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Abstract:  In this paper, after closed loop system identification is reviewed, asymptotic analysis and finite 
sample analysis for closed loop system identification are studied respectively, corresponding to the infinite 
data and finite data. More specifically, within the framework of infinite data, the cost function is modified to 
its simplified form, and one optimal feedback controller is obtained based on our own derivations. The 
simplified cost function and optimal feedback controller are benefit for practical application. Furthermore, 
the asymptotic variance of that optimal feedback controller is also yielded from the point of asymptotic 
analysis. In the case of finite data, finite sample properties are constructed for closed loop system 
identification, then one difference between the sampled identification criterion and its corresponding 
expected criterion is derived as an explicit form, which can bound one guaranteed interval for the sampled 
identification criterion. Finally, one simulation example is used to prove the efficiency of our proposed 
theories. 
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1 Introduction 

Many practical systems operate under feedback 
control, which is due to required safety of operation 
or to unstable behavior of the plant, as occurs in 
many industrial production processes, such as paper 
production, glass production etc. During the 
feedback structure, i.e. closed loop system, the 
output variable is turned back to the input through a 
feedback controller. The most merit for closed loop 
system or feedback controller is to achieve the 
perfect tracking, it means the output variable for the 
whole closed loop system can track our designed 
output trajectory. As a consequence experiments can 
only be performed under presence of a stabilizing 
controller. Even in situations where plants are stable, 
production restrictions can be strong reasons for not 
allowing experiments in open loop. As plant and 
feedback controller exist in closed loop system 
simultaneously, and the design for feedback 
controller is dependent of this considered plant, so 
plant must be identified firstly before feedback 
controller design. This detailed identification 

process for plant corresponds to closed loop system 
identification. 
Theoretical research on system identification has 
been matured, for example, the detailed statistical 
identification methods and the asymptotic or 
convergence properties are analyzed from the point 
of time domain perspective in reference [1], where 
some stochastic probability inequalities 
corresponding to the guaranteed interval estimations 
are proposed. Furthermore, these various statistical 
identification methods are the theoretical basis for 
our new identification strategies. In order to be 
different from the point of time domain, reference 
[2] studies the identification methods in frequency 
domain, and points out how to avoid the aliasing 
effect in carrying out the Fourier transformation. 
The recursive identification methods on line are 
proposed in [3], where the computational 
complexity and real time algorithms are also given 
for linear system. It means that the next parameter 
estimation can be updated recursively through 
iterating computation. Now the identification of 
nonlinear system is still under investigation, as there 
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is no universal identification method that can be 
applied to any form of nonlinear systems. So far 
some special nonlinear systems are studied, such as 
Wiener system, Hammerstein system and linear 
parameter varying system etc. The instrumental 
variable method is studied for linear parameter 
varying system [4], and the norm regularization 
identification is proposed in identifying the 
switched linear regression model [5]. Reference [6] 
gives the state space identification for nonlinear 
system with dual linear blocks. For two special 
classical nonlinear systems-Wiener system and 
Hammerstein system, the frequency weighted 
maximum likelihood identification is put out for 
identifying Wiener system, and a real-time robust 
set estimation is given for Hammerstein system. 
Then based on these two special cases, many 
researchers start to study another identification 
strategies and the identifiability for different series 
combination [7]. Due to white noise is an ideal case, 
it does not exist in engineering and in additional, 
deriving statistical properties of noise is often very 
difficult in practice, as it is usually not possible to 
measure the external noise directly. As linear system 
identification is a mature field, then the most 
common classical approaches can be used to 
perform the prediction of the output value, such as 
prediction error method, maximum likelihood 
method, etc, in case of the linear dynamic system. 
But the above classical approaches are not used in 
nonlinear system identification, as it is not easy to 
expand the nonlinear system and the nonlinear 
system identification can not reformulated as one 
parametric optimization problem easily. It means 
that the subject of ongoing research is concentrated 
on nonlinear system identification, i.e. the 
prediction of the output value coincides with the 
considered nonlinear dynamic system. The use of 
orthonormal basis functions is proposed to be a 
systematic construction mechanism of stable time 
domain kernels for impulse response estimation of 
linear time invariant systems [8], further two 
proposed weights of the orthonormal basis functions 
are regarded as decay terms, guaranteeing stability 

in the associated hypothesis space. A Bayesian 
nonparametric approach is proposed to estimate 
multi-input multi-output linear parameter varying 
models under the general noise model structure [9], 
where this Bayesian nonparametric approach is 
based on the estimation of the one step ahead 
predictor. Due to linear parameter varying models 
are the special nonlinear systems, efficient 
maximum likelihood estimation is considered on the 
basis conditional probability density and total 
probability theorem [10]. In [11], adopting 
maximum entropy arguments, a new L2 penalty is 
derived and the Hankel matrix is exploited to 
achieve the maximum entropy vector kernels for 
multi-input multi-output system identification. 
Alternatively, a new kernel based regulation 
approach, that combines ideas from machine 
learning, statistics and dynamical systems, has been 
introduced recently [12], and further extended in 
[13], where a new sparse multiple kernel based 
regularization is provided to alleviate the latter 
computational cost. Moreover prediction error 
method framework is well suited to identify a large 
variety of noise and plant models, see [14] for an 
overview. Due to linear parameter varying models 
cover a large of processes and noise representations, 
where the Box-Jenkins model is the most general 
form, prediction error identification of Box-Jenkins 
models leads to a nonlinear optimization problem 
[15], which is solved by a scaled gradient projection 
method. Another important issue in identifying the 
linear parameter varying models is capturing the 
structural dependency on the scheduling signal. In 
the parametric case, the structural dependency is 
generally characterized by using a pre-specified set 
of basis functions [16], which require significant 
prior knowledge of the underlying system. The 
nonparametric methods for the identification of 
linear parameter varying models offer attractive 
alternative approaches to capture the underlying 
dependencies directly from measured data without 
covering any parameterization [17]. A Bayesian 
nonparametric approach on the basis of the 
estimation of the one step ahead predictor is 
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proposed to estimate the linear parameter varying 
models [18], and some predictors associated with 
the input and output signals are modeled as the 
stable impulse response models. The problem of 
controlling the linear parameter varying model is 
considered in [19], and the control strategy can be 
applied in a wafer stage. During the system 
identification process, many identification methods 
are proposed to identify these unknown parameters, 
for example the classical least squares method, 
instrumental variable method, maximum likelihood 
estimation method, prediction error method, 
Bayesian method, etc [20]. As the goal of model 
predictive control is to control the closed loop 
system in order to track a desired output reference 
and reject disturbances. Moreover, the considered 
controller may enforce input and output constraints. 
So after introducing control input and output value 
as decision variables simultaneously, such a control 
objective can be formulated as a quadratic 
programming problem with inequality constrained 
condition. It is well known that the dual of the 
quadratic programming problem is an unconstrained 
optimization problem [21]. The most important 
element in model predictive control is the prediction 
of output value. After deriving the prediction of 
output value by prediction error method and then 
substituting it into one considered cost function, we 
take the derivative of the cost function with respect 
to input value to obtain one optimal input [22]. But 
the problem of deriving the prediction of output 
value is dependent of external noise, which is 
always assumed to be independent and identically 
distributed white noise. Due to white noise is an 
ideal case, it does not exist in engineering and in 
additional, deriving statistical properties of noise is 
often very difficult in practice as it is usually not 
possible to measure noise directly [23]. Although 
model predictive control has been found to be quite 
a robust type of control in most reported 
applications, some new and very promising results 
allow one to think that this control technique will 
experience greater expansion within this community 
in near recent years [24]. 

Based on above formulations on system 
identification or closed loop identification, after the 
excitation input is used to excite the closed loop 
system, then output variable or signal is measured 
by some sensors. The unknown plant is identified 
from these input and output sequence, i.e. the 
knowledge about the unknown plant are extracted 
from the measured data sequences. This 
identification process is similar to recent machine 
learning and data mining. This similarity between 
system identification and data mining motivates lots 
of research on applying data mining into system 
identification. But in the studying for system 
identification, lots of considerations are put on 
optimal input design and identification algorithm, 
few on identification accuracy, i.e. how about the 
quality about the identification model and can we 
use this identification model to replace the original 
plant? To reply this question, asymptotic theory, 
proposed in [1], is proposed to measure the quality 
of the identification model. All the derived results 
hold in case of infinite data, i.e. the number of 
measured data N  approaches to infinity ( N  ) 
in classical reference [1]. For example, asymptotic 
theory is applied to analyze asymptotic properties 
for one special set membership identification 
algorithm [25]. But in practice the measured data is 
finite, it means that the number of measured data 
approaches to infinity is an ideal case. This case of 
finite data causes all the derived asymptotical 
results in [1] and [25] not hold in reality. The 
quality analysis about the identification model on 
the condition of finite data corresponds to finite 
sample property for system identification. For this 
problem of finite sample analysis, the author 
considers finite sample properties of virtual 
reference feedback tuning control and derive one 
probability bound to quantify the difference 
between the expected identification cost and its 
sampled cost [26]. Furthermore, in [27] the author 
gives the number of measured data by using 
generalization of independent block sequence, 
which corresponds to the sample complexity in 
system identification. 
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From our previously published work [28] about 
stealth identification for closed loop system 
structure, the identification problem for closed loop 
system with unknown controller and nonlinear 
controller is tackled, and the new prediction error 
and inverse covariance matrix are found to be 
independent of the unknown or nonlinear controller. 
In this paper, here we do not concentrate on the 
identification algorithm for closed loop system 
again, but turn to identification accuracy analysis 
for closed loop system. As there are two kinds of 
accuracy analysis, i.e. asymptotic analysis and finite 
sample analysis, so we consider the identification 
accuracy analysis for closed loop system from the 
point of asymptotic analysis and finite sample 
analysis respectively. More specifically, after 
reviewing some existed results about closed loop 
system identification, the cost function, used to 
identify the unknown parameter vector in case of 
parameterized plant, is reformulated to its reduced 
form. The spectral estimation for unknown plant is 
obtained as a nonparametric estimation, which is 
widely used in flutter identification. Moreover, 
based on our derived reduced cost function, one 
optimal feedback controller is yielded to be 
dependent of the identified plant. These reduced 
cost function and optimal feedback controller are 
benefit for later practical application, such as closed 
loop model validation, optimal input design etc. 
Then asymptotical analysis is applied to derive the 
variance for the optimal feedback controller, and the 
derivation of the reduced cost function and the 
optimal feedback controller are full of some 
asymptotic results. On the contrary, finite sample 
properties for closed loop system are also studied to 
quantify the difference between identification 
criterion and expected criterion. Furthermore, the 
VC dimension, coming from machine learning, is 
used to bound this difference. Generally, this paper 
considers the closed loop system from our 
published word [28]., and extends the asymptotic 
analysis and finite sample analysis for closed loop 
system identification. Our derived new results in 
this paper are completed than our published work 

[26] and [27], as asymptotic analysis and finite 
sample analysis are all considered here. 
The paper is organized as follows. In section 2, 
closed loop system is described and the classical 
identification algorithm for closed loop system is 
reviewed on the basis of the parametrized plant. In 
section 3, the cost function or identification 
criterion is adjusted to its other form, then spectral 
estimation for the unknown plant is derived to be 
one nonparametric estimation. Based on this 
adjusted cost function, one optimal feedback control 
is given, and asymptotic analysis are studied during 
these mathematical derivations, such as the variance 
analysis for the optimal feedback control. This 
section 3 corresponds to asymptotic analysis for 
closed loop system identification. In section 4, finite 
sample properties for closed loop system 
identification are considered in case of finite data. 
Section 5 ends the paper with final conclusion. 

2.  Closed loop system identification 

Some different forms exists for closed loop system 
structure in practice, here consider one typical 
closed loop system with one linear time invariant 
feedback controller in Figure 1. 

 r t  u t

 v t

 y t

 e t

 0P z

 C z

 0H z

+
—

+

+

Fig 1. One typical closed loop system 
where in Figure 1,  r t is external excitation input, 
chosen by the designer,  0P z is the true or nominal 
plant,  0H z  is one noise filter,  C z is the 
feedback controller, whatever it is unknown or 
nonlinear, our proposed stealth identification 
strategy can be used to design it.  u t and  y t  
are input and output for plant  0P z .  e t is a 
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white noise with zero mean white Gaussian and 
mutually uncorrelated,  v t  is the filtered noise by 
passing white noise  e t  through that noise filter 

 0H z , 1z is the backward shift operator. 
Observing Figure 1 again, the process about 
identifying the plant  0P z and noise filter  0H z  
corresponds to closed loop system identification, 
and we have      0v t H z e t . From Figure 1, we 
have the following equities easily. 

 
         

       

0 0y t P z u t H z e t

u t r t C z y t

 


 

               (1) 

After simple computations, we have 

 
 

 

   
 

 

   
 

 
   

 
   

   
 

0 0

0 0

0

0 0

1 1

1
1 1

P z H z
y t r t e t

P z C z P z C z

C z H z
u t r t e t

P z C z P z C z


 

 



 
  

   (2) 

To simplify notation, one sensitivity function 
 0S z is defined as. 

  
   0

0
1

1 C z
S

P
z

z
           (3) 

Then equation (2) can be simplified as. 

 
             

             

0 0 0 0

0 0 0

y t P z S z r t H z S z e t

u t S z r t C z H z S z e t

 


 

  (4) 

Here     0 0,P z H z are unknown in closed loop 
system and they are regarded as true values or 
nominated values. The closed loop identification is 
to use input-output variables     ,r t y t  to 

estimate     0 0,P z H z .  

To show     0 0,P z H z are unknown, one unknown 
parameter vector  is introduced to parametrize the 
closed loop system, i.e.     , , ,P z H z  . It means 
closed loop system is parametrized by one unknown 
parameter vector , then the goal of closed loop 
identification is to estimate that unknown parameter 
vector . 
substituting the parametrized form 

    , , ,P z H z  into equation (2), the parametrized 
relations are given as. 

 
 

   
 

 

   
 

 
   

 
   

   
 

, ,
1 , 1 ,

,1
1 , 1 ,

P z H z
y t r t e t

P z C z P z C z

C z H z
u t r t e t

P z C z P z C z

 

 



 


 

 



 
  

 (5) 

Combing equation (2) and (5),      1
,

N

t
u t y t


are 

input-output variables for plant  0P z , and 

     1
, , ,

N

t
u t y t 


are parametrized input-output 

variables for plant  ,P z  . To identify that unknown 
parameter vector   in     , , ,P z H z  , classical 
prediction error strategy is applied here, where N  
denotes the number of input-output variables. 

 
   

 

 

   
 

   
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 
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1

,

,
,

, 1 ,
,

P z C z P z
y t r t

H z P z C z

P z C z
y t

H z

P z
r t

H z

H z P z C z
y t

H z

 


 









 








 
  
  



 


     (6) 

Define the residual  ,t  as that. 

 
     

   

 
 

 

   
 

ˆ ,

1 ,
, ,

,

,
1

y t y t

P z C z P z
y t r t

H z z C

t

P z



 



 



 

 
  

  

 (7) 

Based on the measured input-output 
variables      1

,
N

N t
Z r t y t


 , that unknown 

parameter vector  is given as the following 
numerical optimization problem. 

   2

1

1ˆ arg min , , arg min ,
N

N N N

t

V t Z t
N 

   


     (8) 

where ˆ
N denoted the parameter estimation based 

on measured input-output      1
,

N

N t
Z r t y t


 . 

Substituting residual  ,t   into numerical 
optimization (8), then lots of optimization methods 
can be applied to minimize that cost function or 

identification criterion  2

1

1 ,
N

t

t
N

 


 , for example 

least squares method, Newton method, and gradient 
method etc. 
The above description on closed loop system 
identification is existed and mature, referring to 
reference [1]. 
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3.  Asymptotic analysis 

As this paper does not concern on the optimal input 
design and identification algorithm for closed loop 
system , but on finite sample analysis on closed 
loop system identification. Before starting our new 
results about finite sample analysis, we firstly give 
our derived asymptotic analysis result, as some 
results in this section 3 will be used in further study. 
From some knowledge about statistical signal 
processing, assume external excitation input  r t  
be quasi-stationary with power spectrum  r w , 
where w is one spectrum variable. The variance for 
white noise  e t is 0 , then power spectrum 

 v w for the filter noise  v t  is  

     *
0 0 0

jw jw

v w H e H e   

where notation * means complex conjugate. 
3.1 Asymptotic analysis for cost function 

Using the uncorrelated condition between  r t and 
 e t , the output spectrum and input spectrum in 

equation (4) are yielded respectively as. 

 

   

   

   

2 2 2 2
0 0 0 0 0

2 2 2
0 0

2
0 0

y r

u r

r e

u u

w wP S H S

S H Sw w C

w w





 

 

 

 














      (9) 

where in equation (9), variance z is neglected, 

 r

u w and  e

u w correspond to components, 
coming from the external excitation input and 
external noise respectively. 
Similarly the cross spectrums are given as. 
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 

2 2 2
0 0 0 0 0

0 0 0

yu r

ue

P Sw w C H

H SC

S

w





 







 




     (10) 

Observing equation (9) and (10), we see that 
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









    (11) 

The above spectrum relations are benefit for 
spectral estimation of the transfer function  0P z . 
From a practical point of view, the spectral estimate 
is defined as. 
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





 
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When the number of measured data approaches to 
infinity  N  , the above relations hold, i.e. 

 
         

       
2

0
jw jw

jw

r v yu

r v u

w C w w

w C w

P e e

we

  

  

  



 


   (13) 

From the asymptotic theory, we see that if N tends 
to infinity, spectral estimate  ˆ jwP e  converges to 
expression  

       

     
2

0 r v

j w

jw

r v

w jP w C w

w

e e

C we

 

 





 

but it is one biased estimate. As residual  ,t  is 
implicit with unknown parameter vector  , we 
rewrite it as that. 

          1, , ,t H z y t P z u t           (14) 
Further suppose one true parameter vector 0 exist 
and satisfy 

       0 0 0 0, ; ,P z P z H z H z    

After substituting equation (2) into (14), it holds 
that  

 

     

 

   
 

 

   
 

 

   
 

     

   
 

   

   
 

     

   
 

0 0

0 0

0

0 0

0

0

0

0

1

,

1

1 1

1

1

, ,

,

,
1

P z H z
r t e t

P z C z P z C z

C z H z
r t e t

P z C z P z C z

P z
r t

P z C z

H z C z

y t P z u t

P z P z

P z

P z
e t

P z C z



 






 

 
 






  









(15) 

Then residual  ,t  is rewritten as again. 
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 
   

     
 

 

 

   

   
 

   

 
   

 

 

   

   
 

0

0

0

0

0
0

0

0

1

1

, 1,
,

,
,

,
,

,

1

1
1,

P z
r t

P z C z

C zH z
e t

P z C z

P z
S z r t

P z
t

H z

P z

H z

P z

H z

C zH z
e t

P z

P

C

z

H zz


 



















  







  






  (16) 

On the condition of this above new residual, then 
the cost function  NV   in equation (8) is also 
rewritten as that. 

 

   

   

 
 

 

   
   

 

2

1

2

2

0

2

0

1 ,

,

,

11

, 1

,

jw jw

r

ujw

jw jw

vj

N

w jw
jw

N

t

P e e
w dw

e

e C e
w dw

P e C e

t
N

P

H

P

e

V

H











  


































  (17) 

where in equation (17), Parseval’s relations is used. 
From equation (17), the minimum value is yielded 
in case of    0,jw jwP e P e  or 0̂  , but they 
hold when N tends to infinity. This condition 
corresponds to the asymptotic analysis. 
3.2 Asymptotic analysis for optimal feedback 

controller 

In section 3.1, asymptotic theory is applied to 
rewrite the cost function  NV  , based on our 
derived cost function (17), we seek its optimal 
feedback controller  C z . 
Adding one weight matrix  N w into the derived 
cost function  NV  , we denote the cost function 

 NV  as     ,u ueV w w  , i.e. 

    

     

   

   

   

 

0 12 12
2

0

22
2

0

,

2 Re

u ue

ue

u ue

v

u

u ue

V w w

N w N w w

w w
w dw

N w w

w w





 

 

  




  



    
 
 

  
 
 

  


(18) 

where the weight matrix  N w is one 2 2 matrix, 
i.e. 

 
   

   
11 12

21 22

N w N w
N w

N w N w

 
  
 

 

Rewrite the weight matrix  N w as one special 
form, i.e. 

    
   

 

2

1

jw jw

jw

M e M e
N w S w

M e

 
 
 
  

 (19) 

Substituting the above chosen weight matrix into 
cost function, it holds that. 

         

   

   

   
 

 

       

   
 

   

       

   
 

   

   
 

       

2

0

2
0

2
0

2

0

2
0

0
22 2

0 0

2
0

2
0

2
0

22
0

0 0

2

2

2

1

jw jw

ue

u ue

u

v

u ue

jw jw

ue u

v

u ue

v

jw jw

ue ue

v

u ue

u ue

v

u ue

jw

uev

S w M e S w M e w

w w

S w w
w

w w

S w

M e M e w w
w

w w

S w w

M e M e w w
w

w w

w w
w

w w

M e wS w w

 

  




  

  


  





   


  

  


  

 

  

 
 








  
 






 










 

   
2

u uew w

 
 
 


  

(20)

Then the cost function is that. 

   

       

   

22
0

2,
0 0

min 1
u ue

jw

uev

w w

u ue

M e wS w w
dw

w w



 

 

   

 
 
 


  



(21) 
Applying our existed relations in equation (21). 

 

   

   

2

0 0 0

2 2 2
0 0 0 0

ue

u r

r e

u u

H S

S H

w C

w w C

w

S

w







 

 












 

i.e. it holds that 

 
   

   

 
 

22 2
0 0

2
0 00

0 0 0
jw jw

ue

ru ue

M e w M e C

S ww

H S

w

  

  





 



 (22) 

substituting equation (22) into (21), the cost 
function is reduced to that. 
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   

 
 

2
0

,
0 0

0 0 0min
u ue

jw

w w
r

M e C
dw

S

H S

w



 



 







     (23) 

It is easy to see that the optimal feedback controller 
 C z must satisfy that. 

       0 0C z H z S z M z   
i.e.  

   

   
 

         

0

0

0 0

1

1

C z H z
M z

P z C z

C z H z M z P z C z

 


    

 

It yields that 

  
 

     0 0

M z
C z

P z M z H z
 


       (24) 

where in equation (24),  M z is given, and 

    0 0,P z H z can be replaced by their parametrized 

form     , , ,P z H z  , then optimal feedback 
controller  C z  is chosen as. 

  
 

     , ,
M z

C z
P z M z H z 

 


        (25) 

During above mathematical derivations, asymptotic 
theory is used too, for example, that Parseval’s 
relation and some spectral relations. 
Observing equation (25) again, optimal feedback 
controller  C z is dependent of the parametrized 
form     , , ,P z H z  , so we need to analyze this 
closed dependence through the variance expression 
for our derived optimal feedback controller. 
Consider two disturbances or perturbs exist in 
parametrized forms     , , ,P z H z  ,, without loss 
of generality set 

           0 0, , ,, ,P z H z P z HH Pz      , 
 i.e. 

           

   

   

0 0

0

0

,, , , ,

,

,

P HP z H z P z H z

P z PP z

H z HH z

 





   

  

 






(26) 

substituting these two perturbs into optimal 
feedback controller, we have 

 

 
 

     

 

       

 

     

     

 

 

     

 

     
 

 

 

     
 

0 0

0 0

0 0

2
0 0

0 0

2
0 0

0

2
0 0

1

1

M z
C z

P z M z H z

M z

P z M z M z H z

P z M z H z

M z
P z M z H z

M z

M z

P z M z H z

M z
M z

P z M z H z

C

P H

P H

P H

P H

z

M z
M z

P z M H z
P H

z


  


  

 
 
 
 

  
   

 
  

       

  

  
 




   
  



   


 

 

 

 
  

 (27) 

where for the latter analysis,  0C z means the 
nominate controller. 
Define the perturb, existing in optimal feedback 
controller as 

 

   

 

     
 

 
 

     

0

2
0 0

02
0

0 0

1

C C z C z

M z
M z

P z M z H z

C z
C z

P z M z H

P

H

P

Hz

  

 
      

   

   
     

  











 (28) 

where the following relations are used. 

 
 

     
 

 
 

     

 

     

   
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2

0 2
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2
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M z
C z M z

P z M z H z

M z
C z

P z M z H z

M z

P z M z H z

C z
C

P H

P

H

Pz C z
P H

H
z M z z

   
  

 
  



 




  

 




  

 

Based on the derived perturb C , variance of the 
optimal feedback controller  C z is given as. 
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2
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C

P H

P E C z C z

C z
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P z M z H z

C z
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P z M z H z

C z

Cov C z

P z M z H z

P

H

P H

   

   
    

    

 
 

  






 

 

 
  

  

 
 

  
  

   (29) 

where  ,P H
Cov is variance for parametrized 

forms     , , ,P z H z   and its explicit form for 

 ,P H
Cov  is seen in our previous work [28]. 
Substituting our existed result from [28] in equation 
(29), then variance CP is yielded as that. 
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2
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0

0
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2
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0

0

C

r

C z
P C z

P z M z H z

Hn C z
N S w

C z
n P z M z H zH
N





 
  

  

 
  
     
    

  

 (30) 

where n is the number of parameter vector  . 
Further observing equation (28) again, the biased 
error is that. 

 
     

 

     
 

2
0

0

0 0

E C C z E

C z
E

P z M z H z

P

H

  







     (31) 

So if all parametrized forms     , , ,P z H z  are 
unbiased estimates, i.e.     0E EP H   , then 
our derived optimal feedback controller  C z  is 
also one unbiased estimate, i.e.  

   0 ,E C z C z N     
Generally asymptotic theory is applied to analyze 
that cost function, optimal feedback controller and 
its corresponding variance. 

4. Finite sample analysis 

During above mathematical derivations, some 
results hold on the basis of infinite data, i.e. 
N  , for example that asymptotic variance (30) 

for the optimal feedback controller  C z . We 

regard those results in section 3 as asymptotic 
analysis, but in practice, that finite data is an ideal 
case, and the number of measured data is truly finite. 
Then within this framework of finite sample data, 
how can we use the sampled identification criterion 
to replace its corresponding limit or expected 
criterion? This section is to measure the difference 
between the sampled identification criterion and 
expected criterion. Based on this explicit difference, 
the number of measured data is obtained to 
guarantee the difference not great one given positive 
scalar. This necessary number of sampled data 
corresponds to sample complexity in closed loop 
structure. 
For the sake of completeness, consider that residual 
 ,t   (7) again. 

     

   

 
 

 

   
 

ˆ ,

1 ,
, ,

,

,
1

y t y t

P z C z P z
y t r t

H z z C

t

P z



 



 



 

 
  

  

 

Substituting that optimal feedback controller  C z  
(25) into above residual, it holds that. 

 

   
   

     

   
   

     

 

     

 

   

       

 

,
,
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,
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, ,

,
, ,

, , ,,
1 , ,
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P z M z
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P z M z H z
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P z P z M z H zP z

P z C z H z




 




 



 

  

 

 


  





  




(32) 

Combing above equities, we get 

 

 
     

 
       

 
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1
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,1
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,
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H z

P z
y t r t

P z M z H z H

t

z

 
 

  





  




   
  
  

 


  (33) 

Observing that identification criterion (8) again, as 
only N terms exist in this identification criterion, 
we call it as the empirical value or sampled value of 
identification criterion, and denote it as 

    2

1

1 ,
N

N

t

V t
N

  


            (34) 

To measure this sampled identification criterion, we 
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need one ideal value to compare, i.e. one expected 
criterion, which is defined as follows. 

   2

1

1 ,
N

t

V E t
N

  


               (35) 

where expectation operation  E is introduced in 

above equation (35). 
To compare the difference between  NV  and  V  , 
i.e.    NV V  , the square term is needed. From 
equation (1), we have 

             
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 (36) 

Using equation (36), we compute the square term 

 2 ,t  as follows. 
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(37) 

Taking expectation operation  E  on both sides 
of equation (37), it yields that difference 
between    NV V  . 
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 (38) 
where in equation (38), we use the following known 
equities. 
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To give a bound for the difference (38), set  
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Then equation (38) is simplified as that. 
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From the statistical signal processing, the bound for 
the first subtract is given as. 
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        (39) 

where 0 and 1 are two positive scalars, similarly 
the similar result holds for the second subtract. 
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where 2 is also one positive scalar.’ 
Observing equation (39) and (40), and set 

1 2    , then we have 
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(41) 
Equation (41) means after chosen one suitable 
sample complexity N , the difference  

   2 2

1 1
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t E t
N N

   
 

   

will at least one given positive scalar  . If  is 
small enough, then N will be increased, i.e. N is 
increased with   reducing. 

5. Simulation example 

In this section we apply our derived results on one 
single input and single output system, controlled by 
one feedback controller. The true data generating 
system is given as follows. 

 

 

1 2

0 1 2 3 4

3 2

4 3 2

1

0 1

0.25 0.12
1 1.6 0.8 0.64 0.65

0.25 0.12
1.6 0.8 0.64 0.65
1 0.2 0.2 0.3=1

0.5 0.51 0.5

z z
P z

z z z z

z z

z z z z

z z
H z

z zz

 

   








   




   

 
  

 

 

Their corresponding parametrized forms are 
denoted as 
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A Gaussian white noise  e t with variance 

0 0.5  is added through the noise filter  0H z . The 
sampled time is 1sT  second, the true parameter 
vector 0 is defined as. 

 0 1.6,0.8, 0.64,0.65,0.25,0.12,0.5,0.2 T
     

The data generating system is operated in one 
closed loop system with one unit feedback 
controller. In solving that numerical optimization 

problem to identify the unknown parameter vector, 
the initial value for unknown parameter vector 

init is chosen as. 

 1.7,0.7, 0.4,0.8,0.15,0.1,0.4,0.1 T

init     
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Fig 2. Input signal 
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Fig 3. Output signal 

The input variable  u t has a weight of 1 and the 
excitation signal  r t has also one bound, i.e. 

 1 1r t   . The applied input signal is shown in 
Figure 2, and the output signal  y t is measured 
through some physical devices. Figure 3 shows the 
observed output signal. When using predictor error 
identification method to identify the unknown 
parameters, the condition for termination the 
recursive method is to guarantee the estimation 
error 

 ˆ t 




 

be less than one small constant value, for example, 
0.05. 
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Fig 4. Final sample results for parameters 

4a  and 1b  

As the goal of finite sample analysis is to drive one 
suitable sample complexity, which can give one 
reference about using the sample sum to replace the 
expectation operation, it means this suitable sample 
complexity can guarantee the error between the 
sample sum and the expectation operation be less 
than one given positive scalar. More specifically, 
the above description about finite sample analysis is 
proven through comparing the estimations and their 
own true values respectively. Figure 4 shows the 
comparisons for estimations  4 1,a b and their true 
values. The black straight lines denote the true 

values 0.65,0.5 , and the red curves correspond to 
the estimation values. From Figure 4, we see 
although the deviations between them are obvious, 
but after 60 iteration steps, the estimations are 
closed to their true values. It tells that when the 
sample complexity satisfies 60N  , then the 
difference between the sample identification 
criterion and expected criterion will be zero, i.e. all 
estimations converge to their true values. 

6. Conclusion 

In this paper, we study the asymptotic analysis and 
finite sample analysis for closed loop system 
identification, which correspond to infinite data and 
finite data. Firstly in the case of infinite data, the 
cost function and optimal feedback controller are 
obtained by our own mathematical derivations in 
order to simplify the identification process for 
closed loop system, then the variance for the 
optimal feedback controller is derived too. Secondly 
for the finite sample data, the bound for the 
difference between the sampled identification 
criterion and expected criterion is constructed. The 
research about applying our derived results into 
more complex closed loop system will be the main 
idea of the next paper. 
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