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Abstract: This paper is concerned with the problem of robust exponential stabilization for a class of nonlinear 
uncertain systems with time-varying delays. By using appropriately chosen Lyapunov-Krasovskii functional, 
together with the Finsler’s lemma, sufficient conditions for exponential stability of  nonlinear uncertain systems 
with time-varying delays are proposed in terms of linear matrix inequality (LMI). Then, novel sufficient 
conditions are developed to ensure the nonlinear uncertain system with time-varying delay is robust  
exponentially stabilizable in terms of linear matrix inequality with state feedback control.  Finally, a numerical 
example is given to illustrate the efficiency of proposed methods. 
 

 
Key-Words: - Exponential stabilization; nonlinear uncertain systems; time-varying delay; state feedback 
controller   linear matrix inequality (LMI)
 Received: April 25, 2021. Revised: September 26, 2021. Accepted: November 23, 2021. Published: December 20, 2021.

    

 

1.   Introduction 

During the past twenty years, nonlinear system 
have been extensively studied and successfully 
applied to various science and engineering fields 
such as mechanics, electrical engineering, automatic 
control and so on. Stability analysis and control 
design of nonlinear systems are very important 
research topics, which have attracted extensive 
attention from researchers [1-6]. In [1], stabilization 
of nonlinear time-delay systems was considered. He 
et al. [3] studied the global sampled-data output 
feedback stabilization for a class of stochastic 
nonlinear systems with time-varying delay. In [5], 
Dong et al. investigated exponential stabilization and 
L2-gain for uncertain switched nonlinear systems 
with interval time-varying delay. Recently, Dong et al. 
[7] investigated robust exponential stabilization for 
uncertain neutral neural networks with time-varying 
delays by periodically intermittent control.  

Time delays, both constant and time varying, are 
frequently encountered in various engineering, 

biological, chemical systems and economic systems. 
The existence of time delay worsens the dynamic 
performance of a system and even leads to instability 
of the system. Therefore, time-delay systems have 
been studied by many researchers [8-10]. Stability 
analysis and stabilizing controller design are key 
issues in the study of time-delay systems [11-13]. In 
[12], Hou et al. considered the robust exponential 
stability for discrete-time switched Hopfield neural 
networks with time delay.  Zhang et al. [13] dealt with 
observer-based output feedback controller for 
discrete-time fuzzy systems. 

On the other hand, the problem of robust 
stabilization of systems with uncertainties has also 
received much attention in recent years [14-16]. 
Delay-dependent exponential stabilization for 
uncertain linear systems with interval non-
differentiable time-varying delays was studied in [14]. 
In [15], Dong et al. considered the exponential 
stability and stabilization for uncertain discrete-time 
periodic systems with time-varying delay. 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.35 Meng Liu, Yali Dong, Xinyue Tang

E-ISSN: 2224-2678 312 Volume 20, 2021



 

 
 

Motivated by the above discussion, this paper 
investigates the stability and stabilization for a class 
of nonlinear uncertain systems with time-varying 
delays. By using appropriately chosen Lyapunov-
Krasovskii functional, together with the Finsler’s 
lemma, new sufficient conditions for exponential 
stability in terms of linear matrix inequalities are 
proposed for nonlinear uncertain time delay system. 
Then, we give a novel criterion which guarantees that 
the nonlinear uncertain system with time-varying 
delay is exponentially stabilizable via state feedback 
control. Finally, a numerical example is given to 
illustrate the less conservatism and effectiveness.  

The paper is organized as follows. Section 2 states 
the problem formulation and preliminaries.  Section 
3 presents the main results for stability analysis and 
controller design by using Lyapunov-Krasovskii 
functional method. We present sufficient conditions 
for the exponential stabilization of the nonlinear 
ncertain system with time-varying delay. A 
numerical example is given in Section 4.  Finally, the 
conclusion is given in Section 5. 

Notations: TA denotes the matrix transpose of A. 
A symmetric positive (negative) definite matrix is 
expressed by 0( 0).A A  nR and n mR stand for 
Euclidean n-space and the set of all  n m real 
matrices, respectively. max ( )A and min ( )A   be the 
maximum and minimum eigenvalues for a given 
matrix A. The symbol “ ” is used to indicate the 
elements induced by symmetry; The notation  
denotes the Euclidean vector norm. 
 
2. System formulation and 

preliminaries 

Consider the following   system with time-varying 
dela  

2

( ) [ Δ ] ( ) [ Δ ] ( ( ))
( ) ( ( )),

( ) ( ), [ ,0].

x t A A x t B B x t τ t

Hu t f x t

x t t t τ

      (1) 

where ( ) nx t R  is the state vector,  ( ) mu t R   is the 
control input. A, B, H, are known real constant 

matrices of appropriate dimensions. The functio ( )τ t  
is the time-varying delay satisfying 

1 20 ( ) , ( ) 1,τ τ t τ τ t μ   

where 1 2, ,τ τ μ   are positive constants. 

2 2( ) [ ,0]t L τ  is the initial function. The function 
( ( ))f x t  is a known nonlinear function satisfying    
(0) 0f  and the Lipschitz condition: 

 1 2 1 2 1 2( ) ( ) , , ,nf x f x x x x x R         (2) 

where is the Lipschitz constant.  ( )A t  and ( )B t  
are time-varying matrices satisfying:  

1 2[ ( ) ( )] ( )[ ],A t B t MS t H H              (3)                                                                              

where  1 2, ,M H H  are known matrices and ( )S t is an 

unknown time-varying matrix satisfying the 
following condition: 

( ) ( ) , 0.TS t S t I t                 (4)                                                                                                                                                                                                                                             

Definition 1. [17] The system (1) with ( ) 0u t   is 
said to be exponentially stable with decay rate 𝜅, if 
there exist scalars 0κ and 0γ  satisfying 

      ( ) , 0,κtx t γ e t             (5) 

where 
2 0
sup ( ) .
τ θ

θ  

Lemma 1. (Finsler’s lemma [18]) Consider  

( ) ,nx t R   n nR  and m nU R  such that

( )rank U r n . Then, the following conditions are 
equivalent: 

1. 0,Tx x
nx R    such that 0x   and 

0.Ux  
2. n mF R  satisfying 0T TFU U F . 

Lemma 2.  [10]  For any time-varying matrix ( )S t  
satisfying ( ) ( )TS t S t I  and a scalar ,η  the 
following condition is satisfied:  

1( ) ( ) ,T T T T TMS t N N S t M η MM ηN N      (6)                                                                             

where M, N are known matrices with appropriate 
dimensions. 

3.   Main Results 

Consider system (1) with ( ) 0u t   and let 

( )A A A t , ( ).B B B t   We have 
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2

( ) ( ) ( ( )) ( ( )),
( ) ( ), [ ,0].

x t Ax t Bx t τ t f x t

x t t t τ
         (7) 

The following theorem presents sufficient 
conditions to guarantee that the time-delay system (7) 
is exponentially stable. 
Theorem 1.  For given parameters 1 2 3 4, , , ,ε ε ε ε

0,ρ   1 20, 0 ,α τ τ   and 1,μ  the system (7) 

is exponentially stable with decay rate ,
2
α

κ   if 

there exist symmetric positive definite matrices ,P  

,Q  ,Q  ,R  X  and a positive scalar ,η   such that the 

following LMI holds: 

11 12

22

0,
*

                     (8)       

where 

1

2

11 12 3 14

22 3 24
11

3

44

1 1 1

2 2
12

3 3

4 4 2

2
22

11 1 1

12

Π Π Π
Π Π

Ψ ,

Π

0
0 0 0

Ψ ,
0 0 0
0 0

Ψ ( , , , , ),

Π ,

Π

T T

T

ατ

T

T

ατ

T T

ε A X

ε X

e Q ε XB

ε X ε XM ηH I

ε X ε XM

ε X ε XM

ε X ε XM ηH

diag e Q I ηI ηI ρ I

R Q Q αP ε XA ε A X

P

2

1 2

14 1 4

22 2 2

24 2 4

44 4 4

,

Π ,

Π ,

Π ,

Π ( 1) .

T T

T T

T

T

ατ T T

ε X ε A X

ε XB ε A X

ε X ε X

ε XB ε X

μ e R ε XB ε B X

      (9) 

Proof. Let us define the Lyapunov functional 
candidate as following: 

1

2

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .

t
T α t s T

t τ t

t
α t s T

t τ

t
α t s T

t τ

V t x t Px t e x s Rx s ds

e x s Qx t ds

e x s Qx t ds

     (10)            

Then 

1

2

2

2

( )

1 1

2 2

2

( ) ( )
2 ( ) ( ) ( )( ) ( )

(1 ( )) ( ( )) ( ( ))
( ) ( )

( ) ( )

2 ( ) ( ) ( )( ) ( )
(1 ) ( ( )) ( ( ))

( )

T T

ατ t T

ατ T

ατ T

T T

ατ T

ατ T

J V t αV t

x t Px t x t R Q Q αP x t

τ t e x t τ t Rx t τ t

e x t τ Qx t τ

e x t τ Qx t τ

x t Px t x t R Q Q αP x t

μ e x t τ t Rx t τ t

e x t τ

1

2

1 1

( )

( ) ( ).ατ T

Qx t τ

e x t τ Qx t τ

 

   (11) 
Moreover, from (2), we have 

2 ( ) ( ) ( ( )) ( ( )) 0.T Tx t x t f x t f x t                (12) 

Combining (11) and (12),  we get  

 1( )Π ( ),TJ ξ t ξ t                               (13) 

where

1 2

1

2 1 2

( ) ( ), ( ) ,

( ) [ ( ), ( )],

( ) [ ( ), ( ( )), ( ), ( ( ))],

T T T

T T T

T T T T T

ξ t ξ t ξ t

ξ t x t x t

ξ t x t τ x t τ t x t τ f x t

 

1

2

11

1
44

0 0 0 0
0 0 0 0 0

0 0 0
Π ,

0 0
0

ατ

ατ

J P

e Q

J

e Q

I

                     

2

2
11

44

,

( 1) .ατ

J R αP ρ I Q Q

J μ e R
  

On the other hand, from (7), we obtain 

0 0 ( ) 0.A I B I ξ t        (14) 

According to Lemma 1, if there exist parameters 1,ε

2 3 4, , ,ε ε ε   and the symmetric positive definite 

matrices X  satisfying the following inequality, then 
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1( )Π ( )Tξ t ξ t  will be negative at the points satisfying 

(14)  

1

2

3
1 1

4

1 2 3 4

0
Π Π 0 0

0 0
0

0 0 0,

T

T

T T T T

ε X A

ε X I

ε X
A I B I

ε X B

I

ε X ε X ε X ε X

 

                                                                     (15) 
which is equivalent to 

11 12 13 14 1

22 23 24 2

33 34 3
1

44 4

55

Π Π Π Π 0
Π Π Π 0

Π Π 0
Π 0,

Π 0
Π 0

ε X

ε X

ε X

ε X

I

 

(16) 
 where 

1

2

2

2
11 1 1

12 1 1

13 1

14 1 4

22 2 2

23 3

24 2 3

33

34 3

44 4 4

55

Π ,

Π ,

Π ,

Π ,

Π ,

Π ,

Π ,

Π ,
Π ,

Π ( 1) ,

Π .

T T

T T

T T

T T

T

T

T

ατ

ατ T T

ατ

R αP ρ I Q Q ε XA ε A X

P ε X ε A X

ε A X

ε XB ε A X

ε X ε X

ε X

ε XB ε X

e Q

ε XB

μ e R ε XB ε B X

e Q

  

The above inequality  can be rewritten as follows: 

1 1 2 2 1( ) ( ) ,T T TS t S t          (17) 

where

1 1 2 3 4

2 1 2

Θ [ , , , ,0,0],
Θ [ 0 0 0 0],

T T T T T T T T Tε M X ε M X ε M X ε M X

H H
 

11 12 3 14 1

22 3 24 2

33 3 3

44 4

55

ˆ ˆ ˆΠ Π Π 0
ˆΠ Π 0

Π 0Γ ,
Π̂ 0

Π 0

T T

T

ε A X ε X

ε X ε X

ε XB ε X

ε X

I

 

2

2
11 1 1

12 1 1

14 1 4

24 2 3

44 4 4

Π̂ ,

Π̂ ,

Π̂ ,

Π̂

Π̂ ( 1) .

T T

T T

T T

T

ατ T T

R αP ρ I Q Q ε XA ε A X

P ε X ε A X

ε XB ε A X

ε XB ε X

μ e R ε XB ε B X

,

 

According to Lemma 2, we can get 

  1
1 1 1 2 2Π Γ Θ Θ Θ Θ .T Tη η               (18) 

Using Schur complement lemma, from (8) we have 

1 0 . Hence, it follows that 

( ( )) ( ( )) 0,V x t αV x t  
which yields 

( ) (0).αtV t e V                         (19)                                         
From (10), we have  

1

2

2

1

2

2 1 2

0

(0)

0

0

0

0

0

2
2 3 2 4 1 5 2

(0) (0) (0) ( ) ( )

( ) ( )

( ) ( )

(0) (0) ( ) ( )

( ) ( )

( ) ( )

( )

T αs T

τ

αs T

τ

αs T

τ

T αs T

τ

αs T

τ

αs T

τ

ατ ατ ατ

V x Px e x s Rx s ds

e x s Qx s ds

e x s Qx s ds

x Px e x s Rx s ds

e x s Qx s ds

e x s Qx s ds

λ λ τ e λ τ e λ τ e

λ
2 ,

 

 (20) 
where 

       

2 1 2
2 3 2 4 1 5 2

2 max 3 max

4 max 5 max

,
( ), ( ),

( ), ( ).

ατ ατ ατλ λ λ τ e λ τ e λ τ e

λ λ P λ λ R

λ λ Q λ λ Q
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Combine (19) and (20), we have  

   2( ) .αtV t λe                          (21) 

On the other hand 
2

1( ) ( ) ,V t λ x t                           (22) 

where  1 min ( ).P  

From (19) and (20), we have 
2 2

1 ( ) αtλ x t λe . 

The above inequality can be rewritten as follows: 

             2

1

( ) .
α

tλ
x t e

λ
                (23) 

By Definition 1 and inequality (23), we have that 
system (7) is exponentially stable with decay rate

.
2
α

κ   This completes the proof. 

Remark 1. When  ( ) ,τ t τ   the system (7) will be 
modified as follows: 

( ) ( ) ( ) ( ( )),
( ) ( ), [ ,0].

x t Ax t Bx t τ f x t

x t t t τ
                (24) 

The following corollary can be obtained immediately. 
Corollary 1. For given parameters 1 2 3, , , ,ε ε ε ρ  

0, 0,α τ   and 1,μ  the system (24) is 

exponentially stable with decay rate ,
2
α

κ  if 

there exist symmetric positive definite matrices P,  
R, X and a positive scalars ,η   such that the 
following LMI holds: 

11 12 13 1 1 1

22 23 2 2

33 3 3 2

Ω Ω Ω
Ω Ω 0

Ω
Ω 0,

0 0
0

T

T

ε X ε XM ηH

ε X ε XM

ε X ε XM ηH

I

ηI

ηI

 

where  
2

11 1 1

12 1 2

13 1 3 22 2 2

23 2 3 23 2 3

Ω ,

Ω ,

Ω , Ω ,

Ω , Ω .

T T

T T

T T T

T T

R αP ρ I ε XA ε A X

P ε X ε A X

ε XB ε A X ε X ε X

ε XB ε X ε XB ε X

 

Proof. The proof follows from the similar lines of 
theorem 1 by picking    

( )( ) ( ) ( ) ( ) ( ) .
t

T α t s T

t τ
V t x t Px t e x s Rx s ds  

The proof is similar that of Theorem 1, and the 
detailed proof is omitted.    

We consider a state feedback controller as 
following 

             ( ) ( ).u t Kx t                         (25)                                    
Substituting (25) into the system (1) leads to the 
following closed-loop system  

2

( ) [ Δ ] ( ) ( ( )) ( ( )),
( ) ( ), [ ,0].

x t A A x t Bx t τ t f x t

x t t t τ
   (26) 

where .A A HK  
For the system (26), we can obtain following 

theorem. 
Theorem 2.  For given parameters 1 2 3 4, , , ,ε ε ε ε

0,ρ  1 20, 0 ,α τ τ and 1,μ  the closed-loop 
system (26) is exponentially stable with decay rate 

2
α

κ  , if there exist symmetric matrices 0P  , 

0,Q 0,Q   0,R   0,X  any matrix Y  and a 
positive scalar ,  such that the following LMI holds: 

1

2

11 12 13 14

2 3 24

3

44

Ξ Ξ Ξ Ξ 0
2 Ξ 0

* * 0
* * * Ξ 0

Ξ * * * *
* * * * *
* * * * *
* * * * *
* * * * *

ατ

ατ

ε X ε X

e Q ε BX

e Q  

                    

1 1 1

2 2

3 3

4 4 2

2

0 0
0 0

0
0,0 0 0 0

0 0 0
0 0

0

T

T

ε I ε ηM XH X

ε I ε ηM

ε I ε ηM

ε I ε ηM XH

I

ηI

ηI

ρ I

 

            (27) 
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where  

 

2

11 1 1

1 1

12 1 2 2

13 3 3

14 1 4 4

24 2 4

44 4 4

,

,

,

,

,

( 1) .

T T T

T T T

T T T

T T T

ατ T

R αP Q Q ε AX ε HY

ε XA ε Y H

P ε X ε XA ε Y H

ε XA ε Y H

ε BX ε XA ε Y H

ε BX ε X

μ e R ε BX ε XB

       (28)  

Moreover, the controller gain matrix is designed by 
1.K YX  

Proof.  By replacing A  instead of A in the inequality 
(8), we can obtaint 

1

2

11 12 13 14

22 3 24

3

44

Π Π Π Π 0
Π Π 0

0
Π 0

Π

T

ατ

ατ

ε X

e Q ε XB

e Q  

 

1 1 1

2 2

3 3

4 4 2

2

0 0
0 0

0
0,0 0 0 0

0 0 0
0 0

0

T

T

ε X ε XM ηH I

ε X ε XM

ε X ε XM

ε X ε XM ηH

I

ηI

ηI

ρ I

    (29) 

where 

11 1 1

12 1 2 13 3

Π ,

Π ,Π .

T T

T T T T

R αP Q Q ε XA ε A X

P ε X ε A X ε A X
 

Denote 1,η η  1 1,R X RX 1 1,Q X QX

1 1,Q X QX 1 1P X PX , 1.X X  

Now Pre- and post-multiplying (29) by 
1 1 1 1 1 1 1( , , , , , , , , ),diag X X X X X I η η I  

we get that 

1

2

11 12 13 14

22 3 24

3

44

ˆ ˆ ˆ ˆΠ Π Π Π 0
ˆ ˆΠ Π 0

0

Π̂ 0
Π̂

T

ατ

ατ

ε X

e Q ε BX

e Q  

 

1 1 1

2 2

3 3

4 4 2

2

0 0
0 0

0
0,0 0 0 0

0 0 0
0 0

0

T

T

ε I ε ηM XH X

ε I ε ηM

ε I ε ηM

ε I ε ηM XH

I

ηI

ηI

ρ I

 

where 

 

2

11 1 1 1

1

12 1 2 2

13 3 3

14 1 4 4

22 2 2

24 2 4

44 4 4

ˆ

,
ˆ ,
ˆ ,
ˆ ,
ˆ ,
ˆ ,
ˆ ( 1) .

T

T T

T T T

T T T

T T T

T

T

R P Q Q AX HKX XA

XK H

P X XA XK H

XA XK H

BX XA XK H

X X

BX X

e R BX XB

 

Let .KX Y  We obtain (27). This completes the 
proof. 

4.  Numerical example 

In this part, we will use a numerical example to 
verify the practicability of the forward variation 
theorem. 

Consider the system (26) with the following 
parameters 

5 11
9 2

A , 
1 4
3 5

B ,  
2 4
2 3

H , 
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1

2

1 2

0.12sin( ( ))1 9
, ( ( )) ,

0.1sin( ( ))1 3

0.6 0 0.2 0
, ,

0 0.6 0 0.2

1 0
( ) , ( ) 0.11 0.1sin( ).

0 1

x t
M f x t

x t

H H

S t τ t t

 

Consider the decay rate 0.02.κ   Let us take 

1 2 3 40.4, 0.9, 0.1, 0.2, 0.5.μ ε ε ε ε ρ   

 Then by solving the LMI (27) with the use of 
MATLAB LMI toolbox, we can obtain the following 
feasible solution  

0.2713 0.0403
,

0.0403 0.6259

1.1233 0.1300
,

0.1300 0.5341

0.2779 0.0206
 ,

0.0206 0.1096

0.8233 0.2314
,

0.2314 2.0154

0.1854 0.2060
,

0.2060 0.3163

1.2161 0.49

P

Q

Q

R

X

Y
15

,
0.4915 0.8029

0.9301.

 

The control gain is 

30.0219 21.1118
.

19.8259 15.4542
K  

According Theorem 2, the closed-loop system (26) 
is exponentially stable. 

Fig. 1 shows the simulation results of the state 
trajectory of the system (26) under the control gain 
proposed above. From Fig. 1, it is evident that the 
state responses converge quickly to the equilibrium 
point.  

 

 

Fig.1.  The state trajectory of system (26) 
 

5.  Conclusion 

This paper deals with the problem of the 
exponential stabilization for a class of nonlinear 
uncertain systems with time-varying delay. In this 
paper, we apply the Finsler’s lemma to deal with the 
system’s uncertainty. We proposed a new criterion for 
the exponential stability of nonlinear uncertain 
system, and the sufficient condition of exponential 
stability for a class of nonlinear uncertain systems 
with constant time delay is given. Then, sufficient 
conditions of robust exponential stabilization for 
nonlinear uncertain systems with time-varying delay 
are derived. The state feedback control gain is 
designed. Finally, a numerical example is given to 
illustrate the effectiveness of the method. 
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