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Abstract: This paper presents an algorithm for all achievable coefficients of Proportional Integral Derivative 
(PID) controllers in an integral-derivative plane that stabilizes and satisfies additive mixed sensitivity constraint 
with an uncertain time delay for a continuous-time system.  This algorithm solves the singularity problem of 
designing PID controllers in the integral and derivative plane and estimates achievable ranges of proportional 
gain of the PID controllers.  A numerical cascaded ball and beam with unity feedback control of an SRV-DC 
motor and uncertain communication time delays in the system process demonstrate the application of this 
methodology. In this application, the additive weight bounds the additive errors for the cascaded ball and beam 
and the closed-loop SRV-DC motor system transfer function with the internal communication time delays.    
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1 Introduction 
The proportional Integral Derivative (PID) controller 
is one of the most suitable controllers in many 
industrial systems. Although PID controllers have 
been functional in industrial systems for many years 
still there is a significant attempt in literature and 
industries to enhance the design of this type of 
controller. However, the robust and optimal tuning of 
the three parameters of PID controller coefficients is 
very challenging and time-consuming in many 
industrial applications. Furthermore, the time delay is 
one of the critical problems, particularly between the 
communication process of the hardware and software 
of a physical system. As a result, these problems 
become more of concern while the robustness and 
performance are also substantial for the practical 
applications with no information about the system 
dynamic. Therefore, the motivation for this paper is 
to enhance the design of a set of robust PID controller 
parameters for systems with uncertain time delays. 

As the technology grows, the need to boost PID 
controller parameters becomes more critical since 
many industrial systems rely on this controller. Many 
researchers worldwide are writing more algorithms 
for designing the PID controller [1-16]. Verma and 
Kumar Padhy developed indirect internal modeling 
PID controller design for first and second-order 
system transfer functions [2]. This design applied to 
a canonical tank water level control the authors 
showed an improvement in time transient response 

[2]. The system's stability was among the first 
constraints for tuning the PID controllers [3-4]. 
Sujoldžić and Watkins developed a PID controller to 
stabilize a system in the frequency domain [3]. Saeki 
defined a deterministic analysis to define the PID 
controller coefficient and developed a perdition for 
the number of unstable poles in the parameters space 
of the PID controller [4]. Sundaravadivua et al. 
reflected two degrees of freedom PID controller 
design to stabilize a first-order plus time delay 
models [5].   

Ghousiya Begum et al. [8] applied an internal 
modeling controller with optimal 2H  minimization 
to design a PID controller. They demonstrated this 
design to non-minimum phase integrating processes 
with time delays. Hussein Elmenfy tuned velocity 
PID-Fuzzy Power System Stabilizer controller gains 
by Particle Swarm Optimization technique [10]. 
Mustafa et al. [11] studied different control strategies 
for the liquid level in the two tanks system, such as 
classical PID controller and fuzzy adaptive PID 
controller for the mathematical model of the system. 
They demonstrated this study in MATLAB 
SIMULINK.  

Wieneke and White  [12] applied a pole 
placement method via PC running Lab-View in real-
time. Senix sensors measured the ball position for the 
ball and beam feedback system. WU Yuanyuan et al. 
[13] designed a fuzzy PID controller for the ball's 
position in the ball and beam system and compared it 
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with the traditional PID controller. Ford et al. [14] 
developed a Bode proportional derivative controller 
design for a ball position on a beam system. Carlos 
Bolívar-Vincenty et al. [15] applied both Newtonian 
and Lagrangian mechanics to derive the dynamical 
equations for the Ball and Beam system. They 
demonstrated that both methods provide identical 
results.  

Different modelling of robustness of PID 
controller design has been the studied in the 
literatures [1], [6], [7],[9], [16], [17], [18], and [19].  
In [16], the authors developed a PID controller 
algorithm for robust performance constraint single 
input single output systems with time delays. Gogoi 
et al. [17] designed a robust proportional-integral (PI) 
controller for a non-reheat steam generator unit. In 
[17], the authors did not look at the mixed sensitivity 
problem of the system. Jiménez-Cabas et al. [18] 
studied robust controllers such as H  algebraic 
Riccati equations, H   linear matrix inequalities 
techniques, and 2H   controller design for a ball and 
beam system. They showed that H offers better 
performance than the classical state variable 
feedback technique for the ball and beam system.  

The current paper continues the previous 
techniques in [19] for the PID controller design. The 
contributions of this paper are in both theory and the 
application, which did not present in [19]. First, a set 
of algorithms in the present paper solves the 
singularity problem of designing PID controllers in 
the integral-derivative plane. Second, it introduces 
new modeling for the compensated ball and beam 
system. The objectives of the current paper are to 
augment the singularity procedures for the additive 
mixed sensitivity design of PID controller parameters 
for Single Input Single Output (SISO) with an 
uncertain time delay. The ball and beam system 
transfer function includes a cascading system with a 
closed-loop SRV-02 DC motor. The ball and beam 
modeling is an unstable double integrated transfer 
function [20], demonstrating this methodology's 
application.  

The remainder of this paper presents as follows.  
First, the design technique; next, this method applies 
to a cascaded ball and beam with a closed-loop SRV-
02 DC motor transfer from Quanser Consulting, 
Incorporated to regulate the ball position on the 
beam. Finally, the conclusion of this paper is 
summarized. 
 

2 Design Technique 
The process plant pG , with the perturbed plant G ,  
and the PID controller cG , shapes a SISO system. 

The reference input, the error signals, and the output 
are ,R  ,Z and Y  ,  respectively.  The sensitivity 
function weight is PW , the additive weight is AW , and 
the uncertain perturbation is 1A  [21].  

The process continuous-time system in the 
Laplace domain describes such as: 
 
   ( ) ( ) ,s

p oG s G s e −=                                                     (1) 
 
where the nominal system dynamic transfer function 
is ( )oG s  and an uncertain communication time delay 
is   .  The PID controller is: 
 

( ) ,i
c p d

K
G s K K s

s
= + +                                                 (2) 

 
where the parameters proportional ,pK  integral ,iK  
and derivative ,dK  are the coefficients of the PID 
controller. 

In frequency domain by substituting ,s j=  the 
equivalent system transfer function in the equation 
(1) can be written based on its real and imaginary 
parts such as: 
 

( ) ( ) ( ),p p pG j R j I  = +                                             (3) 
 
where the real numerical values of the data are ( )pR   
, and the imaginary numerical values of the data are 

( )pI  .  The PID controller in the equation (2) is 
written in the frequency domain such as: 
 

( ) .i
c p d

K
G j K j jK 


= − +                                           (4) 

 
The weights are complex functions and have a 

system dynamic.  The additive weight is in the 
equation (5) , and the sensitivity function weight is in 
the equation (6).  These functions are defined in terms 
of their numerical real and imaginary data values 
such as:  
 

( ) ( ) ( ) ,A A AW j A jB  = +                                           (5) 
 

( ) ( ) ( ).P P PW j C jD  = +                                           (6) 
 
In equations (5) and (6) the real numerical values of 
the data are ( ), ( ),A PA C    and the imaginary 
numerical values of the data are ( ), ( ).A PB D    

The fundamental goal is to find all achievable PID 
controllers that satisfy the additive mixed constraint 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.34 Tooran Emami

E-ISSN: 2224-2678 304 Volume 20, 2021



of the system for all uncertain perturbations of
( ) 1A j  [21].  The additive mixed sensitivity 

constraint for the system is defined as [19]:  
 
( )( ) ( ) ( ) ( ) ( ) ,A c PW G S W S      +            (7) 
 
In the equation, (7) the sensitivity function is 

1( )
1 ( ) ( )p c

S j
G j G j


 

=
+

 and   is a positive real 

number less than one that is the mixed sensitivity 
constraint.  To find PID controller parameters, the 
complex function in the equation (7) is written in 
terms of their magnitudes and phase angles as: 
  

( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

, .

( ) ( )

A c

P

j W j G j S j
A c

j W j S j
P

W j G j S j e

W j S j e

  

 

  

 

 





 
 
 

+   
 
 
 

   

                             (8) 
 
Now for each value  , the equation (8) can be 
written as:   
 

( ) ( ) ( )
, ,

( ) ( )

A

P

j
A c

j
P

W j G j S j e

W j S j e





  

 

 

 
 

+   
 
 
 

                         (9) 

 
where ( ) ( ) ( )A A cW j G j S j   = −  and

( ) ( )P PW j S j  = −  for some [0,2 )A   and 
[0,2 ).P    Consequently, all PID controllers that 

satisfy equation (7) must lie at the intersection of all 
controllers that satisfy (9) for some [0,2 )A   and 

[0,2 )P  .  To accomplish this region, for each 
value of [0,2 )A   and [0,2 )P   all PID 
controllers on the boundary of the equation (9) are 
found [19].   

It is easy to show from the equation (9) that PID 
controllers on this boundary must satisfy the 
following characteristic equation:  
 

( , , , ) 0,A PP     =                                                        (10) 
 
where, 

( , , , )

( ) ( ) ( )11 ( ) ( ) .
( ) ( )

A

P

A P

j
A c

p c j
P

P

W j G j S j e
G j G j

W j S j e





   

  
 

  

=

 +
 + −
 
 

 

Note that equation (10) reduces to the frequency 
response of the standard closed-loop characteristic 

polynomial as  →  [16]. Substituting equations (3)

, (4), (5), (6), and cos sinAj
A Ae j

  = + , and 
cos sinPj

P Pe j
  = +  into the equation (10), the 

frequency response of this modified characteristic 
polynomial can be rewritten in terms of its real and 
imaginary functions such as:  
 

( ) ( ) ( ) ( ),Rp p Ri i Rd d RX K X K X K Y   + + =        (11) 
and 

( ) ( ) ( ) ( ),Ip p Ii i Id d IX K X K X K Y   + + =             (12) 
 
where,   

( )( )( ) ( ) ( ) ,Rp pX R   = −     

( )( )( ) ( ) ( ) ,Ri pX I  = −   

( )( )2( ) ( ) ( ) ,Rd pX I   = − −   

( )( )( ) 1 ( ) ,RY   = − +   

( )( )( ) ( ) ( ) ,Ip pX I   = −   

( )( )( ) ( ) ( ) ,Ii pX R  = − +   

( )( )2( ) ( ) ( ) ,Id pX R   = − +   

( )( ) ,IY  =   
and, 

( )

( )

( )

( )

1( ) ( )cos ( )sin ,

1( ) ( )sin ( )cos ,

1( ) ( ) cos ( )sin ,

1( ) ( )sin ( )cos .

A A A A

A A A A

P P P P

P P P P

A B

A B

C D

C D

    


    


    


    


 = −

 = +

 = −

 = +

 

This is a three-dimensional system in terms of the 
controller parameters pK , iK , and dK .  In this 
paper, three methods are presented to find the set of 
PID controller parameters. The solutions are by 
fixing one coefficient and solving the equations  (11) 
and (12) for the two other parameters. The solution 
of proportional-derivative ( , )p dK K  and 
proportional-integral ( , )p iK K planes was presented 
in [19].  The solution of the integral-derivative 
( , )i dK K plane did not present in the previous work.   
 
2.1 PID Controller Design in ( ,p dK K ) Plane 

After setting iK  to a fixed value iK , the equations 
(11) and (12) can be rewritten as: 
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( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )
Rp Rd p R Ri i

Ip Id I Ii id

X X K Y X K

X X Y X KK

   

   

     −
=     

−     

 (13) 

 
Solving the equation (13) for all 0  , [0,2 )A  , 
and [0,2 )P   gives the following expressions for 
the proportional and derivative parameters of PID 
controller: 
 

( ) ( ) ( )

( ) ( )( )
( )

1 2

( , , , )

( ) 1 ( ) ( ) ( ) ( )

( )cos ( )sin
,

( )

p A P

p p

P A P A

K

R I

   

    

     



=

 − −  −  +  +
 
  − +  − 



  

                                                                             (14) 

( ) ( ) ( )

( )

( )

2

1 2

( , , , )

( ) ( ) ( ) 1 ( ) ( )

( )sin( ) ( ) cos( )
,

( )

i
d A P

p p

P A P A

K
K

R I

   


    

     

 

= +

 − − +  −  − 
 
  − +  − 



       

                                                                             (15) 
where,  

( )1 2
1( ) ( ) ( ) ( ) ( ) ,A P A PA C B D    


 = +

( )2 2
1( ) ( ) ( ) ( ) ( ) ,A P A PA D B C    


 = −

( ) ( )( )
2

2
2

( ) ( ) 2 ( ) ( ) ( ) ( )

1 ( ) ,

p p p

A

G j R I

W j

     




 = −  +  +

and, 
2 2 2( ) ( ) ( ),p p pG j R I  = +

2 2 2( ) ( ) ( ).A A AW j A B  = +    
 
2.2 PID Controller Design in ( ,i dK K ) Plane 

One of the contributions of the current paper is to find 
the mixed sensitivity and stability boundaries of the 
equation (10) in the ,( )i dK K  plane for a fixed value 

of pK . Setting ,p pK K=  the equations  (11) and (12)  
can be rewritten as:  
 

.R Rp pRi Rd i

Ii Id d I Ip p

Y X KX X K

X X K Y X K

 −   
=     

−      

                      (16) 

 
The solution of (16) for all ( )0,    creates a 
singularity problem. There are two steps to solve this 
problem. First, the range of p pK K=  is determined 

in the ( ,pK  ) plane from the equation (14). The plot 
of proportional gains in the equation (14) versus the 
frequency in the first quarter gives the scope of 
prediction for all achievable proportional gains. The 
second part of this solution is to determine the 
specific frequencies, such as  i . These frequencies 
are the interception of ( )pK   from the equation (14) 
and the frequency range of .  Note that the stability 
boundaries  can be selected from the equation (14) as 
 →   in the first quarter. As a result, the solutions 
for ( )d iK   and ( )i iK   parameters in the equation 
(16) must satisfy either of the following straight-line 
equations: 
 

( ) ( ) ( )

( )

( )

2

1 2

( , , , )

( ) ( ) ( ) 1 ( ) ( )

( )sin( ) ( ) cos( )
,

( )

i
d i A P

i

p i i p i i i

i P A i P A

i i

K
K

R I

   


    

     

 

= +

  − − +  −  −
 
  − +  − 



     

                                                                             (17) 

( ) ( )

( )

( )

2

1 2

( , , , )

( ) ( ) ( ) 1 ( ) ( )

( )sin( ) ( ) cos( )
.

( )

i i A P i d

p i i p i i i
i

i P A i P A

i

K K

R I

    

    


     



= +

 −  + − +  +  +
 
  − +  − 



 

                                                                             (18)    
 
2.3  PID Controller Design in ( ,p iK K ) Plane 

The additive mixed sensitivity and stability 
boundaries of the equation (10) are found in the 

,( )p iK K  plane for a fixed value of dK .  After setting 

dK  to the fixed value dK , the equations  (11) and 
(12) can be rewritten as:  
 

( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )
Rp Ri p R Rd d

Ip Ii I Id di

X X K Y X K

X X Y X KK

   

   

     −
=     

−     

     

                                                                             (19) 
 

Solving the equation  (19) for all 0  , 
[0,2 )A   and [0,2 )P   gives the same 

expression as the equation (14) for ( , , , )p A PK     , 
and the following equation for the integral parameter 
of PID controllers: 
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( ) ( )

( )

( )

2

1 2

( , , , )

( ) ( ) ( ) 1 ( ) ( )

( )sin( ) ( )cos( )
.

( )

i A P d

p p

P A P A

K K

R I

    

    


     



= +

−  + − +  +  + 
 
  − +  − 



        

                                                                             (20)                                                                                                                                                                                  
 

3 Numerical Example 
In this section, PID controllers are designed to 
demonstrate the formulas from the additive mixed 
sensitivity constraint.  A cascaded ball and beam and 
an SRV-DC are shown in Figure 1.  Therefore, to 
clarify the design process, the design goal and the 
design discussion and results in both  ( , )i dK K and 
( , )p dK K planes are presented in this section.  
 

 

 
Fig. 1. Ball and beam system 

  
3.1  Design Goals:   
The main goal is to find all PID controllers that 
stabilize a ball position on a beam and satisfy the 
additive mixed sensitivity constraint in the equation 
(7).   In addition, the closed-loop step response 
requires an overshoot of less than 25% and a settling 
time of fewer than 12 seconds for some of the PID 
controllers in the mixed sensitivity region.   

The nominal SRV-DC motor in equation (21) and 
the ball and beam system in equation (22) transfer 
functions are [20]: 
 

2
60.24 ,

39.37
molG

s s
=

+
                                                          (21) 

 2 .0 4( 1) . 9
bbG s

s
=                                         (22) 

     
The block diagram of the cascaded ball and beam 

with unity feedback control of the SRV-DC motor is 
shown in Figure 2.  The closed-loop transfer function 
of the SRV-DC motor is: 
 

        2
60.24 .

39.37 60.24
mG

s s
=

+ +
                                 (23) 

 
The system dynamic transfer function of the 
cascaded ball and beam and the closed-loop DC 
motor is:  
 

4 3 2

( ) ( ) ( ),
2 .

39.37 6
.

0.
5 24(

24
)

o m bb

o

G s G s G s

s s
G s

s

=

=
+ +

                                (24) 

Fig. 2.  Block diagram of the cascaded ball and 
beam with SRV-DC motor 

 
The assumption here is that an uncertain 
communication time delay between 0 0.3   
seconds occurs in the system process. Therefore, a   
communication time delay of 0.2 seconds in this 
interval is chosen to demonstrate the design process.  
The nominal model of the system in the equation (3) 
is: 
  

4 3 2 .
39.3 0

25.)
7 .

24
6 24

( s
pG e

s s s
s −

+
=

+
                            (25) 

 
3.2 Design Results and Discussion:   
The additive weight is designed to bound the additive 
errors [21] for the system transfer function.  The ball 
and beam system in equation (25) with all the interval 
of communication time delays between 0 0.3  is 
shown in Figure 3.  The additive weight transfer 
function is designed as shown in the bold-blue-color 
in magnitude frequency response for the cascaded 
ball and beam and SRV-02 DC motor system in 
Figure 3 such as equation (26): 
 

3 24 .
51 6 1

93
2

.75(
75. 6 6 0.9375

)AW
s s s s

s
+ +

=
+ +

 

                                                                             (26) 
 

The sensitivity weight function is chosen to 
satisfy the performance requirements of the percent 
overshoot and settling time for the closed-loop 

+      +      
   

+      
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system. Therefore, the sensitivity weight is designed 
such as: 
 

      2
0.78 1.37( ) .

4.75 4.63
  

P
s

W s
s s

+
=

+ +
                             (27) 

 
 

Fig. 3.  The additive weight (bold blue color) is 
designed to bound the additive uncertainty errors 

 
The plot of proportional gain in the equation (14) 

and various frequency ranges shows in Figure 4.  This 
Figure shows proportional gains of PID controllers 
( )(0,3.65)pK   for the stability boundary in red and 

mixed sensitivity in light green. For each curve in 
Figure 4, the 'i s  are the frequencies at which 

( ) 0.1p pK K = = . Each i  is substituted (17) or (18) 
in the ( , )i dK K  plane to find the required region for 
choosing the integral and derivative PID controller 
parameters. Also, there is a boundary at ( )0 0iK = .  

The PID stability boundary of the nominal system 
can be found by setting  =   in the equations  (17) 
or (18). The nominal stability boundary is shown in 
the red line.  The area that satisfies the mixed 
sensitivity is the dotted-blue area. In this plane, the 
PID  controller is designed to meet the mixed 
sensitivity constraint in (7) by selecting the upper 
limit constraint of additive sensitivity constraint 

1 =  in the equations  (17) or (18) for some 
[0,2 )A  , [0,2 )P  , and finding the intersection 

of all regions. The area that met the additive mixed 
sensitivity constraint and the nominal stability 
boundary are shown in Figure 5.   

To verify the results, an arbitrary PID controller 
from this region is chosen, such as:  
 

0.005( ) 0.1 1.937 .cG s s
s

= + +                                             (28) 

Substituting equations (25), (26), (27), and (28), into 
the equation (7) gives the additive mixed sensitivity 
function magnitude of  
( )( ) ( ) ( ) ( ) ( ) 0.696A c PW s G s S s W s S s+ =   as it shows in 
Figure 6. Therefore, as the magnitude of the mixed 
sensitivity system is less than one, the design goal for 
the mixed sensitivity constraint has been met.  

 
Fig. 4. The plot of proportional gain versus 

frequency 

  
Fig. 5.   Stability boundary and additive mixed 

sensitivity region in the ( ,i dK K ) plane 

 
Fig. 6.   The magnitude frequency response of the 
compensated system with PID controller in (28) 
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The second method uses equations (14) and (15) 
is applied in the ( , )p dK K  plane for a fixed value of 

i iK K= .  The PID stability boundary of the system 
can be found by setting  =  in equations (14) and 
(15) the ( , )p dK K  plane.  All PID controllers that 
satisfy the mixed sensitivity constraint in the 
equation (7) are found by selecting  1 =  in equations 
(14) and (15) for some [0,2 )A   and [0,2 )P  , 
and then finding the intersection of all regions in the 
( , )p dK K  plane. 

This method demonstrates in the ( ,p dK K ) plane 

for a fixed value of 0.001iK = .  The region that 
satisfies the mixed sensitivity constraint and the 
nominal stability boundary is shown in Figure 7.  The 
nominal stability boundary is shown in the red line.  
The intersection of all regions inside the nominal 
stability boundary of the ( , )p dK K  plane is shown 
inside the stability boundary with dotted-blue lines in 
Figure 7. Thus, All of the selected PID controllers in 
the intersection area satisfy the additive mixed 
sensitivity constraint in the equation (7).  
 

 
Fig. 7.   Stability boundary and additive mixed 

sensitivity region in the ( ,p dK K ) plane 
 

To verify the results, an arbitrary controller from 
this region is chosen that gives the PID controller 
such as: 
  

0.001( ) 0.025 2.008 .cG s s
s

= + +                                  (29) 

 
Substituting equations (26), (27), and  (29), into the 
equation (7) gives 
( )( ) ( ) ( ) ( ) ( ) 0.696A c PW s G s S s W s S s+ = , as shown in 
Figure 8, the magnitude of the frequency response of 

the mixed sensitivity function is less than one the 
design goal is met.   
 

 
Fig. 8.   The magnitude frequency response of the 
compensated system with PID controller in (29) 

 
The step responses of the closed-loop system with 

the PID controller in the equation (29) and various 
time delays in the interval of (0.005,0.3) seconds are 
shown in Figure 9.  As can be seen, the closed-loop 
step responses all have an overshoot of less than 25% 
and a settling time of fewer than 12 seconds. 
Furthermore, the maximum setting time is 6.15 
seconds, and the maximum percent overshoot is 
14.7%. All the closed-loop time responses have a 
steady-state error of zero. Thus, all the closed-loop 
step response performances have met the 
expectations.   

The results for ( , )p iK K  plane for a fixed value of 

d dK K=  is similar to the ( , )p dK K plane, but it 
applies the equations (14) and (20) in ( , )p dK K  plane 
for some [0,2 )A   and [0,2 )P  , then finding 
the intersection of all regions. These results 
correspond to the PID controller parameters for the 
proportional and integral gains and fixed value of 
derivative gain. 

The research shows the flexibility of designers for 
enhancing PID controller coefficients by minimizing 
the area of PID controller selections.  Each 
methodology of designing the PID controller 
described in this paper meets the additive mixed 
sensitivity constraints to make the robust controller 
develop.  In each plane, there is at least a PID 
controller that meets all the time domain 
specifications due to the uncertain delays in the 
nominal system. 
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Fig. 9.   The closed-loop step responses with PID controller in (29). 

 
 
4 Conclusion 

This paper presented an algorithm for singularity 
solution of Proportional Integral Derivative (PID) 
controllers that stabilized a continuous-time system 
and satisfied additive mixed sensitivity constraint 
with an uncertain time delay.  This algorithm 
estimated all achievable ranges of proportional gains 
and solved the singularity problem of designing PID 
controllers in the integral and derivative plane.  A 
numerical cascaded ball and beam and closed-loop 
SRV-DC motor system transfer function with 
uncertain communication time delays in the system 
process demonstrated the application of this 
methodology. In this application, the additive weight 
was designed to bound the additive errors for the 
cascaded ball and beam and the SRV-DC motor 
system closed-loop system transfer function with an 
internal communication time delay. Future work is to 
continue this methodology to Smith's predictor 
modeling of the system. 
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