
Statistical Modeling of Chlorinated Chemical Compounds Bioactivity  
 

VLADIMIR MUKHOMOROV  
Physical Department  

State Polytechnic University 
St. Petersburg  

RUSSIA 

 
 Abstract: - A general regression equation based on physical concepts of the behavior of a polar molecule in a 
condensed medium is derived. The regression equation makes it possible, from a unified standpoint, to 
statistically significantly explain the toxicity of both chlorine-substituted benzenes and saturated and 
unsaturated chlorinated hydrocarbons. Statistically significant explanatory molecular features that determine 
the bioactivity of drugs have been identified. 
 
Key-Words: - Regression, significance, information, quality criteria, collinearity, toxicity, intermolecular, 
electronic, pseudopotential, chlorinated chemical compounds 
 

Received: May 26, 2021. Revised: April 15, 2022. Accepted: May 12, 2022. Published: June 6, 2022. 
 

 
1 Introduction 

Much attention has recently been paid to finding 
various quantitative relationships that link variations 
in the molecular structure of chemical compounds to 
their biological activity.  For these purposes, either 
abstract statistical models are used (leaving the 
mechanism of biological activity undisclosed) or 
assumed physico-chemical ideas about the possible 
behaviour of chemical compounds in the biosystem.  
This article analyzes the toxic effects of 
chlorobenzene derivatives, as well as saturated and 
unsaturated chlorine-containing compounds. Using 
the methods of the theory of intermolecular 
interactions, the corresponding regression 
relationships will be derived here for the purposes of 
statistical analysis of the relationship between the 
structure of a molecule and its biological activity. 
 
2 Problem Formulation 

In accordance with modern concepts, the biological 
activity of chemical compounds is determined by 
their physicochemical properties at the macroscopic 
level (solubility, distribution, permeability), as well 
as at the microscopic level (electronic characteristics 
of molecules). In this regard, it can be assumed that 
the biological effect is equally determined by two 
circumstances: the transport of the molecule to the 
site of action and the physicochemical interaction of 
the molecule with the receptor. Attempts to obtain 
appropriate regression equations that take into 

account different factors have been repeatedly 
discussed in the literature [1,2]. The authors of the 
papers [3,4] point out the difficulties in the 
physicochemical interpretation of the observations 
used in these studies. 
 
3 Problem Solution 
3.1 Chlorinated benzene derivatives  
The Hansch model [5,6] has been the most widely 
used in recent years. This model relates the 
bioactivity of chemical compounds to their 
lipophilic characteristics. In many practical cases, 
this model has proved useful.  Therefore, let us 
check whether the bioactivity (average lethal doses 
of benzene chlorine derivatives for white rats upon 
oral administration [7]) is really related to the 
partition coefficient P of the substance in the 
octanol–water system. We use the well-known 
Hansch equation 

A = B0 + B1lgP + B2(lgP)2,                (1) 

here A = 1000/LD50 is bioactivity, B0, B1, and B2 are 
some unknown parameters that are defined by 
minimizing the squared deviation of function values 
(1) from known experimental values.   Toxicity and 
lgP values for a number of substituted benzenes are 
given in Table 1. 
Using equation (1), the coefficient of determination 
R2 = 0.237 was determined. This coefficient 
characterizes the magnitude of the statistical 
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relationship between activity A and distribution 
parameters for immiscible solvents. That is, the 
“explaining” ability of the model is only 23.7%. The 
statistical significance of the multiple correlation 
coefficient can be tested by using the following 
inequality [8]: t = |R|(N – m – 1)0.5/(1 – R2)0.5 = 1.67 
< t0.05

cr(f = 9) = 2.26; where m is the number of 
explanatory variables, N is the sample size.  
Consequently, it must be recognised that there is no 
reliable relationship between regression (1) and the 
observed toxicity at the 95% confidence level. 
Comparison of the multiple correlation coefficient R 
= 0.49 with the critical value  R0.05

cr(N – m – 1 = 9; 
m = 2) = 0.697 [9] also indicates that the correlation 
coefficient R is insignificant at the significance level 
α = 0.05. Moreover, as the analysis showed, the use 
of various modifications of equation (1) (see, for 
example, [10]), including the use of the Hammett 
constants ϭ, also does not allow one to establish a 
relationship between changes in the structure of the 
molecule and the variation of the biological 
response. Apparently, the relationship between the 
molecular structure and the bioactivity of a chemical 
compound must be sought based on other properties 
of this series of compounds.  In molecular 
pharmacology, it is known that the biological action 
of a chemical compound depends on its ability to 
accumulate in certain areas of the body through 
interaction with sensitive local biostructures of the 
body. 
Analysis of the relationship between various toxicity 
indicators of chemical compounds and their 
physicochemical properties showed the following 
[11]. The greatest number of correlations is found 
with the properties of low-molecular weight 
compounds, which are determined at the electronic 
level and are related to the energy of intermolecular 
interaction of molecules [12,13].The presence of 
long-range components in the energy of the 
intermolecular interaction must lead to a 
concentration gradient of chemical compounds. This 
contributes to the emergence of a diffusion flow of 
low molecular weight chemical compounds directed 
towards the active center. 
The process of binding exogenous molecules in the 
body can approximately determine the additive 
components of pairwise intermolecular interactions. 
Difficulties in consistently taking into account the 
contributions to the intermolecular interaction are 
due to the variety of types of pair interactions of 
molecules, as well as the possibility of correctly 
taking into account the influence of the condensed 
phase on these interactions. Intermolecular 
interactions are usually divided into two groups 

according to their radius of action and relative 
strength: specific and non-specific (universal). The 
first group includes anisotropic pairwise quasi-
chemical bonds (donor-acceptor complexes, 
hydrogen bonds) that arise when the electron shells 
of interacting molecules overlap markedly. 
Nonspecific interactions include various 
electrostatic interactions, as well as short-range 
dispersion forces. These interactions are determined 
not only by the individual properties of individual 
chemical compounds, but also by the properties of 
the biosubstrate, that is, the condensed phase in 
which exogenous chemical compounds are 
distributed. The proposed mathematical model 
should highlight the additive components of the 
interaction, that is, orientation interactions, 
polarization and short-range contributions (on a 
molecular scale). These contributions are related to 
the dipole moment, electronic polarizability, 
ionization potential, and also to the position of one-
electron energies MO on the energy scale of an 
isolated molecule. This approach makes it possible 
to establish the existence of possible causal 
relationships between molecular features and 
bioresponse. 
The analyzed series of chlorobenzene derivatives 
(Table 1) is interesting from the point of view that in 
this case it is possible to move away from the 
problems associated with the conformational 
transitions of molecules. In addition, these 
molecules have similar sizes and are not expected to 
be involved in metabolic transformations. 
It is known [16,17] that chlorinated compounds 
have good acceptance properties. This allows them 
to participate in the formation of donor-acceptor 
molecular complexes due to electron transfer. The 
change in total energy (∆E) when a bond is formed 
between atom s of the donor molecule and atom t of 
the acceptor molecule can be written as follows  

      ΔE =  - qsqt/(κsRst) + 

2ΣmΣn(Cs
mCt

nΔβst)2/(εm – εn).           (2) 

Here the summation occurs over the m occupied 
molecular orbitals (MO) of the donor and over the n 
vacant MO of the acceptor; εm and εn are the 
energies of single-particle MO of the donor and 
acceptor, respectively; ∆βst is the change in the 
resonance integral of the interacting atoms s and t at 
the distance Rst between the atoms; Cs

m and Ct
n are 

the expansion coefficients of MO in atomic orbitals; 
κs is the static permittivity of the condensed 
medium. 
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Table 1 
Molecular parameters of chlorobenzene derivatives and their mean lethal doses (LD50) for white rats 

after oral administration of drugs. 
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1 Chlorobenzene 2.84 -0.971 9.15 1.69 13.2 3.00 1.33 0.303 0.248 
2 p-Dichlorobenzene 3.39 -1.441 9.11    0 15.0 3.50 1.46 0.398 0.476 
3 o-Dichlorobenzene 3.39 -1.356 9.23 2.51 15.9 3.50 1.46 0.468 0.788 
4 1,2,4,5-Tetrachlorobenzene 4.89 -2.097 9.31    0 19.7 4.50 1.46 0.667 1.036 
5 2,4,6-Trichlorophenol 3.06 -1.751 9.02 1.62 19.0 4.00 1.78 1.299 0.900 
6 1,2,4-Trichlorobenzene 4.13 -1.764 9.26 1.25 18.3 4.00 1.50 1.323 0.847 
7 3,4-Dichloraniline 2.69 -1.292 8.24 4.16 17.8 3.43 1.73 1.429 1.405 
8 p-Nitrochlorobenzene 2.39 -3.112 10.21 2.52 16.5 3.71 1.99 1.802 2.291 
9 m-Nitrochlorobenzene 2.46 -3.077 10.00 3.38 17.9 3.71 1.99 2.326 2.572 
10 o-Nitrochlorobenzene 2.53 -2.987 9.95 4.25 16.7 3.71 1.99 2.949 2.900 
11 2,4-Dinitrochlorobenzene 2.45 -3.657 10.86 3.29 19.1 4.25 2.11 3.571 3.030 
12 2,3,5,6-Tetrachloronitrobenzene 4.55 -3.576 9.86 5.34 24.1 5.00 1.99 4.000 4.041 

*) Dipole moments of molecules and their ionization potentials were calculated using the MINDO/3 quantum mechanical 
method. **) The polarizabilities of the molecules were determined using the Lefevre additive scheme [15]. 

 
The surrounding dielectric medium is considered as 
structureless and continuous, which is characterized 
by the dielectric constant κs. The first term in 
equation (2) determines the electrostatic interaction 
between atoms, which have electronic charges qs 
and qt. Electrostatic forces favor the interaction of 
donor and acceptor atoms, but usually are not 
decisive for the stabilization of the complex. In 
highly polar solvents, electrostatic interactions are 
significantly weakened. The second term defines 
quasi-chemical binding, i.e. it characterizes the 
partial electron transfer from the donor MO to the 
acceptor, thereby stabilizing the molecular complex. 
The donor-acceptor mechanism arises when the free 
orbital of the acceptor overlaps with the filled 
orbital of the donor or donor group of atoms. The 
donor is assumed to have a lone pair of electrons.  
For example, a nitrogen atom has a lone pair of 
electrons in the state 2s2. When two molecules 
approach each other, the lone pair of electrons is 
shared between the two molecules.   
This generalization of electrons is accompanied by 
the formation of bonds between molecules. The 
interaction between the donor and acceptor leads to 
a decrease in the energy of the ground state of the 
entire system below the initial levels of the donor 
and acceptor. The measure of the acceptor activity 
of a chemical compound having a closed electron 
shell is the position of the lowest free MO (εnb

0). 
Moreover, the acceptor properties are stronger, the 
lower the level εnb

0. Index zero indicates that one- 

 
 
electron energy corresponds to an isolated molecule 
in vacuum. 
The quantum-chemical method was used to 
determine the numerical values of one-electron MO 
energies CNDO/S’ [18]. The experimental values of 
the lengths of interatomic bonds, bond angles of 
molecules, for all chemical compounds analyzed 
here, were taken from the reference book [19].  
In a condensed polar medium, under the influence 
of the electrostatic field of the dipole molecules of 
the environment, the electronic levels are shifted 
relative to their position in an isolated molecule. 
The macroscopic electric field Eeff acting on a 
molecule in a condensed medium differs from the 
average macroscopic field. This is due to the effect 
of polarization of the dielectric in an external field, 
as well as due to the action of the reactive field of 
the polar molecules of the dielectric medium. The 
induced (reactive) electric field acts on the field 
source, changing the electronic distribution of the 
molecule (i.e., self-action of the polar molecule 
occurs). The presence of a polarizable medium 
between interacting molecules can significantly 
change their total potential energy. 
As is known [20], the reactive field of L.Onsager 
[21] acting on a molecule is proportional to its 
dipole moment. To determine the effect of a reactive 
field on the electronic states in a molecule, we use 
the concepts developed in molecular spectroscopy 
of the condensed state [22]. Intermolecular 
interactions can significantly affect the optical 
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spectra of molecules, shifting the maxima of the 
absorption and emission bands, changing the 
intensity of the bands, and new spectral frequencies 
may appear. 
Within the framework of the continuum theory of 
the reaction field, the one-electron energy εnb, under 
the condition of thermodynamic equilibrium of the 
molecule with the environment, will be determined 
as follows: 

εnb = εnb
0 – fRμ1

2/(2a3) +  α1fR
2μ1

2/(2a6) – 

3I1I3α1α3(n3
2–1)/[2(I1 + I3)a6(n3

2+2)].         (3)                               

Here, the reaction field and dispersion interactions 
are taken into account. fR = 2(κs–1)/(2κs  + 1) is the 
electric field factor of the reaction of a point dipole 
for a polar medium with a static permittivity κs; a, 
μ1, α1 and I1 are the effective size of a molecule of a 
low molecular weight exogenous chemical 
compound commensurate with the average radius of 
the molecule, its dipole moment, as well as the 
average static electronic polarizability and the first 
ionization potential of the molecule, respectively.  
In a condensed medium, each molecule is under the 
influence of a combination of surrounding 
molecules. This is partly taken into account by the 
factor fR, which depends on the macroscopic 
properties of the condensed medium. Let us agree 
that index 1 refers to the molecule of an exogenous 
chemical compound, index 2 refers to the 
biosubstrate molecule with which the molecule of 
the exogenous substance interacts. Index 3 refers to 
a polar dielectric medium, the optical refractive 
index of which is equal to n3. The second and third 
terms in equation (3) describe the interaction of the 
dipole moment of the molecule with the field of the 
electrostatic reaction of the polar dielectric medium 
[22] and, thus, the effect of polarization of the 
molecule by this field is taken into account. The 
third term in (3) characterizes the effect of short-
range dispersion interactions (in the London 
approximation) on the MO levels of an exogenous 
chemical compound in a condensed medium.  
On a macroscopic scale, the role of the reaction field 
manifests itself in the fact that the liquid is 
compressed in the region of the surrounding 
molecule, thereby increasing the potential energy of 
the polar liquid medium. This is one of the reasons 
for the increase in the boiling point (Tb) and 
decrease in the melting point (Tm) of polar liquids. 
Therefore, it is natural that the correlation 
coefficients between the bioresponse and each of the 
parameters Tb, Tm and μ1 are close in magnitude to 
each other [11]. However, in this case, the 
regression equations are not informative enough, 

since it is not clear which approximately additive 
contributions of intermolecular interactions should 
be taken into account in each particular case. 
One can make some assumptions about the 
molecular properties of the local region with which 
the exogenous molecule is associated, if the main 
contributions are known. For example, if dispersion 
forces make a dominant contribution, then a local, 
biological object must have high polarization 
properties. 
When a low molecular weight chemical compound 
approaches a receptor, the molecule enters into a 
pair interaction with it. In the dipole approximation, 
the efficiency of this interaction is determined by 
the following additive physical components:  

1) dipole - dipole interaction, which after averaging 
over all orientations of molecules at temperature T 
has the following form 

                  Edip = - 2μ1
2μ2

2/(3κsR0
6kBT),                  (4)  

that is, the attraction between the dipoles depends 
on the temperature;  
2) inductive interaction   

Eind = - (α2μ1
2 + α1μ2

2)/(κs
2R0

6);               (5) 

3) dispersion interaction, which, in the London 
approximation, can be written in the following form: 

Edisp = - 3α1α2I1I2/[2R0
6(I1 + I2)].          (6)  

Approximate formulas (3) - (6) make it possible to 
write the pair interaction of molecules in terms of 
the properties of individual molecules. Here R0 is 
the effective distance between the interacting 
molecules; αi is the isotropic electronic 
polarizability of the i-th molecule; μi is the dipole 
moment of the i-th molecule; kB is the Boltzmann 
constant; Ii is the first ionization potential of the i-th 
molecule. It should be borne in mind that the 
assumption of the additivity of intermolecular 
interactions is not sufficiently rigorous [23]. 
However, for solving practical problems, the 
approximation of interaction additivity is generally 
accepted. The possibility of using simplified 
formulas makes it possible to significantly expand 
the scope of the theory of intermolecular 
interactions. 
Studies have shown [20,24] that formulas (4) - (6) 
are applicable to real systems. These 
approximations make it possible to correctly 
indicate the changes in the potential energy of the 
interaction of molecules as a function of the distance 
between them and the individual properties of the 
molecules. Before writing the final equation that 
determines the change in the energy of the system, 
taking into account specific and nonspecific 
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interactions, let's simplify equation (2). For 
homologous series of chemical compounds or 
related compounds, which interact with the same 
donor, the electron-accepting properties of the 
molecule mainly depend on the position on the 
energy scale of the lower free molecular orbital εnb 
of the acceptor: ∆Ed-a = f(εnb). For the homological 
series of chemical compounds, the change in 
interaction energy is approximately proportional to 
the energy εnb: ∆Ed-a ≈ εnb. In general, the equation 
that determines the value of the stabilization energy 
of the complex of a low-molecular chemical 
compound plus a receptor will have the following 
form: 

ΔEd-a = k0 + kεnb
0 + μ1

2{-kfR/(2a3) + kα1fR
2/(2a6) – 

2μ2
2/(3κsR0

6kBT) – α2/(κs
2R0

6)}+ α1{–μ2
2/(κs

2R0
6) –  

3α2I1I2/(2R0
6(I1 + I2))} – 

    [3α1I1I3/(2a3(I1 + I2))]∙[(n3
2 –1)/(n3

2 + 2)].      (7) 

Here k and k0 are some numerical coefficients. For 
the purposes of regression analysis, this equation 
can be simplified. It is known that the inductive 
interaction Eind << Edisp and therefore in the fourth 
term of the series (7) the first term in the curly 
bracket can be ignored in comparison with the 
second term. In what follows, we will assume that 
the molecular parameters that relate to the 
biosubstrate and the polar medium are constant for 
the entire range of chemical compounds.  
In this study, the active center of the biophase with 
which the exogenous molecules interacts is not 
specified. Therefore, for certainty we will assume I2 
≈ I3 ≈ 10 eV. This value of the ionization potential 
corresponds to most organic molecules [25,26]. 
Since the main goal is to obtain a regression 
equation, this approximation is quite satisfactory. 
Thus, equation (7) can be reduced to the following 
multifactorial regression equation with three 
explanatory variables that enter the equation 
additively and have a joint simultaneous effect on 
the resulting trait:  

A ≡ 1000/LD50 = B0 + B1εnb
0 + B2μ1

2 + 

B3α1I1/(I1 +10).                        (8) 

For the convenience of presenting the statistical 
material, in what follows we introduce the following 
notation: x1 = εnb

0, x2 = μ1
2  и x3 = α1I1/(α1 + 10). 

Next, the problem is reduced to estimating the 
multiple regression coefficients Bi from the known 
results of sample observations.  
The statistics of the populations A, x1, x2 and x3 will 
be as follows: 

A = 1000/LD50: N = 12, Aav = 1.71 ± 0.36; 95% 
confidence interval: 0.91 - 2.51;   Amin = 0.303,  Amax 

= 4.00, SA = 1.266, τmin  = 1.12  <  τmax  = 1.82 < 
τ0.05

cr,2(N) = 2.387 < τ0.05
cr,1(N) = 2.523; Wilk-

Shapiro normality test: W = 0.910 > W0.05
cr(N) = 

0.859, David-Hartley-Pearson normality test:    
U10.05

cr(N)  = 2.800  <  U  =   [(Amax – Amin)/SA] = 
2.92 < U20.05

cr(N)
 
 = 3.910, representativeness of the 

sample size: Nrepr = 10; 

x1:  N = 12, x1
av  = - 2.26 ±  0.28; 95% confidence 

interval: (-2.87, -1.64); εnb
0,min = -3.67,  εnb

0,max = -
0.97,  Sx1 = 0.964, τmax  = 1.34 < τmin = 1.46 < 
τ0.05

cr,2(N) = 2.387 < τ0.05
cr,1(N) = 2.523; Wilk-

Shapiro normality test: W = 0.895 > W0.05
cr(N) = 

0.859, David-Hartley-Pearson normality test: 
U10.05

cr(N) = 2.800 ≈  U=  [(εnb
0,max – εnb

0,min)/Sх1] = 
2.791 < U20.05

cr(N)   
 = 3.910; Nrepr = 10; 

x2: N = 12, x2
av =  8.82 ± 2.54; 95% confidence 

interval:  3.23 - 14.41; μ1
2,min = 0, μ1

2,max = 28.52, Sx2 
= 8.80,   τmin   =   1.00  <  τmax  = 2.24 < τ0.05

cr,2(N) = 
2.387 < τ0.05

cr,1(N) = 2.523; Wilk-Shapiro normality 
test: W = 0.885 > W0.05

cr(N) = 0.859, David-Hartley-
Pearson normality test: U10.05

cr(N)  = 2.800 < U  = 
[(μ1

2,max – μ1
2,min)/Sх2] = 3.25 < U20.05

cr(N)   
 = 3.910; 

Nrepr = 10; 

x3: N = 12, x3
av = 8.43 ± 0.42; 95% confidence 

interval: 7.75 - 9.58;   x3
min = 5.276,  x3

max = 11.965, 
Sx3 = 1.744, τmin   = 1.81  <  τmax  = 2.03 < τ0.05

cr,2(N) 
= 2.387 < τ0.05

cr,1(N) = 2.523; Wilk-Shapiro 
normality test: W = 0.975 > W0.05

cr(N) = 0.859, 
David-Hartley-Pearson normality test: U10.05

cr(N)  = 
2.800  < U = [(x3

max – x3
min)/Sх3] = 3.83 = U20.05

cr(N)   
 

= 3.910; Nrepr = 10.                                                 (9) 

Since the sample size is limited, before analyzing 
the regression (8), we perform the following 
procedure. Let's analyze a regression that uses only 
one explanatory variable, such as the variable x2: 

A1(x2) = a0 + a1 x2. 

For this regression, we get the following statistics: 

N = 12, m1 = 1; R = 0.80 ± 0.11, |R*| = 0.82 > 
R0.05

cr(N – 2) = 0.576; correlation coefficient 
significance test based on the Fisher normalizing z-
transform (with Hotelling corrections taken into 
account): uH = 1.07 > u0.05(N) = z0.975∙(N – 1)-0.5 = 
0.591;  RMSE = 0.794; the minimum sample size 
sufficient for the reliability of the correlation 
coefficient: N0.05

min = 6;  a0 = 0.17 ± 0.09,  a1 = -1.01 
± 0.26,  |t(a1)| = 3.8 > t0.05

cr(N – 2) = 2.228 > t(a0) = 
1.93; unexplained regression residuals (perturbing 
variable) are normally distributed: Wilk-Shapiro 
test: W = 0.938 > W0.05

cr(N) = 0.859; F = 17.57 > 
F0.05

cr(f1 = 1;f2 = 10) = 4.96. 
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Here R* = R∙[1 + 0.5∙(1 – R2)/(N – 3)] is the adjusted 
correlation coefficient.  Thus, there is a significant 
relationship between the explanatory variable x2 and 
bioresponse. Checking the relationship of regression 
residuals δA1 with the explanatory variable x1 also 
indicates the presence of a significant correlation 
between them: 

δA1(x1) = a01 + a11 x1, 

N = 12, m1 = 1; R = - 0.74 ± 0.14, |R*| = 0.76 > 
R0.05

cr(N – 2) = 0.576; correlation coefficient 
significance test based on the Fisher normalizing z-
transform (with Hotelling corrections taken into 
account): uH = 0.92 > u0.05(N) = z0.975∙(N – 1)-0.5 = 
0.591;  RMSE = 0.533; the minimum sample size 
sufficient for the reliability of the correlation 
coefficient: N0.05

min = 7;  a01 = -1.31 ± 0.41,  a11 = -
0.58 ± 0.17,  |t(a11)| = 3.48 > t0.05

cr(N – 2) = 2.228; 
unexplained regression residuals (perturbing 
variable) are normally distributed: Wilk-Shapiro 
test: W = 0.944 > W0.05

cr(N) = 0.859; F = 12.13 > 
F0.05

cr(f1 = 1;f2 = 10) = 4.96. 
 
It follows that the regression δA1(x1) is also 
statistically significant. That is, the unexplained 
residuals of regression A1(x2) correlate with another 
explanatory variable, namely variable x1. Further 
verification of the relationship between the 
regression residuals δA1(x1) and the explanatory 
variable x3 showed that the residuals are not 
associated with the molecular index characterizing 
the dispersion interaction: R = 0.31 < R0.05

cr(N – 2) = 
0.576, F = 1.07 < F0.05

cr(f1 = 1;f2 = 10) = 4.96. 
Obviously, this contribution to the interaction of 
molecules is insignificant for the analyzed sample. 
It follows from inequalities (9) that at a significance 
level of 5%, the populations A, x1, x2, and x3 are 
homogeneous and normally distributed. The 
homogeneity of the analyzed data was checked 
using the τ-criterion [27,28]. The following statistics 
were obtained for regression (8): 

N  =  12, m1 = 3 – number of explanatory 
variables; multiple correlation coefficient: R1 = 
0.966 > R0.05

cr(m1; N – m1 – 1) = 0.777,  multiple 
determination coefficient: R1

2 = 0.933, R1
*2 = 0.91;  

standard error of the regression estimate: SA = 0.381;  
B0 = - 1.29 ± 0.82,  B1 =  -0.78  ± 0.18,  B2 =  0.06 ± 
0.02,  B3 = 0.09 ± 0.12;   |t(B1)| = 4.27  > t(B2) = 
3.51  > t0.05

cr(f = N – m – 1) = 2.306  >  t(B3) =  0.70;  
F   = 37.29  > F0.05

cr(f1 = 3; f2 = 8)   = 4.07;   Σ1 = 
1.1586;  AIC1 = -1.837,  SC1 = -1.5093,  SS1 =  
0.1196.                                                                 (10) 

Here Σ1 is the sum of squared residuals; R0.05
cr(m1; N 

– m1 – 1) is the critical value of the multiple 

correlation coefficient [9], which determines the 
lower acceptable limit of the degree of association 
between the variations of the resulting attribute and 
all explanatory variables.  
Statistics (10) contains information quality criteria 
for the linear regression equations of Akaike [29] 
and Schwartz [30], as well as the alternative ratio SS 
= Σ0.5/(N – m). For regression residuals, the Wilk-
Shapiro test would be as follows: W = 0.975 > 
W0.05

cr(N) = 0.859. The information quality criteria 
for the regression equation are defined as follows: 

AIC = (2m/N) + ln(Σ/N),                     

SC = [(m + 1)lnN]/N + ln(Σ/N) .     (11) 

The assessment of the significance of the multiple 
determination coefficient (10) is carried out using 
the F-statistics: F = R2∙(N – m – 1)/m/(1 – R2). Since 
F > F0.05

cr (see Eq.(10)), it can be assumed that the 
multiple coefficient of determination is reliably 
different from zero with probability 1 – α = 0.95, 
and the explanatory variables reliably explain 
variations in bioactivity. The Bi regression 
coefficients are significantly greater than zero if 
t(Bi) > tcr at significance level α and number of 
degrees of freedom f = N – m1 – 1 at the two-sided 
critical region. Therefore, the coefficient B3 in 
Eq.(10) is not statistically reliable. Regression (8) 
explains 93.3% of the variability in bioactivity. 
Only 6.7% of unexplained variations can be 
attributed to unaccounted for factors or random 
variations in the original data.  
The importance of the participation of each of the 
independent explanatory variables in assessing the 
variability of the resulting sign is characterized by 
standardized regression coefficients. The 
standardized regression coefficients Bi

* are related 
to the normal regression coefficients (8) by the 
following relationships: 

B1
* =  B1∙Sx1/SA = - 0.596,  B2

* = B2∙Sx2/SA = 0.405, 

B3
* =  B3∙Sx3/SA =  0.098.                 (12) 

On a natural scale, the regression coefficients are 
dimensional quantities. However, the standardized 
coefficients are dimensionless and this makes it 
possible to perform their quantitative comparison. 
Knowledge of standardized coefficients makes it 
possible to determine the proportion of explanatory 
variables involved in explaining the variability of 
the resulting sign. An approximate ratio for the 
multiple coefficient of determination can be used to 
obtain information about the comparative influence 
of individual variables [31]: 

Rappr 2 = B1
*∙rx1,A  + B2

*∙rx2,A  +   B1
*∙rx3,A  = 
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 0.535 + 0.321 + 0.075 =  0.931.         (13) 

Here rx1,A = -0.897, rx2,A  = 0.798 and rx3,A = 0.770 
are the pairwise correlation coefficients between 
each explanatory variable and the observed 
bioactivity. From relation (13) it follows that the 
greatest contribution to the explanation of the 
variability in the toxicity of chemical compounds 
comes from the variables x1 (53.5%) and x2 (32.1%). 
The equity participation of variable x3 is very 
insignificant and amounts to only 7.5%. The 
approximate value of the coefficient of 
determination (13) is very close to the value of R1

2 = 
0.933 (see Eq.(10)).  
The adjusted (unbiased) coefficient of determination 
is determined from the following: 

R*2 = 1 – (1 – R2)·(N – 1)/(N – m  – 1).       (14) 

An adjusted coefficient of determination, R*2 is 
applied so that models with different numbers of 
explanatory factors can be compared.  
Thus, at the 95% confidence level, a very strong 
relationship can be assumed between toxicity and 
the explanatory variables x1 and x2. The coefficient 
of determination R1

2 = 0.933 (10) indicates what 
portion (in this case, 93.3%) of the total variance of 
the bioresponse function is explained by the factors 
x1, x2, and x3. Only 6.7% of the total variance cannot 
be explained by the model (the uncertainty factor is 
0.067) and appears to be due to unaccounted for 
variables or random deviations in the original 
sample. The values of coefficients B1

* and B2
* 

reflect the significant dependence, at the 95% 
confidence level, of the resultant variable on the 
explanatory factors x1 and x2. At the same time, the 
intermolecular dispersion interaction (~ x3) is of 
minor importance (not significant at the chosen 
significance level α), since t(B3) < tcr (two-sided 
hypothesis evaluation). The difference of the 
coefficient B3 from zero can be attributed to random 
fluctuations in the original sample. Therefore, 
nothing definite can be said about the influence of 
the dispersion interaction on the resultant attribute. 
Features that have low information content (i.e., 
"weight") can be excluded from further analysis.  
The choice of independent explanatory variables is a 
process of successive refinement of the initial 
hypothesis. The following steps can be 
distinguished in this process: formation of a primary 
hypothesis (Eq. (8)) about the set of independent 
variables; analysis of structural relationships; 
narrowing of features and selection of significant 
variables for modeling. 

Since the influence of dispersion interactions is 
insignificant, equation (8) can be replaced by the 
following reduced two-factor regression equation: 

A ≡ 1000/LD50 = B0 + B1x1 + B2x2,           (15) 

N  = 12, m2 = 2, B0 = -0.76 ± 0.29, B1 = -0.86 ± 0.14,  
B2 = 0.06 ± 0.02; |t(B1)| = 6.10 > t(B2) = 3.98  > 
|t(B0)| = 2.65 > t0.05

cr (f = N – m2 – 1)  =  2.26; R2 = 
0.968 > R0.05

cr (2;9) = 0.697, R2
2 = 0.937, R2

*2 = 
0.933;  standard error of the regression estimate: SA 
= 0.370; F = 59.04 > F0.05

cr(f1 = m2; f2 = N – m2 – 1) 
= 4.26; Σ2 = 1.2294; AIC2 = -1.9450, SC2= -1.6572, 
SS2 = 0.1109.                                                        (16) 
 
Regression residuals are normally distributed. Wilk-
Shapiro normality test: W = 0.940 > W0.05

cr(N) = 
0.859.  
If the ratio F many times (for example, not less than 
four times) exceeds the tabular value, then such a 
regression, according to [32], has predictive 
properties. Additional information about the 
significance of variable x3 can be obtained by 
analyzing the relationship between the regression 
residuals (15) and variable x3. As the analysis 
showed, the correlation coefficient is insignificant: 
R = 0.16 < R0.05

cr(N – 2) = 0.576, that is, the 
explanatory variable x3 is not related in any way to 
the unexplained regression residuals (15). 
Therefore, this variable does not really need to be 
included in the regression equation. A comparison 
of the information tests AIC1 and AIC2 for 
regressions (8) and (15) shows that the quality of the 
reduced regression (15) is higher than for regression 
(8), although the number of explanatory variables 
has decreased. Similar relations hold for the tests 
SC1 = -1.5093 and SC2 = -1.6572. The values of the 
Akaike and Schwarz tests are associated with the 
ratios SS: SS1 = Σ1

0.5/(N – m1) = 0.1196 and  SS2 = 
Σ2

0.5/(N – m2) = 0.1109. The use of AIC, SC and SS 
tests is justified because the R2 criterion may not be 
informative. The fact is that for a model with a large 
number of explanatory variables, the criterion R2 
will always be no less than for a model with a 
smaller number of explanatory variables. The 
presence of collinearity between explanatory 
variables can significantly distort the relationship 
between the information tests for full regression and 
reduced regression. 
If we analyse the residuals δA of a simple linear 
regression that depends on only one explanatory 
variable x1: A ≡ 1000/LD50 = B0 + B1x1 (|R| =  0.90 > 

R0.05
cr(N – 2) = 0.576; F = 41.2 > F0.05

cr(f1 = 1;f2 = 
10) = 4.96), then appears that the residuals δA of the 
regression are significantly correlated with the set of 
variables x2: r = 0.66 > R0.05

cr(N – 2) = 0.576, F = 
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7.76 > F0.05
cr(f1 = 1; f2 = 10) = 4.96. Thus, for the 

regression equation (15), both explanatory variables 
x1 and x2 are significant. However, it is necessary to 
check whether these variables are not significantly 
correlated. Collinearity between explanatory 
variables can lead to misjudgment of the impact of 
variables on the outcome variable because the 
explanatory variables are related. The presence of 
collinearity between explanatory variables can 
significantly distort the test relationships for full 
regression and reduced regression. Checking the 
interconnectedness of the explanatory variables x1 
and x2 is carried out as follows: 

N = 12;  x1(x2) = b0 + b1x2,  r1,2 = -0.564 ± 0.216,  
|r1,2| = 0.564 <  R0.05

cr(N – 2) = 0.576; |t(b1)| = 2.16 < 
t0.05

cr(N – 2) = 2.228;  b0 = -2.80 ± 0.81,  b1 = -6.15 ± 
2.38; the minimum sample size sufficient for the 
reliability of the correlation coefficient: N0.05

min = 11;  
F = 4.67 < F0.05

cr(f1 = 1; f2 = 10) = 4.96.              (17) 

Since F < Fcr, the relationship between x1 and x2 is 
not significant at the 95% confidence level. For 
small sample sizes (N ≤ 15), the best estimate of the 
correlation coefficient is the adjusted correlation 
coefficient [33]: 

          r* = r∙[1 + 0.5∙(1 – r2)/(N – 3)].               (18)      

For regression (15), the residuals are normally 
distributed (16). In this case, a more accurate 
quantification of collinearity can be used, as 
suggested by Farrar and Glauber [34]. Farrar-
Glauber test, has a chi-square distribution with f  =  
m(m – 1)/2  degrees of freedom: 

χ2 = - (N – 1 – (2m2 + 5)/6)∙ln(r1,1∙r2,2 – r2,1∙r1,2) 

  =  3.64 <   χ0.05
2,cr(f = 1) = 3.841.           (19) 

Here m2 = 2 is the number of explanatory variables. 
Since χ2 < χ2,cr, then the hypothesis of the 
independence of the explanatory variables does not 
contradict the original data. The absence of a 
significant relationship between the features εnb

0 and 
μ1

2 is also indicated by the inequality:   

t = |r1,2|∙(N – 2)0.5/(1 – r1,2
2)0.5 =  

2.16 < t0.05
2,cr(N – 2) = 2.23.             (20) 

That is, the correlation coefficient |r1,2| statistically 
insignificant. It is also possible to obtain an estimate 
of the collinearity of the variables x1 and x2 by using 
the following relation [8]: 

F = (N – m2)r1,2
2/[(m2 – 1)(1 – r1,2

2)] = 

4.67 <  F0.05
cr(f1 = 1; f2 = 10) = 4.90.        (21) 

Inequality (21) also indicates that the explanatory 
variables εnb

0 and μ1
2 can be recognized as 

independent. Consequently, the explanatory 
variables x1 and x2, have a simultaneous effect on 
the resultant variable, in a significant, 
multidirectional and independent manner.  
The regression coefficients (15) need to be 
transformed again to reveal the comparative effect 
on bioactivity of the explanatory variables: 

 B1
* =  B1Sx1/SA  = -0.656,    B2

* = B2Sx2/SA = 0.428. 
                    (22) 

Thus, in contrast to the results (15), the standardized 
coefficients B1

* and B2
* do not differ very 

significantly in absolute value. Using the 
approximate relation (13), we determine the share 
contribution of each variable to the explanation of 
the variability of bioactivity:        

Rappr
2 = B1

*∙rx1,A  + B2
*∙rx2,A  = 0.562 + 0.377 = 0.939. 

                    (23) 

The largest contribution to (23) is made by the 
explanatory variable εnb

0 (56.2%). The approximate 
coefficient of determination Rappr

2 = 0.939 is very 
close to the coefficient of determination (16): R2

2 = 
0.937. 
In order to compare the coefficients of 
determination of the two models with different 
numbers of explanatory factors m, their adjusted R*2 
values must be calculated (14).  For regression (8), 
the adjusted coefficient of determination is R1

*2 = 
0.90 for m3 = 3. However, for multiple regression 
(16) R2

*2 = 0.933; m2 = 2. The difference in the 
coefficients of determination |R1

*2 – R2
*2| determines 

the measure of additional explanation for the 
variation of the resultant variable, by including 
another explanatory variable in the regression.  
Next, we use the following relation, which has the 
Fisher F-distribution:  

F = |R1
*2 – R2

*2|∙(N – m1 – 1)/(m1 – m2)/(1 – R1
*2). 

                       (24) 

If  F > F0.05
cr(f1 = m1 – m2; f2 = N – m1 – 1), then the 

additional explanatory variable must be retained in 
the regression equation. In this case there is an 
inverse inequality of F = 2.75 < F0.05

cr(f1 = 1; f2 = 8) 
= 5.32. That is, the additional explanatory variable 
x3 does not improve the regression. The purpose of 
the regression equation is not only to describe the 
experiment satisfactorily. The regression equation 
should indicate the physical phenomena associated 
with the variability of bioactivity.  
Thus, independent and simultaneously acting 
explanatory molecular variables εnb

0 and μ1
2 are 
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associated with the toxicity of substituted 
chlorobenzenes. Model (15) makes it possible to 
make some assumptions about the properties of the 
biophase region with which an exogenous molecule 
can interact. In accordance with the regression 
equation (15), biophase molecules must have a 
significant dipole moment or charge. In addition, the 
energy of the highest occupied molecular orbital 
εhocc of the biophase should be close to the energy 
εnb

0 of the exogenous molecule. If it is possible to 
briefly describe the initial information, then there is 
confidence that some objective regularity has been 
revealed that exists in the structure of the feature 
space, allowing this reduction to be carried out [18]. 
The correlation between the experimental toxicity 
values of substituted chlorobenzenes and theoretical 
values is shown in Fig. 1. The energy of 
stabilization of the molecular complex is the higher, 
the greater the energy of the donor-acceptor 
complex. 
Table 1 also lists the Z and H molecular features for 
chlorine-substituted compounds. Z is the average 
number of electrons in the outer shell of atoms in a 
molecule: Z = ΣiniZi/N [36,37]. Here ni is the 
number of atoms of the i-th sort with the number of 
electrons Zi on the outer electron shell. The 
summation is performed on all atoms in the 
molecule; Σini = N is the total number of atoms. The 
electronic factor Z is related to the pseudopotential 
of the molecule [38]. 

 
Fig. 1. Scatterplot and regression line. Calculated 
and experimental values of average lethal doses (A ≡ 
1000/LD50) of chlorobenzene derivatives (Table 1). 
The regression line is given by the equation Amod = 
a0 + a1Aexp, N = 12, a0 = 0.191 ± 0.168, a1 = 0.904 ± 
0.080;  R = 0.96 ± 0.03; R* = 0.97 > R0.05

cr(N – 2) = 
0.576, F = 159.2 > F0.05

cr(f1 = 1; f2 = 10) = 4.96; 
straightness index: K =  (N∙(1 – R2))0.5 = 0.84  < 
Kthr(threshold value) = 3.00 [35].  

The information function H [39], for a discrete data 
set, is quantified as follows: H = - Σjpjlog2pj. The 
ratio pi = ni/N satisfies the following conditions: 0 ≤ 

pi ≤ 1, Σipi= 1. In which connection, pi = 0 means 
the impossibility of the occurrence of the i-th event; 
Σini = N;  N is the number of atoms in the molecule. 
The ratio nk/N determines the share holding of the 
kth kind of atom in the molecule. For chemical 
compounds from Table 1, it was found that the 
molecular factor Z is closely related to the 
polarizability of the α1 molecule: the linear 
correlation coefficient is 0.93 ± 0.12. The statistical 
significance of the correlation coefficient is 
determined by the inequality: 

t = |R|∙(N – 2)0.5/(1 – R2)0.5 = 

12.36 >t0.05
cr(N – 2) = 2.23.            (25) 

Inequality (25) uses a two-sided critical region for 
the t-quantile. The Chaddock scale defines the 
pairwise correlation coefficient as corresponding to 
a “very close relationship” [40].  
The relationship between the values of one-electron 
energies εnb

0 and the values of the molecular factor Z 
was also verified. A very close linear relationship 
was found (Fig. 2A) between these factors for 
chlorine-substituted benzenes (chemical compound 
numbers No = 1 – 6 in Table 1):  

εnb
0(Z)1 = a01 + a11∙Z,   N1 = 6, R1 = -0.996 ± 0.004, 

|R1
*| = 0.998 > R0.05

cr(N1 – 2)  = 0.811; criterion of 
significance of the correlation coefficient based on 
the normalizing Fisher z-transform (Hotelling 
corrections is taken into account [33]): uH = 2.98 > 
u0.05(N) = z0.975∙(N – 1)-0.5 = 0.86; S1 = 0.040; 
sufficient sample size to ensure the validity of the 
correlation coefficient: N0.05

min < 4;  a01 = 1.23 ± 
0.13,  a11 = -0.75 ± 0.03, |t(a11)| = 21.7 > t(a01) = 
9.46 > t0.05

cr(N1 – 2) = 2.776;  F = 469.5 > F0.05
cr(f1 = 

1;f2 = 4) = 7.71; straightness index: K = 0.22 < Kthr = 
3.0.                                                                       (26) 

Because the corrected correlation coefficient |R1
*| = 

0.998, and the value of S1 = 0.040, then this 
relationship of features is close to the functional 
dependence.  

Z and εnb statistics:  

N1 = 6, Zav = 3.75 ± 0.21; 95% confidence interval 
(3.20-4.30), Zmin = 3.00, Zmax = 4.50, SZ1 = 0.524,  
τmax = 1.43 = τmin = 1.43 < τ0.05

cr,2(N1) = 1.996 < 
τ0.05

cr,1(N1) = 2.184; Wilk-Shapiro normality test: W 
= 0.960 > W0.05

cr(N1) = 0.788, David-Hartley-
Pearson normality test: U10.05

cr(N1) = 2.200 < U = 
[(Zmax – Zmin)/SZ] = 2.863 < U20.05

cr(N1) = 3.012, Nrepr 
= 5;                                                                       (27) 

N1 = 6, εnb
av = -1.56 ± 0.16; 95% confidence interval 

(-1.97,-1.15), εnb
min = -2.097, εnb

max = -0.971, Sε = 
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0.392, τmin = 1.37 <  τmax = 1.50 < τ0.05
cr,2(N1) = 

1.996< τ0.05
cr,1(N1) = 2.184; Wilk-Shapiro normality 

test: W = 0.975 > W0.05
cr(N1) = 0.788, David-

Hartley-Pearson normality test: U10.05
cr(N1) = 2.200 

< U = [(εnb
max – εnb

min)/Sε] = 2.870 < U20.05
cr(N1) = 

3.012; Nrepr = 5.                                                    (28) 
 

       
           A                                                      B

 

Fig. 2. Scatterplots and regression lines. Relationship between the energy of the lowest free molecular orbital 
Enb ≡ εnb

0 of an exogenous molecule and the molecular factor Z. (A) Chloro-substituted benzenes. (B) 
Nitrochlorobenzenes. 
 

The sets Z and εnb are homogeneous and have a 
normal distribution. A quantitative relationship 
between these features was also found (Fig. 2B) for 
chlorine-substituted nitrobenzenes (numbers of 
chemical compounds Nos. = 8 - 12 in Table 1): 

εnb
0(Z)2 = a02 + a12Z,  N2 = 5, R2 = - 0.89 ± 0.12,  

|R2
*| = 0.94 > R0.05

cr(N2 – 2)   = 0.8783; S2 = 0.166; 
criterion of significance of the correlation 
coefficient based on the normalizing Fisher z-
transform (Hotelling corrections is taken into 
account): uH = 1.904 > u0.05(N) = z0.975∙(N – 1)-0.5 = 
0.98; sufficient sample size to ensure the validity of 
the correlation coefficient: N0.05

min < 4;  a02 = -1.37 ± 
0.59,  a12 = -0.47 ± 0.14,  |t(a12)| = 3.32 > t0.05

cr(N2 –  
2) = 3.182; F = 11.04 > F0.05

cr(f1 = 1; f2 = 3)  = 
10.13; straightness index: K = 1.02 < Kthr = 3.0. 

 (29) 

Z and εnb statistics: 

N2 = 5, Zav = 4.11 ± 0.26; 95% confidence interval 
(3.38-4.83), Zmin = 3.71, Zmax = 5.00, SZ2 = 0.584, 
τmin = 0.682 <  τmax = 1.527 < τ0.05

cr,2(N2) = 1.869< 
τ0.05

cr,1(N2)= 2.080; Wilk-Shapiro normality test: W = 
0.773 > W0.05

cr(N2) = 0.762, David-Hartley-Pearson 
normality test:  U10.05

cr(N2) = 2.200 < U = [(Zmax – 

Zmin)/SZ] = 2.21 < U20.05
cr(N2) = 3.222; Nrepr = 4; 

N2 = 5, εnb
av = -3.28 ± 0.14; 95% confidence interval 

(-3.66,-2.30), εnb
min = -3.657, εnb

max = -2.987, Sε = 
0.310, τmax = 0.95 < τmin = 1.22 <  τmax = 1.527 
τ0.05

cr,2(N2) = 1.869 < τ0.05
cr,1(N2) = 2.080; Wilk-

Shapiro normality test: W = 0.831 > W0.05
cr(N2) =  

 
0.762, David-Hartley-Pearson normality test: 
U10.05

cr(N2) = 2.200 ≈ U = [(εnb
max – εnb

min)/Sε] = 2.16 
< U20.05

cr(N2) = 3.012, Nrepr = 4.                           (30) 

An approximate comparative estimate of the 
regression coefficients a11 and a12 can be made 
using the following relation [41]: 

t = |a11 – a12|/[S1
2/(N1 – 1)/SZ1

2 +  S2
2/(N2 – 1)/SZ2

2]0.5  

= 1.918 < t0.05
cr(N1 + N2 –  4) = 2.365.          (31) 

That is, estimates of regression coefficients differ 
insignificantly, since t < tcr. 
Dispersion interaction does not make a statistically 
significant contribution to the explanation of the 
bioresponse of a number of compounds from Table 
1. However, there is a relationship between the 
molecular feature Z and the value of the dispersion 
contribution: 

x3(Z) = a0 + a1Z, N = 12, R = 0.96 ± 0.03, R* = 0.97 
> R0.05

cr(N – 2) = 0.576; sufficient sample size to 
ensure the validity of the correlation coefficient: 
N0.05

min < 5; criterion of significance of the 
correlation coefficient based on the normalizing 
Fisher z-transform (Hotelling corrections is taken 
into account): uH = 1.942 > u0.05(N) = z0.975∙(N – 1)-0.5 
= 0.591; a0 = -1.10 ± 0.95, a1 = 2.52 ± 0.24, t(a1) = 
10.42 > t0.05

cr(N – 2); standard error of the regression 
estimate:  0.44;  F = 108.5 > F0.05

cr(f1 = 1;f2 = 10) = 
4.96.                                                                     (32) 

Statistics of set Z: 
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N = 12, Zav = 3.87 ± 0.16; 95% confidence interval: 
3.52 - 4.22; Zmin = 3.00,  Zmax = 5.00, SZ = 0.548,  τmin   
=  1.59   <  τmax  = 2.06 < τ0.05

cr,2(N) = 2.387 < 
τ0.05

cr,1(N) = 2.523; Wilk-Shapiro normality test: W = 
0.951 > W0.05

cr(N) = 0.859, David-Hartley-Pearson 
normality test: U10.05

cr(N) = 2.800  < U = [(Zmax – 

Zmin)/SZ] = 3.64 < U20.05
cr(N)

 
 = 3.910;   Nrepr = 10. 

                                                                             (33) 

It follows that the sets of indices Z is homogeneous 
and satisfies a normal distribution. The authors of 
[42] present the additive contributions to the energy 
of the pair interaction of a tetramethyluric acid 
molecule with aromatic hydrocarbon molecules. 
Including the magnitude of the dispersion 
contribution is reported. Our check showed that in 
this case, too, there is a statistically significant 
relationship between the molecular factor Z and the 
dispersion energy value of the pairwise interaction. 
If there are chemical compounds capable of forming 
hydrogen bonds, the energy contribution due to 
hydrogen bonds must be taken into account in the 
regression equations (8) and (15). The hydrogen 
bond is essentially a quasi-chemical short-range 
interaction of molecules. Therefore, the properties 
of a hydrogen bond are difficult to describe using 
the properties of isolated molecules. However, some 
quantitative estimates can be made. Considering that 
the terms of equation (8) are proportional to the 
contributions to the binding energy, it can be 
assumed that the contributions to the bioactivity 
from these interactions are also approximately 
equal. 
The application of model (15) to the calculation of 
the bioactivity of the 2,4-dichlorophenol molecule 
leads to the following value of the resultant feature 
A = 0.58 (εnb

0 = -1.4eV, μ1 = 1.5D), which is 
markedly lower than the experimental value 2.08. 
However, it should be kept in mind that in an 
isolated 2,4-dichlorophenol molecule there is an 
intramolecular hydrogen bond between the hydroxyl 
group proton and the chlorine atom in the ortho-
position. When a molecule enters a polar condensed 
medium, the intramolecular hydrogen bond is 
broken due to the electric field of the reaction. This 
state of the molecule corresponds to a lower total 
energy. In other words, the molecular state is 
stabilized and the hydroxyl group has the 
opportunity to take part in the formation of an 
intermolecular hydrogen bond. In a polar dielectric 
medium, with an increase in the dipole moment of a 
molecule, the equilibrium of molecular forms with 
and without an intramolecular hydrogen bond shifts 
towards a molecular state with a large dipole 
moment. That is, without the formation of an 

intramolecular hydrogen bond. Such a situation has 
indeed been observed experimentally. The 
formation of an intermolecular hydrogen bond is 
accompanied by an additional contribution to the 
interaction energy. This in turn increases the 
bioresponse A by about 1.0 (contribution to the total 
interaction energy ≈ - 0.85εnb

0). Therefore, the total 
calculated value of bioactivity A will be 
approximately equal to 1.58, which is close to the 
experimental value. However, these remarks cannot 
be applied to the 2,4,6-trichlorophenol molecule 
(Table 1). This molecule contains a hydroxyl group. 
However, the molecule is not involved in the 
formation of intermolecular complexes through 
hydrogen bonds. The fact is that the proton of the 
hydroxyl group oscillates between two neighboring 
chlorine atoms, which are characterized by 
significant electronegativity. Oscillations are the 
result of a proton tunneling through a potential 
barrier.  In this way, an intramolecular transition 
from one equilibrium position to another is carried 
out.  Spectroscopic studies of 2,4,6-trichloro-, 
2,4,5,6-tetrachloro- and pentachlorophenols confirm 
the existence of intramolecular proton migration.  
The application of the regression equation (8) to 
predict the bioactivity of molecules is complicated 
by the fact that the researcher is required to know 
many molecular parameters. In particular, 
knowledge of the energies of single-electron 
molecular orbitals, which can be determined by 
complicated and cumbersome quantum mechanical 
calculations, is required. The results of these 
calculations require professional analysis. 

 
Fig.3. Scatterplot and regression line. The 
regression line is approximated by the linear 
equation: А(H)mod = b0 + b1H,   N = 12;  b0 = -5.25 ± 
1.15,  b1 = 4.02 ± 0.07, N0.05

min = 5;  R = 0.89 ± 0.07;   
R* = 0.90  > R0.05

cr(N – 2) = 0.576,  S = 0.604, F = 
37.6 > F0.05

cr(f1 = 1; f2 = 10) =  4.96; straightness 
index: K = 1.59 < Kthr = 3.0. 
 
However, as the analysis showed, some rapid 
assessment of the toxicity of chlorine-substituted 
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benzenes can be done using the information 
function H (Table 1). Figure 3 shows a linear 
relationship between the toxicity of chlorine-
substituted benzenes and the information function of 
molecules. Using the regression equation in Fig.3, 
we obtain the following estimate for the bioactivity 
of 2,4-dichlorophenol (Aexp = 2.08), which was not 
used in the original sample:  Amod = 1.74 (H = 1.738 
bits, Z = 3.692  arb. units.). 
There is also a significant relationship between the 
toxicity of chemical compounds and the explanatory 
factor Z:  

А(Z) = b0 + b1Z,   N = 12,  R = 0.62 ± 0.20, R* = 0.64 
> R0.05

cr(N – 2) = 0.576; sufficient sample size to 
ensure the validity of the correlation coefficient: 
N0.05

min = 10;  b0 = -3.82  ±  2.29, b1 = 1.43 ± 0.59,  
t(b1) = 2.44 >  t0.05

cr(N – 2) = 2.228; standard error of 
the regression estimate: SA = 1.044; criterion of 
significance of the correlation coefficient based on 
the normalizing Fisher z-transform (Hotelling 
corrections is taken into account): uH = 0.697 > 
u0.05(N) = z0.975∙(N – 1)-0.5 = 0.591; straightness 
index: K = 2.7 < Kcr = 3.0.                                   (34) 
 
For 2,4-dichlorophenol, we obtain the following 
toxicity estimate from equation (34): A = 1.46 at Z = 
3.692 arb. units. The higher the Z and H values, the 
higher the toxicity of the chemical compound. The 
existence of such a trend for factor Z is also 
indicated by the Abbe-Linnick criterion [27]:

 

 

q = 0.5∙Σi=1
N-1(Zi+1 – Zi)2/Σi=1

N(Zi – Zav)2 = 
 

0.415  <  q0.05
cr(N) = 0.5636, 

Q* = - (1 – q)∙[(2N + 1)/(2 – (1 – q)2)]0.5 = 

-2.27 <  u0.05 = -1.645.                  (35) 

A similar trend takes place for the molecular 
information factor H: 

q  = 0.231 < q0.05
cr(N) = 0.5636,   

Q*  = -3.24 <  u0.05 = - 1.645.            (36)                     

Regression (15) indicates only an important initial 
stage of the manifestation of its biological action by 
a chemical compound, associated with the fixation 
of the molecule.  
 
3.2 Saturated and unsaturated chlorine-

containing compounds 
In this part of the article, we will again use the 
general equation (8) to interpret the narcotic effect 

of a series of saturated and unsaturated chlorine-
containing compounds. Isotoxic concentrations (C 
in units of mM/l) of vapours of compounds causing 
lateral positioning of 50% of white mice are used as 
the biological response (Table 2). We use the 
following regression equation, which is similar in 
form to regression (8): 

Amod ≡ 100/C = B0 + B1x1 + B2x2 + B3x3, 

N = 15, B0 = -11.88 ± 1.11,  B1 = - 0.96 ± 0.35, B2 = 
0.90 ± 0.13,   B3 = 2.72 ± 0.27, R3 = 0.980 > 
R0.05

cr(m3; N – m3 – 1) = 0.703, R3
2 = 0.960, R3

*2 = 
0.949;  m3 = 3;  standard error of the regression 
estimate: S3 = 0.905; |t(B0)| = 10.71 > t(B3) = 10.24 
> t(B2) = 6.94  > t(B1) = 2.79 >   t0.05

cr(f = N – m3 – 
1) = 2.20;  F = 88.04 > F0.05

cr(f1 = 3; f2 = 11) =  3.59;  
Σ3 = 9.0072; AIC3 = - 0.1100, SC3 = 0.2121, SS3 = 
0.2501.                                                                 (37) 
Bioactivity statistics: 

A: N = 15,  Aav = 5.27 ± 1.04; 95% confidence 
interval: 3.04 - 7.49;   Amin = 0.71,  Amax = 13.33,  SA 
= 4.01,   τmin   =   1.14 <  τmax  = 2.01   <  τ0.05

cr,2(N) = 
2.493 < τ0.05

cr,1(N)= 2.617; Wilk-Shapiro normality 
test: W = 0.881 = W0.05

cr(N) = 0.881, David-Hartley-
Pearson normality test:  U10.05

cr(N) = 2.970 < U = 
[(Amax – Amin)/SA] = 3.15 < U20.05

cr(N)
 
 = 4.170; Nrepr 

= 12.  
                                           
Statistics of explanatory variables: 

x1: N = 15, x1
av = -1.19 ± 0.27; 95% confidence 

interval: -1.77,  -0.61; x1
min = -2.75,  x1

max = 0.45, Sx1 
= 1.04,  τmax  = 1.04  <   τmin  = 1.50   <  τ0.05

cr,2(N) = 
2.493 < τ0.05

cr,1(N) = 2.617; Wilk-Shapiro normality 
test: W = 0.930 > W0.05

cr(N) = 0.881, David-Hartley-
Pearson normality test: U10.05

cr(N) = 2.970 < U = 
[(x1

max – x1
min)/Sx1] = 3.08 < U20.05

cr(N)
 
 = 4.170, Nrepr 

= 12, 

x2: N = 15, x2
av = 3.59 ± 0.61; 95% confidence 

interval: 2.29 - 4.89;  x2
min = 0,  x2

max = 7.95,  Sx2 = 
2.35,  τmin   =   1.53 <  τmax  = 1.86  <  τ0.05

cr,2(N) = 
2.493 < τ0.05

cr,1(N) = 2.617; Wilk-Shapiro normality 
test: W = 0.957 > W0.05

cr(N) = 0.881, David-Hartley-
Pearson normality test: U10.05

cr(N) = 2.970  < U = 
[(x2

max – x2
min)/Sx2] = 3.39 < U20.05

cr(N)
 
 = 4.170; 

Nrepr = 12, 

x3: N = 15, x3
av = 4.71 ± 0.30; 95% confidence 

interval: 4.07 - 5.34;  x3
min = 3.308,  x3

max = 7.353, 
Sx3 = 1.149,  τmin  =   1.22 <  τmax  = 2.31   <  
τ0.05

cr,2(N) = 2.493 < τ0.05
cr,1(N) = 2.617; Wilk-

Shapiro normality test: W = 0.923 > W0.05
cr(N) = 

0.881, David-Hartley-Pearson normality test:  
U10.05

cr(N) = 2.970 < U = [(x3
max – x3

min)/Sx3] = 3.52 
< U20.05

cr(N) = 4.170; Nrepr = 12.                          (38) 
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Thus, the populations x1, x2, x3 and A are 
homogeneous and normally distributed. 
For regression (37), the t-values of all coefficients 
|t(Bi)| > t0.05

cr(N). Consequently, the coefficients 
characterize the significant effect of each of the 
intermolecular interaction contributions on the 
toxicity of chemical compounds. To determine the 
comparative influence of individual contributions of 
intermolecular interactions, we turn to standardized 
regression coefficients. We will use relations (22) 
for this purpose: 

B1
* =  B1Sx1/SA  = -0.251,  B2

*  = B2Sx2/SA  = 0.525,  

B3
*  = B3Sx3/SA  = 0.778.                                      (39) 

Let us determine the contribution of each variable to 
the variability of bioactivity.  The approximate 
value of the multiple coefficient of determination is 
determined by the relation (13): 

Rappr
2 = B1

*∙rx1,A  + B2
*∙rx2,A  +   B3

*∙rx3,A  = 

 0.098 + 0.179 + 0.686 = 0.963.                 (40) 

Here, the pair correlation coefficients are rx1,A = -
0.392, rx2,A  = 0.337 and rx3,A = 0.880. The 
approximate multiple coefficient of determination 
(40) practically coincides with the value of the 
coefficient of determination R3

2 = 0.960 (37). Given 
the values of the standardized regression 
coefficients (39), it can be noted that the 
explanatory variables do not equally affect the 
variability of the bioactivity. In contrast to the series 
of chlorobenzenes (Table 1), for which the 
contribution from the variable x1 = εnb

0 is maximum, 
for a number of chemical compounds from Table 2 
this contribution to regression (37) is minimal. At 
the same time, the maximum contribution to the 
variability of bioactivity is made by pair dispersion 
interactions x3 = α1I1/(I1 + 10). For chlorobenzenes, 
the sequence of influence on the bioactivity of 
intermolecular interactions will be as follows (13): 
x1(53.5%) > x2(32.1%) > x3(7.5%). Whereas for a 
number of compounds from Table 2 the hierarchy of 
influence will be the opposite: x1(9.8%) < x2(17.9%) 
< x3(68.6%). The parentheses indicate the 
percentage contributions of the explanatory 
variables.  Note that the signs of the coefficients of 
Bi

* (37) remain the same as for the regression 
equation (10). Consequently, the direction of 
influence of the explanatory variables on the 
bioactivity of the molecules does not change. Thus, 

the molecular factors taken into account by the 
model explain 96.0% of the variation in the 
bioresponse (R3

2 = 0.960) and only 4.0% remain 
unexplained.  
The hierarchy of values of the regression 
coefficients Bi

* makes it possible to indicate the 
relative importance of the intermolecular 
contributions taken into account in the regression. 
The maximum contribution to the regression 
equation is made by the explanatory variables that 
determine the pair dispersion interaction. The 
influence of acceptor interactions (~ εnb

0) can be 
considered as corrections to the dispersion and 
dipole-dipole contributions. It seems that the 
molecular region of the biophase with which the 
molecule interacts has the highest filled molecular 
orbital energy level, which lies below the εnb

0 level 
on the energy scale. That is, such an arrangement of 
energy levels does not favor the transfer of an 
electron to a free one-electron level εnb

0.  
Testing for collinearity between explanatory 
variables resulted in the following values for the 
pairwise correlation coefficients between 
explanatory variables: r1,2 = 0.541, r1,3 = -0.545 и 
r2,3= 0.064. To quantitatively check the presence of 
collinearity between explanatory variables, we use 
the Farrar-Glauber test (19): 

χ2 = - (N – 1 – (2m + 5)/6)∙ln(det|ri,j|)  =  12.16 > 
 

 χ0.05
2,cr (f = m(m – 1)/2) = 7.82; i = 1,2,3;   j = 1,2,3. 

                                           (41) 

Since χ2 > χ2,cr, it is necessary to reject the null 
hypothesis about the absence of collinearity between 
the explanatory variable at a significance level of α 
= 0.05. To determine which explanatory variable 
generates the greatest interdependence between 
variables, the following relationship is used [8]:  

ti,k = ri,k(N – m)0.5/(1 – ri,k
2)0.5 ,           (42) 

 
which has a t-distribution with f = N – m degrees of 
freedom. Using relation (42), we obtain the 
following sequence of inequalities:  |t1,3| = 2.251 > 
t1,2 = 2.228 >   t0.05

cr(f = N – m3) = 2.179 > |t2,3| = 
0.222. From these inequalities it follows that the 
variable x1 generates the interdependence of 
features. 
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Table 2 
Physico-chemical parameters of chlorine-containing compounds and isotoxic concentrations (C, mM/l) of the 

vapors of these compounds, causing the lateral position of 50% of white mice. 

 
 

№ 
 

 
 

Chemical compound 
 

 

Z, 

arb. 
units 

 

H, 

bits 

d
20

, g
/m

l [
43

] 

n
20

  [
43

] 

ε n
b0 , e

V
 

I 1
*)

, e
V

 

μ
1*)

,  
D

,  

α
1**

) , 1
024

cm
3 

A
 e

xp
., 

10
0/

C
,  

[4
4]

 

A
m

od
,, E

q.
(3

7)
 

1 Ethyl chloride 2.50 1.299 0.8978 1.3676 0.151 10.70 2.0 [14] 6.40 0.71 0.55 
2 Propyl chloride 2.36 1.241 0.8909 1.3879 0.445 10.44 1.8 [14] 8.24 1.23 2.03 
3 Vinyl chloride 3.00 1.460 0.9999 1.4046 -0.522 9.82 1.44[14] 7.83[15] 1.56 1.02 
4 1,1-Dichlorovinyl 4.00 1.586 1.2180 1.4249 -1.216 9.59 1.13 8.07 2.50 1.17 
5 1,2-Dichlorovinyl 4.00 1.586 1.2837 1.4490 -1.214 9.15 1.77 7.78[15] 2.50 2.20 
6 1,1-Dichloroethane 3.25 1.500 1.1757 1.4164 -1.206 10.60 1.80[14] 8.38 3.08 3.90 
7 Chloromethylene 2.80 1.372 1.3255 1.4242 -1.215 10.79 2.40[14] 6.48[15] 3.08 3.59 
8 Trichlorovinyl 3.45 1.539 1.4642 1.4773 -2.276 9.48 1.01 10.06 4.00 4.53 
9 Chloroform 4.86 1.449 1.4832 1.4459 -2.467 11.00 1.51 8.23 5.00 4.25 
10 Tetrachlorovinyl 6.00 0.919 1.6227 1.5053 -2.623 9.66    0 12.03 5.00 6.70 
11 1,2-Dichloroethane 3.25 1.500 1.2531 1.4476 -0.089 10.92 2.43 8.45 5.71 5.49 
12 1,2-Dichloropropane 2.91 1.436 1.1559 1.4394  0.099 10.60 2.82 10.20 9.52 9.42 
13 1,1,2-Trichloroethane 4.00 1.562 1.4714 1.4940 -1.264 10.89 2.72 10.28 10.00 10.5 
14 1,1,2,2-Tetrachloroethane 4.75 1.500 1.5953 1.4940 -1.680 10.89 2.17 12.15 11.76 11.2 
15 Pentachloroethane 5.50 1.299 1.6796 1.5025 -2.753 10.88 1.37 14.11 13.33 12.4 

*) Dipole moments and ionization potentials of the molecules are calculated by the quantum-chemical method MINDO/3. 
**) Polarizabilities of molecules are calculated using the Clausius-Mossotti formula: α = (n20

2 - 1)3M/(n20
2 + 2)/(4πd20NA);  

d20 and n20
2 are the density and refractive index at 200C, respectively.  

  
To eliminate or reduce the collinearity of the 
explanatory variables, perform a linear 
transformation. For example, for the variable x2 : x2

* 
= x1 – x2.  We write multiple regression (37) as 
follows:  

Amod ≡ 100/C = B0 + B1x1 + B2x2
* + B3x3, 

N = 15, B0 = -11.88 ± 1.11,  B1 = -0.064 ± 0.287,  B2 
= - 0.897 ± 0.129,   B3 = 2.716  ± 0.265, R3 = 0.980 
> R0.05

cr(m3 = 3; ν = N – m3 – 1)
 
=  0.703,    R3

2 = 
0.960,  R3

*2 = 0.954;   m3 = 3;  standard error of the 
regression estimate:  SA = 0.905; |t(B0)| = 10.71 > 
t(B3) = 10.24 > t(B2) = 6.94   > t0.05

cr(f = N – m3 – 1)  
> |t(B1)| = 0.224; F = 88.06 > F0.05

cr(f1 = 3;f2 = 11) =  
3.59 =  3.59; Σ3 = 9.007, AIC3 = -0.1100, SC3 = 
0.2121, SS3 = 0.2501; B1

* = -0.0168,   B2
* = -0.4448,      

B3
* =  0.7783.                                                       (43) 

The approximate coefficient of determination Rappr
2 

practically coincides with the coefficient of 
determination R3

2= 0.960 (43): 

Rappr
2 = B1

*∙rx1,A  + B2
*∙rx*2,A  + B3

*∙rx3,A  = 

 0.007 + 0.269 + 0.685 = 0.961.         (44) 

The regression coefficient B1 (43) is statistically  
 

 
insignificant at the 95% confidence level. 
Correlation coefficients were also determined 
between the explanatory variables x1, x2

* and x3: r1,2* 
= 0.112, r1,3 = - 0.545 and r2*,3= - 0.207. Between 
variables x1 and x2

*  there was a significant decrease 
in the correlation coefficient (compare with r1,2 = 
0.541). From the Farrar-Glauber relation (41) we 
now obtain the following inequality: χ2 = 5.06 < 
χ0.05

2,cr(f = 3) = 7.82. Thus, the null hypothesis that 
there is no significant multicollinearity between the 
explanatory variables can be accepted. 
Statistics of the population of the explanatory 
variable x2

*: 

N = 15, x2
*av  = - 4.78 ± 0.51; 95% confidence 

interval: (-5.88, - 3.68); x2
*min  = -8.66, x2

*max  = -
2.49,  Sx*2 = 1.989,  τmax  = 1.151  <  τmin   =   1.951 <  
τ0.05

cr,2(N) = 2.493 < τ0.05
cr,1(N) = 2.617; Wilk-

Shapiro normality test: W = 0.919 > W0.05
cr(N) = 

0.881, David-Hartley-Pearson normality test: 
U10.05

cr(N) = 2.970 < U = [(x2
*max  – x2

*min)/Sx*2] = 
3.10 < U20.05

cr(N) 
 
 = 4.170.                                 (45) 

Therefore, the set of elements x2
* is homogeneous 

and normally distributed. The influence of the 
explanatory factor x1 = εnb

0 on the variability of 
bioactivity is markedly smaller compared to the 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2022.21.13 Vladimir Mukhomorov

E-ISSN: 2224-2678 128 Volume 21, 2022



contributions from variables x2 (or x2
*) and x3. 

Therefore, we will perform the following 
comparative analysis. Write the following reduced 
regression: 

A ≡ 100/C = B0 + B2x2 + B3x3.              (46) 

The regression (46) statistics will be as follows: 

N = 15,  m4 = 2, R4 =  0.965 > R0.05
cr(m4; N – m4 – 1) 

= 0.627, R4
2 = 0.932, R4

*2 =  0.921;  standard error  
of the regression estimate: S4 = 1.131;   B0 = -12.063 
± 1.384, B2 = 0.681 ± 0.129, B3 = 3.164 ± 0.264;    
|t(B3)| =  12.00  > |t(B0)| = 8.72 >  t(B2) =  5.28  > 
t0.05

cr(f = N – m4 – 1) =  2.18,   F = 82.04   >  F0.05
cr(f1 

= 2;f2 = 12)  = 3.88;  Σ4 = 15.354,  AIC4 = 0.2900, 
SC4 = 0.5649, SS4 = 0.3014.                                (47) 
 
There is no collinearity between variables x2 and x3 
(r2,3 = 0.064). The multiple coefficient of sample 
correlation R4 significantly exceeds the tabular value 
of the correlation coefficient R0.05

cr(m4; N – m4 – 1). 
Thus, 93.2% of the total variance is due to the 
variability of the molecular factors x2 and x3. The 
uncertainty factor is 6.8%. However, all three 
comparative information tests AIC4, SC4, SS4 
indicate that the quality of the regression (46) is 
markedly reduced compared to the regression (37). 
The standardized regression coefficients (46) are:   

B2
* = 0.399,                B3

* = 0.907.               (48) 

Adjusted coefficients of determination are R3
*2 = 

0.95 for regression (37) and R4
*2 = 0.921 for reduced 

regression (46), respectively. Using the standardized 
regression coefficients (48) an approximate 
coefficient of determination can be determined: 

Rappr
2 =  B2

*∙ rx2,A  +   B3
*∙ rx3,A  = 

 0.14  +  0.80  =  0.94.                     (49) 

This value of the coefficient of determination is very 
close to the value of R4

2  = 0.932 (47).  
The significance of the contribution of x1 to the 
regression equation (37) can be checked with the 
following statistics: 

F = (|R3
*2 – R4

*2|)(N – m3 – 1)/(m3 – m4)/(1 – R3
*2) =  

6.04 > F0.05
cr(f1 = m3 – m4; f2 = N – m3 – 1) = 4.84.  

                                                                            (50) 

Since F > Fcr the additional explanatory variable εnb
0 

is significant at the 95% confidence level. Let us 
also check whether the decrease in the variance of 
equation (37) is the result of an increase in the 
number of connections compared to regression (46). 
For normally distributed sets, the comparison of the 
two variances of equations (37) and (46) is done 
using a statistic that has an F-distribution:  

F  = S4
2/S3

2  = 1.56 < 
 

F0.05
cr(f1 = N – m4 – 1; f2 = N – m3 – 1) = 2.79.      (51) 

Therefore, at the 95% confidence level, the decrease 
in the variance of the regression equation (37) is not 
due to an increase in the number of explanatory 
variables. Thus, variable x1 must be retained in the 
regression equation. All three AIC, SC and SS 
information tests do not contradict inequality (50). 
Preference is given to the model for which the 
information test has the least value. The test 
comparison is only valid for models built for 
samples containing the same number of 
observations. A comparison of the quality criteria of 
regression equations (10), (16), (37) and (46) is 
presented in Table 3.  
 
 

                                                                                    
Table 3 

Quality criteria for linear regression equations 
i m N Σi AICi SCi SSi Equation 
1 3 12 1.1586 -1.8377 -1,5093 0.1196 (10) 
2 2 12 1.2294 -1.9450 -1.6572 0.1109 (16) 
3 3 15 9.0072 -0.1100 0.2121 0.2501 (37) 
4 2 15 15.354 0.2900 0.5649 0.3014 (46) 

 

As expected, the quality criteria of the regressions 
correlate with each other: RAIC-SC = 0.9997, RAIC-SS = 
0.997 and RSC-SS = 0.995. From the inequalities for 
the t-values of the regression coefficients (38), one 
can indicate the following sequence of 
intermolecular interactions: dispersion interaction 
(short  -  range)  >  dipole  -  dipole,  induction    and  

 

polarization interactions > interaction associated 
with electron transfer. Each of the contributions of 
this sequence has a very specific physical meaning.  
This, in turn, makes it possible to associate 
interactions with certain physical characteristics of 
biophase molecules. Highlighting interactions is 
useful for determining the presumed characteristic 
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molecular properties of the local centers with which 
a bioactive molecule interacts. 
The fact that the main contribution to the regression 
equation comes from the dispersion interaction 
allows us to make some assumptions about the 
molecular properties of the biophase with which the 
bioactive molecule forms a complex. According to 
the definition (6) the interaction of molecules of a 
number of chlorinated chemical compounds (Table 
2) is most likely to take place with the biophase 
region, which is characterized by high values of 
electronic polarizability (α2) and has a high first 
ionization potential (I2). It is also noteworthy that 
for models (15) and (46) the dipole interaction turns 
out to be significant. This result indicates the 
importance of mutual orientations between bioactive 
molecules and biophase molecules. 
Figure 4 shows the correlation between the observed 
bioactivity values of molecules and the calculated 
bioactivities of chemical compounds using equation 
(37). 
A relationship was also found between the 
dispersion contribution Edisp ~ x3 and the molecular 
factor Z of chlorine-substituted hydrocarbons 
presented in Table 2: 

x3(Z) = a0  + a1Z,  N = 15,  R = 0.71 ±  0.14,  R* =  
0.73 >  R0.05

cr(N – 2)  = 0.514; sample size sufficient 
for the reliability of the correlation coefficient 
N0.05

min = 7; correlation coefficient significance test 
based  on  the   Fisher     normalizing      z-transform  
(Hotelling corrections is taken into account):  uH = 
0.87  >  u0.05(N) = z0.975∙(N – 1)-0.5 = 0.523; a0 = 1.91 
± 0.81, a1 =  0.74 ± 0.21, t(a1)  = 3.58 > t(a0) =  2.36   
>  t0.05

cr(N – 2) = 2.16; standard error of the 
regression estimate: 0.846;  F = 12.85 > F0.05

cr(f1 = 
1; f2 = 13) = 4.70; straightness index: K = 2.73 < Kthr 
= 3.00.                                                                  (52)     

 

 
Fig.4. Scatter plot and regression line. The 
regression line is defined by the equation Amod = a0 
+ a1Aexp;  N = 15,  a0 = 0.212 ± 0.355, a1 = 0.960 ± 
0.054;  R = 0.98 ± 0.01, R* = 0.982 > R0.05

cr(N – 2) = 
0.514; S = 0.81; F = 313.6 > F0.05

cr(f1 = 1; f2 = 13) = 
4.7;  K = 0.77 < Kthr = 3.0.  

Statistics of explanatory variable Z: 

Z: N = 15, Zav = 3.78 ± 0.28; 95% confidence 
interval: 3.17 - 4.38; Zmin = 2.36,  Zmax = 6.00, SZ = 
1.10,  τmin   = 1.29  <  τmax  = 2.03   < τ0.05

cr,2(N) = 
2.493 < τ0.05

cr,1(N) = 2.617; Wilk-Shapiro normality 
test: W = 0.934 > W0.05

cr(N) = 0.881, David-Hartley-
Pearson normality test:  U10.05

cr(N) = 2.970  < U = 
[(Zmax – Zmin )/SZ] = 3.31 < U20.05

cr(N)
 
 = 4.170; Nrepr 

= 12.                                                                     (53) 

The sets of elements x3 (39) and Z (53) satisfy the 
homogeneity and normality conditions at the 95% 
confidence level. 

 
Fig.5. Scatter plot and regression line. The 
regression line is defined by equation (54). 

For the chemical compounds from Table 2 there is 
also a significant relationship between the molecular 
factor Z and the energy εnb

0 (Fig. 5): 

εnb
0(Z) = a0  + a1Z, N = 15,  R = -0.85 ± 0.08,  |R*| = 

0.85 > R0.05
cr(N – 2) = 0.514; sample size sufficient 

for the reliability of the correlation coefficient: 
N0.05

min = 5; correlation coefficient significance test 
based on the Fisher normalizing z-transform 
(Hotelling corrections is taken into account):  uH = 
1.179  >  u0.05(N) = z0.975∙(N – 1)-0.5 = 0.523; standard 
error of the regression estimate: 0.575;  a0 = 1.87 ± 
0.55,  a1 =  – 0.81 ± 0.14, |t(a1)|   =   5.79  > t(a0) = 
3.41 > t0.05

cr(N – 2) = 2.16; F = 33.50 > F0.05
cr(f1 = 1; 

f2 = 13) = 4.70; straightness index: K = 2.04 < Kthr = 
3.00.                                                                     (54) 

The statistical significance of the correlation 
coefficient is characterized by the inequality (26):   t 
= 4.35 > t0.05

cr(N – 2)  = 2.16. According to the 
Chaddock scale, the correlation coefficient is in the 
range of 0.7 – 0.9, which is characterized as “close 
relationship”.For the chemical compounds presented 
in Table 2, a relationship was found between 
bioactivity and the molecular factor Z. There is a 
statistically significant trend between the Z value 
and the bioactivity of chemical compounds. Indeed, 
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using the Abbe-Linnick test (35) we obtain the 
following inequality: 

q = 0.473 < q0.05
cr(N = 15) = 0.6027, 

Q* = - 2.24 < u0.05 = - 1.645.            (55) 

Here Zav = 3.78 is the arithmetic mean of the set Zi. 
Since inequalities (55) are satisfied, the null 
hypothesis about the absence of a trend is rejected. 
The alternative hypothesis of a trend is accepted. 
The following significant linear relationship of 
bioactivity with factor Z was also obtained: 

А(Z) = d0 + d1Z, N = 15, R = 0.54 ± 0.20, R* = 0.56 
> R0.05

cr(N – 2)  = 0.514; sample size sufficient for 
the reliability of the correlation coefficient N0.05

min
 = 

13; correlation coefficient significance test based on 
the Fisher normalizing z-transform (Hotelling 
corrections is taken into account):  uH = 0.592  >  
u0.05(N) = z0.975∙(N – 1)-0.5 = 0.523; d0 = -2.23  ±  
3.35, d1 = 1.99 ± 0.95,  t(d1) = 2.33 > t0.05

cr(N – 2) = 
2.160; standard error of the regression estimate: SA 
= 3.50; F = 5.42 > F0.05

cr(f1 = 1; f2 = 13) = 4.70. 
                                                                           (56) 

 
It should be noted that regression (56) does not 
make it possible to distinguish between cis- and 

trans-isomers. The Z factor correlates with the 
electronic polarizability of the molecule α1 (R = 0.72 
> R0.05

cr(N – 2) = 0.514; t = 3.14 > t0.05
cr(N – 2) = 

2.160). There is also a relationship (R = 0.71; t = 
3.07 > t0.05

cr(N – 2)) with the value of α1I1/(I1 + 10). 
There is also a relationship between the Z factor and 
the MO energy εnb

0 (|R| =  0.85 > R0.05
cr(N – 2)  = 

0.514; t = 4.35 > t0.05
cr(N – 2) = 2.160) (Fig. 5). For 

chemical compounds (Table 2) having the general 
formula C2HxCly (sample volume N = 11) there is a 
very close linear relationship between the factor Z 
and the value of the one-electron MO energy εnb

0:  R 
= - 0.95, |R*| = 0.96 > R0.05

cr(N – 2) = 0.602;   t =   
5.18  > t0.05

cr(N – 2)  = 2.262.  Note that the energy 
εnb

0 of the molecule actually characterizes the 
affinity of the molecule for the electron. 
When analyzing the data in Table 2, of the two 
possible structures of the 1,2-dichlorvinyl molecule, 
the cis-isomer structure corresponding to the lower 
total energy state of the molecule in a polar medium 
was chosen (assuming κs = 80 for the static 
dielectric permittivity of the polar medium and n3

2 = 
1.777 for the refractive index).  The quantitative 
determination of the difference in the total energies 
of a molecule in cis- and trans-configurations is 
associated with the calculation of the difference 
between two large quantities, the accuracy of which 
depends significantly on the accuracy of the 
quantum-chemical method used. Nevertheless, some 

approximate quantitative estimates can be made if 
the same method for calculating the electronic 
structure of molecules is used in both cases. It is 
assumed that possible inaccuracies of the quantum-
chemical method can be compensated for. The total 
electronic energies of the trans-isomer and cis-
isomer calculated using the CNDO/2 method are 
Etrans = - 1295.97 eV and Ecis = - 1295.95 eV, 
respectively. However, in a polar dielectric medium, 
the energy of the dipole cis-isomer, compared to the 
nondipole trans-isomer, decreases on the energy 
scale by  

ER = - (κs – 1)(n3
2 + 2)μ1

2/[3a3(2κs + n3
2)] = - 08 eV. 

                (57) 

Here it is accepted: μ1 = 1.77D; a = 2.5 Å is the 
effective size of the molecule. This energy value is 
noticeably higher in absolute value of the thermal 
energy of the translational motion of a molecule at 
room temperature (thermal energy ≈ 0.02 eV). The 
difference in the total electronic energies of the 
molecules is practically compensated. Then, 
according to Boltzmann's statistics, one can estimate 
the number of molecules in cis- and trans-
configurations in a condensed dielectric medium as 
follows: 

Ncis= Ntransexp[(Etrans – Ecis – ER)/kBT] = 13Ntrans .  

                        (58) 

Consequently, at room temperature, there are more 
than ten molecules in the cis-configuration per 
molecule in the trans-configuration. That is, most of 
the molecules in a polar dielectric medium will 
preferably be in the cis-configuration. 
Comparing the regressions (15) and (46), we can 
make some assumptions about the selective nature 
of the biological action at the molecular level of the 
analyzed chlorine-containing chemical compounds. 
In the first case (Table 1), chemical chlorinated 
compounds are most likely to interact with those 
areas in the body characterized by strong donor 
properties. In the second case (Table 2), the active 
sites of the biophase are more prone to the 
formation of molecular associates, which are 
stabilized due to dispersion and dipole interactions. 
This is typical for the active centers of the biophase, 
which have high polarization properties (large 
values of polarizability α2). Since short-range 
interactions are important for equations (15) and 
(46), then for the manifestation of the biological 
activity of chlorine-containing chemical 
compounds, the molecules must approach the active 
centers of the biosubstrate at close distances less 
than 5Ǻ. 
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4 Conclusion 
Thus, the studied variability in the toxicity of 
chlorinated hydrocarbons (Tables 1 and 2) is 
probably due to the accumulation (at least in the 
initial stages of action) of exogenous chemical 
compounds in the body's active centers. The change 
in toxicity can be associated with the electronic 
structure of exogenous molecules, which determines 
their ability to form bound molecular complexes due 
to various types of intermolecular interactions. In 
the case when the donor electron level εdon lies 
higher on the energy scale of the acceptor level εacc, 
a real electron transfer from the impurity molecule 
to the biophase molecule is possible. In this case, in 
the local region of the biophase, through relaxation 
mechanisms, energy is radiationless released, 
approximately equal to the difference εdon - εacc. This 
energy can be used to destroy the equilibrium 
structure of the biophase. 
Multiple regression (8), (15), (37) reflect the 
existence of objective relationships between the 
bioresponse and a variety of molecular factors that 
characterize the interaction of molecules in a 
condensed medium. The general structure of the 
response function (8) with a clear physical meaning 
of the explanatory variables is able to cover various 
aspects of the manifestation of the toxicity 
properties of the analyzed chlorine-containing 
chemical compounds of two different classes. 
Additive molecular features x1, x2 and x3 are 
intensive indicators that determine the cause-and-
effect relationships of bioactivity - the molecular 
structure of chemical compounds. At the same time, 
the models statistically significantly reflect the 
relationship between individual molecular factors 
and the biological response of the body. It is 
important to note that the relatively simple 
mathematical formulas derived from rigorous 
theoretical concepts made it possible to obtain a 
statistically significant relationship between 
bioresponse and the molecular parameters of 
chemical compounds. Such a relationship is difficult 
to establish by the usual direct deduction from the 
general to the particular. 
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