ln[ln[z]] exp
[
C1 − xz2

]
dη + C2. (144)

Hence,

v =
√

cos (ωx) ln[ln[z]] exp
[
C1 − xz2

]
−
∫

2z2 ln[ln[z]] exp
[
C1 − xz2

]
dη + C2. (145)

Applying L’hopital’s principles:

v =
√

cos (ωx) ln[ln[z]] exp
[
C1 + xz2

]
−ω dη

dω

d

dη

∫
2z2 ln[ln[z]] exp

[
C1 − xz2

]
dη

+C2. (146)

In the limit ω → 0, this reduces to

F = α
(
± ln (ln[z]) exp

(
C1 + βz2

)
+ C2

)
, (147)

with β replacing x, and F/α replacing v.
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Fig. 4. Plot of the solution in (147), with arbitrary values of C1 and C2. In
this plot, the Gaussian integral is within the interval 0 < F < 1. In this here
case, the regions F < 0 and F > 1 may appear odd. They are unheard of in
statistical analysis, where the Gaussian has the biggest role. But they really
come into prominence when nonlinear thermal states are investigated.

Letting ϕ = $(r) exp(iEt/h̄) reduces (3) to

− h̄2

2me

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
$ + (V − 2E)$ = 0, (148)

a time independent Schrödinger equation.
The substitution $ = R(r)Θ(θ)Φ(φ) reduces it to

d2Θ

dθ2
= m2

lΘ, (149)

1

2mr2
d

dr

(
r2
dR

dr

)
−
(
V − 2E − l(l + 1)

2mr2

)
R = 0. (150)

In the case of a coulombic force, we have

V = − 1

4πε0

qQ

r
, (151)

so that
1

2mr2
d

dr

(
r2
dR

dr

)
+

(
1

4πε0

qQ

r
+ 2E +

l(l + 1)

2mr2

)
R = 0,

(152)
where ε0 is the permittivity of free space, q and Q are charges,
r = ||r|| is the relative distance and the position s of the
hydrogen atom is given by its centre of mass:

s =
mer +mpR

me +mp
. (153)

The third equation is

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
−
(
l(l + 1)− m2

l

sin2 θ

)
Θ = 0. (154)

A. Solutions through differentiable Manifolds

The advantage of having motion without a reaction force has
far reaching positive consequences. For example, launching
rockets into space will be very cheap, in that far less fuel
will be required. It will also realize damages to roads, that
automobiles run on, greatly minimized. The reaction force is
primary contributor to these damages.

Newtonian mechanics has led to great results and a vast
number of technological applications. Unfortunately, a number
of confusing concepts have also resulted. Dark matter and

energy is one of such concepts. In our view, this results when
people have absolute faith in a theory en masse, and get
transfixed, probably fueled by what the theorist’s background
embodies; their numbers then overwhelm logic and common
sense. Our suggestion that motion along a curved path is
possible without an external force, will probably assist in
clearing the confusion.

Gravitation is the most misunderstood concept since New-
ton’s universal gravitational law. A number of theories
emerged as efforts to understand it. Ours is yet another
addition to this. As a test, in support of ours, we determined
the much sought after formula for the universal gravitational
constant. In addition, we also proposed frequencies for ma-
terial elements. The frequencies will assist in harvesting the
vast free energy, that is all over the universe, and also in our
immediate vicinity.

Militarily, the frequencies can be used in defense systems.
To detect and defuse miniaturized weapons, especilly those
designed at nano-molecular level.
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