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1. Introduction 

Defouw [1] has generalized the Schwarzschild 
criterion for convection to include departures 
from adiabatic motion and has shown that a 
thermally unstable atmosphere is also 
convectively unstable, irrespective of the 
atmospheric temperature gradient. The 
instability in which motions are driven by 
buoyancy forces of a thermally unstable 
atmosphere has been termed as “thermal 
convective instability”. Defouw [1] has shown 
that an inviscid stellar atmosphere is unstable is 
unstable if 

𝐷 =
1

𝐶𝑃
(𝐿𝑇 − 𝜌𝛼𝐿𝜌) + 𝜅𝑘2 < 0,          (1) 

where 𝐿 is the energy lost minus the energy 
gained per gram per second (the heat loss 
function) and 𝜌,  𝛼, 𝜅,  𝑘,  𝐿𝑇 ,  𝐿𝜌 denote 
respectively the density, the coefficient of 
thermal expansion, the coefficient of 
thermometric conductivity, the wave number of 
the perturbation, the partial derivative of  𝐿 with 
respect to temperature 𝑇 and the partial 
derivative of 𝐿 with respect to density 𝜌, both 
evaluated in the equilibrium state. In general, the 
instability due to inequality (1) may be either 
oscillatory or monotonic. Defouw [1] has also 

shown that inequality (1) is a sufficient 
condition for monotonic instability in the 
presence of magnetic field and rotation on 
thermal convective instability. 

Defouw [1] has also studied the effect of 
radiative transfer on the thermal-convective 
instability and has found that the source 
functions 𝑆 which lead to thermal-convective 
instability are those for which 𝑆𝑇 − (𝜌 𝑇⁄ )𝑆𝜌 <

0, the subscripts on 𝑆 denote the partial 
derivatives of 𝑆 with respect to 𝑇 and 𝜌 both 
evaluated in the equilibrium state. 

A detailed account of thermal convection, under 
varying assumptions of hydrodynamics and 
hydromagnetics, has been given by 
Chandrasekhar [2]. Veronis [3] has considered 
the problem of thermohaline convection in a 
layer of fluid heated from below and subjected 
to a stable salinity gradient. The thermohaline 
convection in a horizontal layer of viscous fluid 
heated from below and salted from above has 
been studied by Nield [4]. In thermohaline-
convective instability problem, buoyancy forces 
can arise not from density differences due to 
variations in temperature but also from those due 
to variations in solute concentrations. The 
conditions under which convective motions are 
important in stellar atmospheres are usually far 
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removed the consideration of a single 
component fluid and rigid boundaries and 
therefore it is desirable to consider one gas 
component acted on by solute concentration 
gradient and free boundaries. The thermosolutal-
convective instability of a stellar atmosphere in 
the presence of suspended particles has been 
studied by Sharma and Singh [5]. The criteria 
for monotonic instability are derived and are 
found to hold good also in the presence of 
uniform rotation and uniform magnetic field on 
the thermosolutal-convective instability.  

A partially ionized plasma represents a state 
which often exists in the Universe. There are 
several situations where the interaction between 
the ionized and neutral gas components becomes 
important in cosmic physics. As a reasonably 
simple approximation, the plasma may be 
idealized as a composite mixture of a 
hydromagnetic (ionized) component and a 
neutral component, the two interacting through 
mutual collisional (frictional) effects. Hans [6] 
made this simplified approximation and found 
that these collisions have a stabilizing effect on 
the Rayleigh-Taylor instability.Marcu and Ballai 
[7] have studied the thermosolutal linear stability 
of a composite two-component plasma in the 
presence of Coriolis forces, finite Larmor radius, 
taking into account the collisions between 
neutral and ionized particles. The thermosolutal 
instability appears due to a material convection 
(thermosolutal convection) in a two component 
fluid with different molecular diffusivities which 
contribute in an opposing sense to the locally 
vertical density gradient. Natural convection 
with Soret and radiation effects in a binary fluid 
saturating a horizontal porous layer under the 
influence of magnetic field has been investigated 
by Israel-Cookey and Amos [8]. Sheri et. al [9] 
has studied the transient radiative reactive 
thermosolutal magnetohydrodynamic convection 
in inclined MHD hall generator flow with 
dissipation and cross diffusion. 

In the present paper we consider the 
thermosolutal-convective instability in Stern’s 
type configuration of a stellar atmosphere (the 
thermal-convective instability in the presence of 
stable solute gradient) to include the radiative 
transfer effect. The effects of radiative transfer 

and rotation are also studied on the 
thermosolutal-convective instability. The effects 
of radiative transfer arise when self absorption is 
not negligible. As a partially ionized plasma 
represents a state which often exists in the 
Universe, the problem of thermosolutal-
convective instability of a hydromagnetic 
composite medium is, therefore, studied to 
include the frictional effects with neutrals. 
Theseaspects form the subject matter of the 
present study.  

 

 

2. Description of the Instability and 

    Perturbation Equations 

Consider an infinite horizontal fluid layer of 
thickness 𝑑 heated from above and subjected to 
a stable solute concentration gradient so that the 
temperatures and solute concentrations at the 
bottom surface 𝑧 = 0are 𝑇0 and 𝐶0 and at the 
upper surface 𝑧 = 𝑑 are 𝑇1 and 𝐶1 respectively, 
𝑧 -axis  being taken as vertical. This layer is 
acted on by a gravity force �⃗�(0,  0,  − 𝑔). Then, 
following the Boussinesq approximation, which 
states that the inertial effects produced by 
density variation are negligible in comparison to 
its gravitational effects i.e. ρ can be taken as 
constant everywhere in the equations of motion 
except in the term with external force, 
consequently  the equations governing the 
motion of the fluid assume the following form: 

𝜕�⃗�

𝜕𝑡
+ (�⃗� .  ∇)�⃗� = −

1

𝜌0
∇𝑝 + 𝜈 ∇2�⃗�

+ �⃗� (1 +
𝛿𝜌

𝜌0
),                        (2) 

∇. �⃗� = 0 ,                                                                 (3) 

𝜕𝐶

𝜕𝑡
+ (�⃗� .  ∇)𝐶 =  𝜅′∇2𝐶 ,                                 (4) 

𝜌 =  𝜌0[1 −  𝛼(𝑇 − 𝑇0) + 𝛼′(𝐶 − 𝐶0)].          (5) 

The suffix zero refers to values at the reference 
level 𝑧 = 0. Equations (2) – (4) express 
respectively the conservation of momentum, 
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mass and solute mass concentration. Equation 
(5) represents the equation of state. Here 
𝜌, 𝑝, 𝑇, 𝐶, �⃗�(𝑢, 𝑣, 𝑤), 𝑔, 𝛼 𝑎𝑛𝑑 𝛼′ stand for 
density, pressure, temperature, solute 
concentration, velocity, gravitational 
acceleration, thermal coefficient of expansion 
and an analogous solvent coefficient, 
respectively. The kinematic viscosity, the 
thermal diffusivity 𝜅 and the solute diffusivity 𝜅′ 
are each assumed to be constant.  

The steady state solution is 

�⃗� = 0, 𝑇 =  𝑇0 + 𝛽𝑧, 𝐶 =  𝐶0 − 𝛽′𝑧, 𝜌 =
𝜌0[1 − 𝛼𝛽𝑧 − 𝛼′𝛽′𝑧′] ,                                   (6) 

where 

𝛽 =
𝑇1 − 𝑇0

𝑑
, 𝑎𝑛𝑑 𝛽′ =

𝐶0 − 𝐶1

𝑑
 

are the magnitudes of uniform temperature and 
concentration gradients. 

We now consider a small perturbation on the 
steady state solution and let �⃗�, 𝛿𝜌, 𝛿𝑝, 𝜃 and 𝛾 
denote the perturbations in velocity, density, 
pressure, temperature and solute concentration 
respectively so that the change in density 𝛿𝜌, 
caused by the perturbations 𝜃 𝑎𝑛𝑑 𝛾 in 
temperature and concentration, is given by 

𝛿𝜌 =  −𝜌0(𝛼𝜃 − 𝛼′𝛾).                                        (7)                                                                                                           
Equations (2) – (4) on linearization give 

𝜕�⃗�

𝜕𝑡
= −

1

𝜌0
∇𝛿𝑝 + 𝜈∇2�⃗� − �⃗�(𝛼𝜃 − 𝛼′𝛾),       (8) 

∇ . �⃗� = 0,                                                                 (9) 

𝜕𝛾

𝜕𝑡
− 𝜅′∇2𝛾 = 𝛽′𝑤.                                            (10) 

Now, the first law of thermodynamics may be 
written in the form 

𝐶𝑣

𝑑𝑇

𝑑𝑡
= −𝐿 +

𝐾

𝜌
∇2𝑇 +

𝑃

𝜌2

𝑑𝜌

𝑑𝑡
,                    (11) 

where 𝐿, 𝐾, 𝐶𝑣 , 𝑇, 𝑡 𝑎𝑛𝑑 𝜌 denote respectively, 
the heat-loss function, the thermal conductivity, 
the specific heat at constant volume, the 
temperature, the time and the pressure. 

Following Defouw [1], the linearized 
perturbation form of equation (11) is 

𝜕𝜃

𝜕𝑡
+

1

𝐶𝑝
(𝐿𝑇 − 𝜌𝛼𝐿𝜌)𝜃 − 𝜅∇2𝜃

= − (𝛽 +
𝑔

𝐶𝑃
) 𝑤.                 (12) 

The effects of radiative transfer arise when self-
absorption is not negligible. In considering the 
heat-loss function 𝐿(𝜌 , 𝑇) to be dependent only 
on the local values of density and temperature, it 
is assumed that the gas is optically thin. We shall 
study radiative transfer with the Eddington 
approximation which is accurate in both the 
optically thick and optically thin limits as 
pointed by Unno and Spiegel [10]. 

The heat equation for a grey gas, using this 
approximation, may be written as 

𝜌𝐶𝑣

𝑑𝑇

𝑑𝑡
−

𝑝

𝜌

𝑑𝜌

𝑑𝑡
= ∇. [

1

3𝑚𝜌
∇ {

1

𝑚𝜌
(𝜌𝐶𝑣

𝑑𝑇

𝑑𝑡

−
𝑝

𝜌

𝑑𝜌

𝑑𝑡
) + 4𝜋𝑆}],                 (13) 

where 𝑚 is the mass absorption coefficient and 
𝑆 is the source function. 

Since the layer depth is small and the 
temperature gradient maintained is also small so 
that their product is very small in comparison 
with the temperature of the lower boundary, the 
temperature at an intermediate point may be 
approximately taken as the temperature of the 
lower boundary. The source function 𝑆 and the 
mass absorption coefficient 𝑚 may, therefore, be 
treated as independent of height in the 
equilibrium state. Then the linearized 
perturbation form of equation (12) may be 
obtained as 

3𝑚2𝜌2
𝜕𝜃

𝜕𝑡
−

4𝜋𝑚

𝐶𝑃

(𝑆𝑇 − 𝜌𝛼𝑆𝑃)∇2𝜃 −
𝜕

𝜕𝑡
∇2𝜃    

= − (𝛽 +
𝑔

𝐶𝑃
) (3𝑚2𝜌2𝑤 − ∇2𝑤),                  (14) 

where 𝑆𝑇 and 𝑆𝜌 denote respectively the partial 
derivatives of 𝑆 with respect to 𝑇 and 𝜌. 
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We consider the case in which the boundaries 
are free as well as perfect conductors of both 
heat and solute. The density changes arise 
principally from thermal effects. The case of two 
free boundaries is most appropriate for stellar 
atmospheres as pointed by Spiegel [11]. The 
boundary conditions appropriate for the problem 
are 

𝑤 = 𝜕2𝑤
𝜕𝑧2⁄ = 𝜃 = 𝛾 = 0. 

 

 

3. The Dispersion Relation  

We shall now analyze an arbitrary perturbation  
into complete set of  normal modes by seeking 
solutions whose dependence on space and time 
coordinates is of the form 

𝑒𝑥𝑝(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡) sin 𝑘𝑧𝑧 ,                   (15) 

where 𝑛 is the growth rate and 𝑘𝑧 = 𝑠𝜋
𝑑⁄  , 𝑠 

being any integer and 𝑑 is the thickness of the 

layer and 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)

1
2⁄  is the wave 

number of the perturbation. 

Equations (8) – (10) and (14) give 

𝜕

𝜕𝑡
(∇2𝑤) = 𝑔 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2) (𝛼𝜃 − 𝛼′𝛾)

+ 𝜈∇4𝑤 ,                                 (16) 

(
𝜕

𝜕𝑡
− 𝜅′∇2) 𝛾 = 𝛽′𝑤 ,                                      (17) 

(
𝜕

𝜕𝑡
+ 𝐸) 𝜃 = − (𝛽 +

𝑔

𝐶𝑃
) 𝑤 ,                         (18) 

where 

𝐸 =
4𝜋𝑚(𝑆𝑇 − 𝜌𝛼𝑆𝜌)

𝐶𝑃 (1 +
3𝑚2𝜌2

𝑘2 )
  .                               (19) 

The system of equations (16) - (18) together 
with boundary conditions  

𝑤 = 𝜕2𝑤
𝜕𝑧2⁄ = 𝜃 = 𝛾 = 0. 

constitutes a characteristics value problem for n, 
for given values of the parameters and a  given 
state of system is stable, neutral or unstable 
according as 𝑛𝑟 , the real part of n, is negative , 
zero or positive. Further, if 𝑛𝑟= 0 ⇒ 𝑛𝑖 = 0 for 
all wave number 𝑘, then the principle of 
exchange of stabilities (PES) is valid otherwise 
we have overstability atleast when instability 
sets in as certain modes. The above system of 
equations can be solved by using linear stability 
analysis method.  

Eliminating 𝜃, 𝛾 from equations (16) −  (18) 
and using (16), we obtain the dispersion relation 

𝑛3 + [𝐸 + 𝑘2(𝜈 + 𝜅′)]𝑛2

+ [𝑘2𝐸(𝜈 + 𝜅′) + Γ (𝛽 +
𝑔

𝐶𝑃
) + 𝜈𝜅′𝑘4

+ Γ′𝛽′] 𝑛

+ [Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2 + (𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸]

= 0 ,                                                                     (20) 

where 

Γ = 𝑔𝛼
𝑘𝑥

2 + 𝑘𝑦
2

𝑘2
 𝑎𝑛𝑑 Γ′ =

𝑔𝛼′(𝑘𝑥
2 + 𝑘𝑦

2)

𝑘2
.  (21) 

 

 

4. Discussion and Further 

    Extensions 

Theorem 1: Acriterion that a stellar atmosphere 
in the presence of stable solute concentration 
gradient and radiative transfer effect is unstable 
if 

𝑆𝑇 −
𝜌

𝑇
𝑆𝜌 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸|

> Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2  .                                                   

Proof: Taking the dispersion relation (20), when 

𝑆𝑇 −
𝜌

𝑇
𝑆𝜌 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸|

> Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2  ,                           (22) 
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The constant term in relation (20) is negative. 
Equation (20), therefore, involves one change of 
sign and hence contains one positive real root. 
The occurrence of positive root implies 
monotonic instability. 

We thus obtain a criterion that a stellar 
atmosphere in the presence of stable solute 
concentration gradient and radiative transfer 
effect is unstable if 

𝑆𝑇 −
𝜌

𝑇
𝑆𝜌 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸|

> Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2  ,                                        (23) 

Hence the result. 

Further Extension-1: The rotation induces a 
component of vorticity in the direction of 
rotation. The effects of radiative transfer arise 
when self-absorption is not negligible. It may be 
of some interest to examine the influence of 
radiative transfer and rotation on thermosolutal-
convective instability of a stellar atmosphere. 

Theorem 2: The criterion for monotonic 
instability (22) also holds good in the presence 
of radiative transfer and rotation effects on 
thermosolutal-convective instability in Stern’s 
type configuration in a stellar atmosphere. 

Proof: Here we consider an infinite horizontal 
fluid layer heated from above and solute 
concentrated from below and acted on by a 
uniform rotation Ω⃗⃗⃗(0, 0, Ω) and gravity force 
�⃗�(0, 0, −𝑔). The linearized perturbed equations 
of motion become 

𝜕�⃗�

𝜕𝑡
= −

1

𝜌0
∇𝛿𝑝 + 𝜈∇2�⃗� − �⃗�(𝛼𝜃 − 𝛼′𝛾)

+ 2(�⃗� × Ω⃗⃗⃗),                           (24) 

Equations (9), (10) and (14) remain unaltered. 

Equations (9), (10), (14) and (24) give 

𝜕

𝜕𝑡
(∇2𝑤) = 𝑔 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2) (𝛼𝜃 − 𝛼′𝛾)

+ 𝜈∇4𝑤 − 2Ω
𝜕𝜁

𝜕𝑧
  ,               (25) 

𝜕𝜁

𝜕𝑡
− 𝜈∇2𝜁 = 2Ω

𝜕𝑤

𝜕𝑧
  ,                                      (26) 

where 

𝜁 =
𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑦
 

denotes the z-component of vorticity, Equations 
(17) and (18) remain the same. Eliminating 
𝜃 , 𝜁 𝑎𝑛𝑑 𝛾 from equations (17), (18), (25) and 
(26) and using expression (15), we obtain the 
dispersion relation 

𝑛4 + [𝐸 + 𝑘2(2𝜈 + 𝜅′)]𝑛3

+ [𝜈𝜅′𝑘4 + Γ′𝛽′ + 𝐸𝑘2(𝜈 + 𝜅′) + Γ (𝛽 +
𝑔

𝐶𝑃
)

+ 𝜈𝑘2(𝐸 + 𝑘2𝜈 + 𝜅′̅̅ ̅̅ ̅̅ ̅̅ ) +
4Ω2𝑘𝑧

2

𝑘2
] 𝑛2

+ [(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸 + Γ (𝛽 +
𝑔

𝐶𝑃
) 𝑘2(𝜈 + 𝜅′)

+ 𝜈𝑘2{𝜈𝜅′𝑘4 + Γ′𝛽′ + 𝑘2𝐸(𝜈 + 𝜅′)}

+
4Ω2𝑘𝑧

2

𝑘2
(𝐸 + 𝜅′𝑘2)] 𝑛

+ [𝜈𝑘2 {(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐸 + 𝜅′𝑘2Γ (𝛽 +
𝑔

𝐶𝑃
)}

+ 4Ω2𝑘𝑧
2𝜅′𝐸] = 0.                                            (27) 

When (22) is satisfied, the constant term in 
equation (27) is negative. The product of the 
roots must be negative. Therefore at least one 
root of equation (27) is positive and one root is 
negative. The occurrence of positive root implies 
monotonic instability. The criterion for 
monotonic instability thus holds good in the 
presence of radiative transfer and rotation effects 
on thermosolutal-convective instability in a 
stellar atmosphere. 

Further Extension-2: Further we study the 
effect of collisions on thermosolutal-convective 
instability of a composite medium. Quite 
frequently it happens that the plasma is not fully 
ionized and may instead be permeated with 
neutral atoms. The plasma may be idealized, 
therefore, following Hans [6], as a composite 
mixture of a hydromagnetic (ionized) 
component and a neutral component, the two 
interacting through mutual collisional (frictional) 
effects. A partially ionized plasma represents a 
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state which often exists in the universe. Hence it 
is of interest to investigate the influence of these 
frictional effects with neutrals on thermosolutal-
convective instability of a composite medium. 

Here we consider an infinite horizontal 
composite layer consisting of a finitely 
conducting hydromagnetic fluid of density 𝜌 and 
a neutral gas of density 𝜌𝑑, acted on by a 
uniform vertical magnetic field �⃗⃗⃗�(0, 0, 𝐻) and 
gravity force �⃗�(0, 0, −𝑔). This layer is heated 
from above and solute concentrated from below 
such that a steady temperature gradient 𝛽(=

𝑑𝑇
𝑑𝑧⁄ ) and a concentration gradient 𝛽′(=

− 𝑑𝐶
𝑑𝑧⁄ )  are maintained. Regarding the model 

under consideration we observe that the number 
density of neutral particles is extremely smaller 
than the number density of ionized particles 
(Tanenbaum [12]). The pressure and buoyancy 
effects acting on neutral particles, therefore, 
have negligible influence (the volume fraction of 
the neutral particles being extremely small) 
whereas they are significant in the case of 
ionized component. In a partially ionized gas the 
magnetic field interacts with the charged 
component and is not directly affected by the 
neutral component (Parker [13]). 

Now we prove the following Theorem : 

 

 

 

Theorem 3: A criterion that the thermosolutal-
convective instability of a composite stellar 
atmosphere in the presence of stable solute 
concentration gradient and collisional effects is 
unstable if 

𝐷 < 0  𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷|

> Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2. 

Proof: Let ℎ⃗⃗(ℎ𝑥 ,  ℎ𝑦,  ℎ𝑧),  𝜂,  𝑣𝑑⃗⃗ ⃗⃗⃗ and 𝜈𝐶denote 
respectively the perturbation in magnetic field 
�⃗⃗⃗�, the resistivity, the velocity of the neutral gas 
and the collision frequency between the two 

components of the composite medium. Then the 
linearized perturbation equations appropriate to 
the problem are 

𝜕�⃗�

𝜕𝑡
= −

1

𝜌0
∇𝛿𝑝 + 𝜈∇2�⃗� +

1

4𝜋𝜌0
(∇ × ℎ⃗⃗) × �⃗⃗⃗�

+ �⃗�
𝛿𝜌

𝜌0
+

𝜌𝑑𝜈𝐶

𝜌0

(𝑣𝑑⃗⃗ ⃗⃗⃗ − �⃗�),    (28) 

𝜕𝑣𝑑⃗⃗ ⃗⃗⃗

𝜕𝑡
= −𝜈𝐶(𝑣𝑑⃗⃗ ⃗⃗⃗ − �⃗�),                                       (29) 

𝜕ℎ⃗⃗

𝜕𝑡
= ∇ × (�⃗� × �⃗⃗⃗�) + 𝜂∇2ℎ⃗⃗,                             (30) 

∇. ℎ⃗⃗ = 0,                                                                (31) 

together with equations (7), (9), (10) and (12). 
Equations (7), (9), (10), (12) and (28)-(31) give 

𝜕

𝜕𝑡
(1 +

𝛼0𝜈𝐶

𝜕

𝜕𝑡
+ 𝜈𝐶

) (∇2𝑤)

= 𝑔 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2) (𝛼𝜃 − 𝛼′𝛾)

+ 𝜈∇4𝑤 +
𝐻

4𝜋𝜌0
∇2

𝜕ℎ𝑧

𝜕𝑧
,     (32) 

(
𝜕

𝜕𝑡
− 𝜂∇2) ℎ𝑧 = 𝐻

𝜕𝑤

𝜕𝑧
,                                   (33) 

(
𝜕

𝜕𝑡
+ 𝐷) 𝜃 = − (𝛽 +

𝑔

𝐶𝑃
) 𝑤,                          (34) 

(
𝜕

𝜕𝑡
− 𝜅′∇2) 𝛾 = 𝛽′𝑤,                                       (35) 

where 𝛼0 =
𝜌𝑑

𝜌0
⁄  

Eliminating 𝜃,  𝛾 and ℎ𝑧 from equations (32)-
(35) and using expression (15), we obtain the 
dispersion relation 

𝑛5 + 𝐴4𝑛4 + 𝐴3𝑛3 + 𝐴2𝑛2 + 𝐴1𝑛 + 𝐴0

= 0,                                                                           (36) 

where 

𝐴4 = 𝐷 + 𝜈𝐶(𝛼0 + 1) + 𝑘2(𝜈 + 𝜂 + 𝜅′) 
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𝐴3 = 𝜅′𝜂𝑘4 + 𝑘2𝐷(𝜂 + 𝜅′)
+ (𝜈𝐶 + 𝜈𝑘2 + 𝛼0𝜈𝐶){𝐷
+ 𝑘2(𝜂 + 𝜅′)} + 𝜈𝑘2𝜈𝐶

+ Γ (𝛽 +
𝑔

𝐶𝑃
) + Γ′𝛽′ + 𝑘𝑧

2𝑉𝐴
2, 

𝐴2 = 𝜅′𝜂𝑘4𝐷 + (𝜈𝐶 + 𝜈𝑘2 + 𝛼0𝜈𝐶){𝜅′𝜂𝑘4

+ 𝑘2𝐷(𝜂 + 𝜅′)}
+ 𝜈𝑘2𝜈𝐶{𝐷 + 𝑘2(𝜂 + 𝜅′)}

+ Γ (𝛽 +
𝑔

𝐶𝑃
) (𝜈𝐶 + 𝜂𝑘2

+ 𝜅′𝑘2) + Γ′𝛽′(𝜈𝐶 + 𝜂𝑘2 + 𝐷) 

+𝑘𝑧
2𝑉𝐴

2(𝜈𝐶 + 𝜅′𝑘2 + 𝐷), 

𝐴1 = 𝜅′𝜂𝑘4𝐷(𝜈𝐶 + 𝜈𝑘2 + 𝛼0𝜈𝐶)
+ 𝜈𝑘2𝜈𝐶{𝜅′𝜂𝑘4

+ 𝑘2𝐷(𝜂 + 𝜅′)}

+ Γ (𝛽 +
𝑔

𝐶𝑃
) {𝜂𝑘2𝜈𝐶

+ 𝜅′𝑘2(𝜈𝐶 + 𝜂𝑘2)}
+ Γ′𝛽′{𝜂𝑘2𝜈𝐶 + 𝐷(𝜈𝐶 + 𝜂𝑘2)}
+ 𝑘𝑧

2𝑉𝐴
2{𝜅′𝑘2𝜈𝐶

+ 𝐷(𝜈𝐶 + 𝜅′𝑘2)}, 

𝐴0

= 𝜂𝑘2𝜈𝐶 {(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷 + Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2}

+ 𝑘𝑧
2𝑉𝐴

2𝐷𝜅′𝑘2𝜈𝐶 ,                                      (37) 

where 

𝑉𝐴
2 =

𝐻2

4𝜋𝜌0
. 

When                                                                        
                                                                       

𝐷 < 0  𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷| > 

Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2,                                              (38) 

the constant term in equation (36) is negative. 
Equation (36), therefore, involves one change of 
sign and hence contains one positive real root. 
The occurrence of positive root implies 
monotonic instability. 

We thus obtain a criterion that the 
thermosolutal-convective instability of a 
composite stellar atmosphere in the presence of 
stable solute concentration gradient and 
collisional effects is unstable if 

𝐷 < 0  𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷|

> Γ (𝛽 +
𝑔

𝐶𝑃
) 𝜅′𝑘2. 

The criterion for monotonic instability is the 
same in the presence or absence (Sharma and 
Sharma [14]) of the collisional effect on 
thermosolutal-convective instability of a 
composite stellar atmosphere. 
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