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Abstract - Linear time-invariant descriptor-type time-delay systems are considered. A robust stabilizing controller design
approach for such systems is introduced. Uncertainties both in the time-delays and in other system parameters are
considered. A frequency-dependent scalar bound on such uncertainties is first derived. Once this bound is found, the
controller design is completely based on the nominal model. However, satisfying a scalar frequency-dependent condition,
which uses the derived bound, guarantees robust stability. An example is also presented to illustrate the proposed approach.
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1. Introduction

Systems which involve time-delays are very common in
practice [1]. Such systems, which are typically named as
time-delay systems [2], can be described by delay-differential
equations [3]. For some time-delay systems, such as teler-
obotic systems [4], however, delay-differential equations
must be coupled with delay-algebraic equations to describe
the dynamics of the system. Such systems are known as
descriptor-type time-delay systems [5]. Descriptor-type time-
delay systems impose a challenge since their response may
be discontinuous and even impulsive [6].

A number of controller design methods (e.g., [7], [8],
[9], [10], [11], [12]) have already been proposed to design
controllers for descriptor-type time-delay systems. Since any
model of any physical system would be subject to uncertain-
ties, however, any controller designed for a physical system
must be robust to uncertainties in the model [13]. This is
especially true in the case of time-delay systems, since, in
this case, the time-delays are also uncertain in general [14].

In the present work, robust stabilizing controller design
is considered for linear time-invariant (LTI) descriptor-type
time-delay systems. The design is based on the nominal
model of the system. A frequency-dependent bound on
the uncertainties, however, is also derived and used in the
design in order to guarantee robust stability of the actual
closed-loop system. Uncertainties in both time-delays and
other system parameters are taken into account. A similar
frequency-dependent bound was first derived in [15], [16]
for delay-free systems. Such a bound was then derived for
retarded time-delay systems in [17] and for neutral time-
delay systems in [18]. Systems with distributed time-delay
were also considered in [19] and [20]. In [17]–[20], however,
only non-descriptor-type systems were considered. Although

[21] considers descriptor-type systems with distributed time-
delays, uncertainties in time-delays were not considered
in [21]. In here, we extend the results of [17] and [18]
to descriptor-type time-delay systems. Specifically, we pro-
pose an approach to design a stabilizing controller for LTI
descriptor-type time-delay systems, which is robust against
uncertainties both in the time-delays and in other system
parameters.

We state the problem formally in Section 2 and present the
proposed approach in Section 3. An example is presented in
Section 4 in order to illustrate the proposed approach. Some
concluding remarks are included in Section 5.

Throughout the paper, R denotes the set of real numbers.
For positive integers k and l, Rk and Rk×l respectively
denote the spaces of k dimensional real vectors and k × l
dimensional real matrices. I denotes the identity matrix of
appropriate dimensions. Re(·) denotes the real part of ·. σ̄(·),
σ(·), det(·), and rank(·) respectively denote the maximum
singular value, the minimum singular value, the determinant,
and the rank of ·. Finally, i :=

√
−1 is the imaginary unit.

2. Problem Statement

Consider a LTI descriptor-type time-delay system, de-
scribed as

Eẋ(t) =

µ∑
j=0

(Ajx(t− hj) +Bju(t− hj)) (1)

y(t) = Cx(t) (2)

where x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rq are, respec-
tively, the state, the input, and the output vectors at time t.
Furthermore, h1, . . . , hµ > 0 are the time-delays, where µ
is the number of independent time-delays. We let h0 := 0
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for notational convenience (i.e., j = 0 in (1) corresponds to
the delay-free part of the system). Aj , Bj , j = 0, . . . , µ, C,
and E are appropriately dimensioned constant real matrices,
where C and E are known matrices. We assume that, for
j = 0, . . . , µ, Aj = A0

j + A1
j and Bj = B0

j + B1
j , where

A0
j and B0

j are known matrices, representing the nominal
part, and A1

j and B1
j are unknown matrices, representing the

uncertainties. It is, however, assumed that

σ̄(A1
j ) ≤ δaj and σ̄(B1

j ) ≤ δbj , (3)

for some known bounds δaj > 0 and δbj > 0, j = 0, . . . , µ.
Here, it is assumed that all the input-output uncertainties
and time-delays are represented at the input. Because of
this assumtion, no uncertainties or time-delays appear in the
output equation (2). Here, the time-delays, h1, . . . , hµ > 0,
are also assumed to be uncertain. Thus, it is assumed that, for
j = 1, . . . , µ, hj = h0j+h1j , where h0j is known, representing
the nominal part, and h1j is unknown, representing the
uncertain part, satisfying

|h1j | ≤ δhj (4)

for some known bounds δhj > 0, j = 1, . . . , µ.
It is also assumed that rank(E) = n1 < n. Because of this

assumption, the system (1)–(2) is a descriptor-type system
[6]. It is, however, asuumed that:
Assumption 1: rank(LA0R) = n2 := n − n1, for all A1

0

satisfying σ̄(A1
0) ≤ δa0 ,

where L ∈ Rn2×n and R ∈ Rn×n2 are such that the rows
of L span the left null space of E and the columns of R
span the right null space of E. Because of this assumption,
a unique solution to (1), for any suitable initial condition,
x(t + θ), θ ∈ [−hmax, 0], where hmax := maxj(hj), is
guaranteed [3].

The characteristic function of the system (1) is given by

ψ(s) := det(sE −A(s)) (5)

where

A(s) :=

µ∑
j=0

Aje
−shj (6)

and the modes of the system (1) are the roots of ψ(s) = 0.
It is known that the system (1) has infinitely many modes,
in general [22]. However, under Assumption 1, it has only
finitely many modes with real part greater than

νf := sup{Re(s) | det(Ā(s)) = 0} (7)

where Ā(s) := LA(s)R, where L and R are as in Assump-
tion 1 and A(s) is as given in (6) [23].

It is known that (1)–(2) can not be stabilized by a finite-
dimensional proper LTI controller unless νf < 0 [24]. Thus,
since our aim is to stabilize (1)–(2) for all uncertainties
satisfying (3) and (4), we make the following assumption:
Assumption 2: νf < 0 for any uncertainties satisfying (3)
and (4).

This assumption implies that the system (1) has only
finitely many unstable modes. A mode is called as an

unstable mode if it has a non-negative real part. For technical
reasons we also make the following assumption:

Assumption 3: For any uncertainties satisfying (3) and (4),
the system (1) has the same number of unstable modes.

The problem then is to design a controller, based on the
nominal model:

Eẋ(t) =

µ∑
j=0

(
A0
jx(t− h0j ) +B0

ju(t− h0j )
)

(8)

y(t) = Cx(t) (9)

such that the actual closed-loop system obtained by applying
this controller to the system (1)–(2) is robustly stable for all
uncertainties satisfying the bounds (3) and (4).

3. Controller Design

To solve the above stated problem, we note that the
transfer function matrices (TFMs) of the actual system (1)–
(2) and of the nominal model (8)–(9) are respectively given
by

Γ(s) = C (sE −A(s))
−1 B(s) (10)

and
Γ0(s) = C

(
sE −A0(s)

)−1 B0(s) (11)

where A(s) is defined in (6),

B(s) :=

µ∑
j=0

Bje
−shj (12)

A0(s) :=

µ∑
j=0

A0
je
−sh0

j (13)

and

B0(s) :=

µ∑
j=0

B0
j e
−sh0

j (14)

The TFMs Γ(s) and Γ0(s) can be related as:

Γ(s) = Γ0(s) (I + ∆(s)) (15)

where ∆(s) is the so-called multiplicative uncertainty matrix.
Next, we derive a frequency-dependent upper bound on the
norm of ∆(iω):

Lemma 1: Let

e(ω) :=
n(ω)

d(ω)
, (16)

where

n(ω) := δb +

µ∑
j=1

σ̄
(
B0
j

)
θj(ω) + δ0(ω) (17)

and
d(ω) := σ

(
B0(iω)

)
− δ0(ω) (18)
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where δb :=
∑µ
j=0 δ

b
j ,

θj(ω) :=


2 sin

(
|ω|δhj

2

)
, |ω| ≤ π

δhj

2 , |ω| > π
δhj

, j = 1, . . . , µ,

and

δ0(ω) :=

δa +

µ∑
j=1

σ̄
(
A0
j

)
θj(ω)

 σ̄ (Γ0(iω))

where δa :=
∑µ
j=0 δ

a
j and

Γ0(s) :=
(
sE −A0(s)

)−1 B0(s)

Suppose that d(ω) > 0, ∀ω ∈ R. Then, for all uncertain-
ties satisfying (3) and (4),

σ̄(∆(iω)) ≤ e(ω) , ∀ω ∈ R . (19)

Proof: Suppose ∆(s) satisfies

(sE −A(s))
−1 B(s) =

(
sE −A0(s)

)−1 B0(s) (I + ∆(s))
(20)

Note that by premultiplying both sides of (20) by C, we
obtain (15). This implies that such ∆(s) can be chosen as
the multiplicative uncertainty matrix. Next, premultiply both
sides of (20) by (sE −A(s)) and rearrange terms to obtain

N (s) = D(s)∆(s) (21)

where

N (s) :=

µ∑
j=0

B1
j e
−shj +

µ∑
j=1

B0
j ρj(s) + ∆0(s)

and
D(s) := B0(s)−∆0(s)

where ρj(s) := e−shj − e−sh
0
j and

∆0(s) :=

 µ∑
j=0

A1
je
−shj +

µ∑
j=1

A0
jρj(s)

Γ0(s)

Note that |e−iωh| = 1, for any real ω and h, |ρj(iω)| =∣∣∣e−iω(h1
j−h

0
j ) − 1

∣∣∣ =
∣∣∣2 sin

(
ω(h1

j−h
0
j )

2

)∣∣∣ ≤ θj(ω), j =

1, . . . , µ, and σ̄(∆0(iω)) ≤ δ0(ω), ∀ω ∈ R. Thus,

σ̄ (N (iω)) ≤ δb +

µ∑
j=1

σ̄
(
B0
j

)
θj(ω) + δ0(ω) =: n(ω)

and
σ (D(iω)) ≥ σ

(
B0(iω)

)
− δ0(ω) =: d(ω)

where we used inequalities σ̄(M ± N) ≤ σ̄(M) + σ̄(N),
σ̄(MN) ≤ σ̄(M)σ̄(N), and σ(M ± N) ≥ σ(M) − σ̄(N),
for arbitrary matrices M and N [25]. Furthermore, from (21),

σ̄ (∆(iω)) ≤ σ̄ (N (iω))

σ (D(iω))
, ∀ω ∈ R ,

from which the desired result follows. �

- k+

−
- K(s) - Γ(s) -

6

Controller Plant
u y

Fig. 1. Controller implementation

Now, suppose that a LTI controller with the TFM K(s),
to be implemented in a negative feedback configuration as
shown in Fig. 1, is designed to stabilize the nominal model.
The complementary sensitivity matrix for the nominal closed-
loop system is then given as

T 0(s) := Γ0(s)K(s)
[
I + Γ0(s)K(s)

]−1
(22)

Suppose that this matrix satisfies

σ̄
(
T 0(iω)

)
<

1

e(ω)
, ∀ω ∈ R , (23)

where e(ω) is as given in (16). Then, as proved in the
following theorem, K(s) also stabilizes the actual system
robustly.
Theorem 1: Let Assumptions 1–3 hold. Suppose that the
controller K(s) stabilizes the nominal model (8)–(9). Fur-
thermore, suppose that (23) is satisfied. Then, for all uncer-
tainties that satisfy (3) and (4), the controller K(s) robustly
stabilizes the actual system (1)–(2).
Proof: Suppose that (23) is satisfied. Then, by (19), for all
uncertainties that satisfy (3) and (4),

σ̄
(
T 0(iω)

)
<

1

σ̄ (∆(iω))
, ∀ω ∈ R (24)

Under Assumptions 1–3, however, (24) implies that any
LTI controller that stabilizes the nominal model (8)–(9) also
stabilizes the actual system (1)–(2) robustly [13]. Thus, the
desired result follows. �

The above theorem implies that, assuming that Assump-
tions 1–3 hold, we can design a controller, by using any
approach, to stabilize the nominal model (8)–(9), while
maintaining the bound (23) as well. This controller will
then stabilize the actual system (1)–(2) robustly. In the next
section, we will illustrate this approach by an example.

4. Example

Consider a system described by (1)–(2) with one input
delay, no state delays and no delay-free input channel (thus,
µ = 1, A1 = 0, and B0 = 0), where

E =

[
1 0
0 0

]
, A0

0 =

[
2 1
0 1

]
, B0

1 =

[
0
−1

]
,

and
C =

[
1 0

]
The bounds on the uncertain parts of A0 and of B1 are
assumed to be δa0 = δb1 = 0.1. The nominal value of the time-
delay is h01 = 0.1 with 10% uncertainty (i.e., δh1 = 0.01).
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Fig. 2. Nyquist plot of Γ0(iω)

Note that LA0R = 1 + a 6= 0, where a varies between
−0.1 and 0.1 as A0 is varied over all A0

0 + A1
0 satisfying

σ̄
(
A1

0

)
≤ 0.1. Thus, Assumption 1 is satisfied. Furthermore,

the open-loop system has exactly one unstable mode which
varies between 1.8586 and 2.1414 (with nominal value 2)
as A0 is varied over all A0

0 + A1
0 satisfying σ̄

(
A1

0

)
≤ 0.1.

Thus, Assumptions 2 and 3 are also satisfied.
The TFM of the nominal system is obtained from (11) as:

Γ0(s) =
e−0.1s

s− 2
(25)

The Nyquist plot of Γ0(iω), for ω ∈ R, is shown in Fig. 2.
The first two left-most real axis crossings of the Nyquist
plot are ξ1 = −0.5 and ξ2 = −0.0692. Thus, the Nyquist
plot of kΓ0(iω) would encircle the −1 point once in the
counter-clockwise direction if k is chosen in the range:

1

−ξ1
= 2 < k < 14.45 =

1

−ξ2
(26)

Therefore, since the nominal system has exactly one unstable
mode, by the Nyquist theorem [26], a constant gain controller
K(s) = k, where k is chosen in the range (26), would
stabilize the nominal system.

Next, we calculate n(ω), d(ω), and e(ω), using (17),
(18), and (16), respectively. These are plotted in Fig. 3. In
particular, we note that d(ω) > 0 for all ω ∈ R.

Next, in Figures 4–6, we plot 1/e(ω) and σ̄
(
T 0(iω)

)
for

various k in the range (26). Fig. 4 indicates that the bound
(23) is violated in the low-frequency range for

2 < k < 2.627 (27)

Fig. 6, on the other hand, indicates that the bound (23) is
violated in the mid-frequency range for

9.566 < k < 14.45 (28)

Fig. 3. Plots of n(ω) (in blue - plot with lowest low-frequency gain),
d(ω) (in red - plot with highest low-frequency gain), and e(ω) (in cyan -
plot with highest high-frequency gain) vs. ω

Fig. 4. Plots of 1/e(ω) (in blue - plot with highest high-frequency gain)
and of σ̄(T 0(iω)) (in red - plots with lower high-frequency gain) vs. ω for
various k in the range (27)

However, Fig. 5 indicates that the bound (23) is satisfied
for all ω ∈ R, for

2.627 < k < 9.566 (29)

Therefore, by Theorem 1, a constant gain controller K(s) =
k, where k is chosen in the range (29), would robustly
stabilize the given system as long as the bounds (3) and
(4) are satisfied.

Next, we choose k = 6, which is about the mid-point of
range (29). Plots of 1/e(ω) and of σ̄

(
T 0(iω)

)
for this k

are shown in Fig. 7. The closed-loop modes with real part
greater than or equal to −40 under this controller for the
nominal system are shown in Fig. 8 (we use QPmR [27] to
calculate the closed-loop modes). The right-most closed-loop
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Fig. 5. Plots of 1/e(ω) (in blue - plot with highest high-frequency gain)
and of σ̄(T 0(iω)) (in red - plots with lower high-frequency gain) vs. ω for
various k in the range (29)

Fig. 6. Plots of 1/e(ω) (in blue - plot with highest high-frequency gain)
and of σ̄(T 0(iω)) (in red - plots with lower high-frequency gain) vs. ω for
various k in the range (28)

modes are at −6.0597 ± i7.4834. Under this controller, the
worst case perturbations (which satisfy (3) and (4)), in the
sense that the largest real part of the right-most closed-loop
modes is obtained, are

A1
0 =

[
0.0707 0.0707
−0.0707 0.0707

]
, B1

1 =

[
0.0707
−0.0707

]
,

h11 = 0.01 (30)

The closed-loop modes with real part greater than or equal
to −40 for the system with these perturbations under this
controller are shown in Fig. 9. The right-most closed-loop
modes are at −4.0015 ± i8.6821. This also shows that the
designed controller robustly stabilizes the given system.

Fig. 7. Plots of 1/e(ω) (in blue - plot with highest high-frequency gain)
and of σ̄(T 0(iω)) (in red - plot with lower high-frequency gain) vs. ω for
k = 6

Fig. 8. Closed-loop modes with real part greater than or equal to −40 for
the nominal system (k = 6)

5. Conclusions

A stabilizing controller design approach for LTI
descriptor-type time-delay systems, which is robust against
uncertainties both in the time-delays and in other system pa-
rameters, has been proposed. A frequency-dependent bound
(16) on the uncertainties has first been derived. It has then
been shown that, under Assumptions 1–3, any controller
which stabilizes the nominal model (8)–(9) and which satis-
fies the bound (23), robustly stabilizes the actual system (1)–
(2). Once the bound (16) is found, the controller design is
completely based on the nominal model. Thus, any controller
design method, such as [7]–[12], can be used together with
the bound (16) to design the controller.

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.32 Altug Iftar

E-ISSN: 2224-2678 293 Volume 20, 2021



Fig. 9. Closed-loop modes with real part greater than or equal to −40 for
the system with perturbations given in (30) (k = 6)

Note that, even for complicated systems, checking the
condition (23) is easy, since (16) is a scalar function. Fur-
thermore, since (16) is a function of frequency, the proposed
approach can also be used for frequency shaping [28].
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