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Abstract: - Considering the influence of random noise on SIR, SEIR and SEIAR infectious disease models, we
establish SIR, SEIR and SEIAR models with random disturbance, and deduce the calculation formula of the
basic regeneration number of the random infectious disease model in the sense of mean value by using /6
formula. The effectiveness of the basic regeneration number calculation method is verified by numerical

simulation of the system evolution process.
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1 Introduction
Infectious diseases are one of the threats to human
health and have a non-negligible impact on our
lives. Historically, infectious diseases such as
dengue[l], Severe Acute Respiratory Syndrome
(SARS)[2], pneumonia[3] threaten human life
safety. Therefore, it is of great significance for the
study of infectious diseases. By exploring the
transmission rules of infectious diseases and
predicting their development trend, it can provide a
theoretical basis for disease control. In recent years,
many mathematical scholars have studied the
dynamics behavior of epidemic models for
infections by establishing mathematical models.
Kermack and McKendrick established the SIR
epidemic model for infections by dynamics methods
in 1927 [4]; literature [5] established the SEI model
to study the impact of media reports on the
transmission and control of infectious diseases in
specific regions. The SIR model with stochastic
perturbations is discussed [6]. The global dynamics
of an SIRS epidemic model for infections with non
permanent acquired immunity was investigated [7].
Literature  [8] will describe  Tuberculosis
transmission using the  Susceptible-Exposed-
Infected-Recovered (SEIR) model. The SEIR model
for transmission of Tuberculosis was analyzed and
performed simulations using data on the number of
TB cases in South Sulawesi.

In the epidemic model, the basic regeneration
number R, is one of the important parameters to

determine the prevalence of infectious diseases. The
calculation of the basic regeneration number is
instructive for the prevention and control of
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infectious diseases. Literature [9] introduces the
calculation method of the basic regeneration number
in the deterministic model. This paper mainly
introduces the basic regeneration number of several
stochastic epidemic models. When R, <1, the

disease disappears and R, > 1 spreads.

2 The Basic Reproduction Number of
the Stochastic Model

2.1 The SIR model

The SIR model with vaccination:
S'(0)=(1= p)b— 45— ST + 1R
I'(t)=BSI—(u+c+a)l
R@)=pb—(u+y)R+ad

(1)

In the SIR model, the population is divided into
three compartments: susceptible (S), infectious (I)
and recovered with immunity (R), where g

represents the rate of infection, b is considered as
the proportion of new individuals entering the
population, vaccination proportion coefficient is p,

4 1s considered as the emigration rate, the immune
loss rate is y, ¢ is considered as the emigration rate
due to illness, the recovery rate is « . N is the total
population size such that N = S(t) + I(t) + R(t) for
all . Assuming the propagation coefficient g is

assumed to be disturbed by stochastic noise. We
define

B — B+ oB(),
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where B(t) is the standard Brownian motion and o
is the fluctuation intensity of the white noise. We
can build the following stochastic SIR model:
dS =[(1- p)b — uS — BSI + yR)dt — oSIdB(¢)
dl = [BSI — (u + ¢ + )I1dt + oSIdB({)
dR = [pb — (u + )R + ad]dt
The state space of the model (2) is

X =R’ ={S,I,R):S>0,1 >0,R>0}.

Define the C? function
Vi V(S@), 1(1) = In(S(1), 1),
and using the It6 formula can be given as:
dInS =(S7 (1= p)b— 1S — BSI + yR)+0.5621%)dt — oldB(¢) (3)
dinl =(I7"(BSI —(u+c+a)l)—0.56*S?)dt + oSdB(r) (4)

The Eq.(3) and the Eq.(4) are transformed to
Stratonovich stochastic differential equation and
take the mean. Thus, the study of model (2) can be
turned into a study of the following systems:

ds =[(1- p)b — uS — BSI + 3R + 0.50>SI*\dt

dl =[BSI — (i + ¢ + a)l —0.50%81dt

dR =[pb— (1 + y)R + al]dt

(5)

The disease-free equilibrium point of the model (1)
and the model (5) can be calculated:

EOSIR — (Sl, I],Rl) — (b((l - p)ﬂ+}/) ’0’ pb )'
wp+y) u+y

The basic reproduction number of the model (1)
can be calculated:

Aol —pu+y) '
pu+yNu+c+a)

SIR _
o =

We note x = (I,S,R)" ,the system (5) may be
represented as x' = F(x) — 77(x) ,where

BSI
F(x) = [ 0 J;
0

(1 +c+a) +050°S%]
72(x) = | = (1 = p)b + uS + BSI — )R — 0.55>SI*
-pb+(u+y)R—a

The Jacobian matrix of (x), 77(x) in E;5 % note

F,V,, we have:
BS, 0 0
F=|0 00}
0 00

pu+c+a+050°S: 0 0
BS, uo =y
-a 0 u+y

The next generation matrix can be calculated:

V1=
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o’ (A-pu+y)’
207 (u+ 7)) (u+ ¢+ a)
0 0

RSIR _

Rt =

thus, the basic reproduction number of the stochastic
SIR model (2) is:

b’ (1- pu+y)’

RSIR _ p(FV—l) — RSIR _ .
s i 2P () (ute+a)

2.2 The SEIR Model

The model discussed in the previous section ignores
the disease latency. Given the latency of many
infectious diseases, many scholars introduce a latent
compartment E to indicate the latent status. After
susceptible individuals are infected, they enter the
latent status and into the infection compartment pass
the 1/¢ day incubation period. The transmission

process of these infectious
expressed in the following model:

S'(1) = (1= p)b — uS — BSI + )R
E'(t) = pSI —(u+qE
I't)=gE —(u+c+a)l
R(t) = pb—(u+y)R+al
Similar to the reasoning in 2.1, we present the
following system of stochastic differential equations
for SEIR models with stochastic perturbations:
dS =[(1 = p)b— uS — BSI + yRldt — oSIdB(1)
dE = [BSI — (u + q)Edt + oSIdB(1)
dl = [qE—(/J +c+a)l]dt
dR = [pb — (1 + )R + ad Jdt
Define the C* function
V :V(S@®), E@®) = In(S@®), E@?)),
and using the /76 formula can be expressed as:
dInS =[S (1- p)b—uS - BSI +R) +0.50>11dt — oldB(t) (8)
dInE =[E"(BSI —(u+q))—0.5E25>S*1*1dt + E"'oS1dB(t) (9)
The Eq.(8) and the Eq.(9) are transformed to
Stratonovich stochastic differential equation and

take the mean.Therefore we only need to discuss
systems such as:

dS =[(1- p)b — uS — BSI + yR + 0.5c>SI*dt
dE = [fSI — (1 + q)E — 0.5E"'c*S*1*1dt

diseases can be

6)

(7)

10
dl =[qE — (u+c+ a)l]dt 10
dR =[pb—-(u+y)R+ od]dt
Suppose
fim g = &
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where ¢, is constant, so the disease-free equilibrium
point of the model (6) and the model (10) can be
calculated:
Eg‘EIR = (Sy,Ep. L, Ry) = (b((1 —PH+Y) 0,0, pb )
u(u+y) u+y
The basic reproduction number of the model (6)

is

RSER _ Bbg( = p)u+7) '
u(u+ gXu+yNp+c+a)
We note x = (E,1,S,R)" ,the system (10) may
be represented as:
X' =Hx) -7,

where
BSI
5@ =] 0 |;
0
(1 + q)E + 0.5E %8>
75 (x) = (H+c+a)l —qgE

— (= p)b+ uS + BSI — )R — 0.50SI* |
-pb+(u+y)R—-al

The Jacobian matrix of %(x), 73(x) in E;°R

note F,,V,, we have:

0 fS, 00
10 0 0 0f.
B = 0 0 0 0p
0 0 00
g+ u—-05c¢Sic?  ¢fSic? 0 0
-q H+c+a 0 0
v, =
0 L
0 -a 0 u+y

The basic reproduction number of the stochastic
SEIR model (7) is the spectral radius of the next

generation matrix F,V, "', then

RgE[R _ p(FzV{l) _ Pbq((1 - p)u+y) ’

where

1. - Paau+ (- pu+y)’e’
? u(p+y)

b

M, = p(u+c+py)pu+yu+q),

_ b u+c+a)i-pu+p)’o’

N2
2u(p+y)

2.3 The SEIAR Model
Some scholars believe that asymptomatic infected
individuals can also spread the virus. Therefore, if
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we add a compartment A of asymptomatic infected
individuals, the model take the form:

S'(ty = (= p)b— uS — BSI — B,SA+ R
E'(t) = pSI + ,SA - (u+ q)E

I'(t) = dgE — (1 + ¢ + o)l 19
A1) =1 -d)gE — (u+ a4
R@t)=pb—(u+y)R+al +a,4

New infections in compartment E arise by

contacts between susceptible and infected
individuals in compartments S and A at a rate 3,54

. Individuals progress from compartment E to I at a
rate d . Asymptomatic individuals are recovered at a
rate «,. Assuming the propagation coefficient A

and B, are assumed to be disturbed by stochastic
noise. We define:
B = B+oBi0) By — Ba+ B0

The following stochastic SEIAR model can be

established:
dS = [(1 - p)b — S — BSI — ,SA + yR)dt — 0, SIdB, (1) — o,SAdB, (¢)
dE = [BSI + B4SA — (u + Q)EJt + 0,SIdB, (t) + 0,SAdB, (1)
dl = [dgE - (u + ¢ + o)1t
dA = [(1 - d)gE - (u + a ;) At
dR = [pb - (u+ y)R + ol + a ,Aldt

(13Define the C? function

V :V(S@®), E@®) = In(S@®), E@?)),

and using the /¢6 formula can be expressed as:
dInS =[S ((1- p)b— S — ST — 3 ;SA+R)
+0.58 (078 I? + 038 A*)|dt — 0,1dB, (1) — 5, AdB, (1)
dInE=[E™ (ST +BSA—(u+q)E)=0.5E (o7 S?I* + 035> A)dt (15)
—E7'0\SIdB, (1) — E " 0,SAdB, (t)

The Eq.(14) and Eq.(15) are transformed to
Stratonovich stochastic differential equation and
take the mean,we can study the following systems:

dS =[(1- p)b— 1S — BSI - B ,SA+ )R +0.5(c7SI* + c3SA%)\dt
dE =[S + 3 ,SA—(u+q)E—-05E" (62S*1* + 535% A%)|dt

(14)

dl =[dgE —(u+c+a)l]ldt (16>
dA=[(1-d)gE —(u+a ) Aldt
dR=[pb—(u+y)R+al +o Aldt
Suppose
. A
lim = =c¢, {17

where ¢, is constant.

According to Eq.(11) and Eq.(17), the system
(12) and (16) has a unique disease-free equilibrium
point, with
ESFR _ (8, By, Iy, Ay, Ry) = (CUZPMED) 40 _PE

u(u+y) u+y
The basic reproduction number of the model (12) is
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by = pu+ N Bapteta) +d(ut+a)pf-(utcta)f,))
M+ gXp+c+a)u+a)u+y)

We note x = (E,1,4,S,R)" thus, the system
(16) may be represented as:

X' =H(x) - 75,

SEIAR
RO =

where

BSI + .54

SOoOOoO

(u+ q)E +05E7 (6281 + 6257 4%)

(u+c+a)l —dqE

(u+a)d-(1-d)qE

— (1= p)b+ S + BSI + B,SA — R — 0.5(c3SI + 0284%)
-pb+(u+y)R-—al —a,A4

The Jacobian matrix of #%(x), 73(x) in Ej“R

note F;,V;, we have:

0 BS; B,S; 0 0
0 O 0 0 0
F=10 o0 0 0 0]
0 0 0 0 0
0 0 0 00
g+ u—-0582(ctol +cio?)  ¢Siof  cSici 0 0
—dq H+c+a 0 0 0
vy = - (-d)yg 0 a,+u 0 0
0 BS; BaSy u -y
0 -a -a, 0 u+y
The basic reproduction number of the stochastic
SEIAR model (13) is:

RJFAR = p(Fpih

_ 2bgu(u+ (A = ppe+ )P —d)p + ¢ + a) + df(u + a )
Ly + M — N,

where
Ly = bcj(u+ a, (1 - p)u+ ) oi(2dg — (i +c + @),

My = bey(u+c+a)(l- pu+y)o3(2q( —d) —cy(u + ay))

b

Ny = 24° (u + a )+ c+a)u+y)(1+q) .

3 Numerical Simulation
Taking the model (2) as an example, we analyzed
the effect of the vaccination rate p and the noise

intensity o on Ry . We take b = 2, u = 0.04,

B =0.025 ¢ =001 y =0.001 a =0.9. Fig.1 shows

the change of the basic regeneration number Ry™®

with vaccination rate p at o =0.02, and Fig.2

SIR

shows the change of Rg™ with noise intensity o at
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p=051It indicates  that R$™ decreases
monotonically with increasing p and o, which is
also in line with the actual situation. In Fig. 1c we

show the results of R{™ as a function of p and o .
the R3®

As from Fig.3,

monotonically with the increase of noise intensity
o for different values of vaccination rate p, which

seen decrease

shows that the increase of noise intensity o can
effectively control the spread of the disease.

-

Ry

0a

06

p
a2 o4 0s oo 1o

Fig. 1: The change of R{® with vaccination rate p
at o =0.02.

o

oor 0oz o0 o

Fig. 2: The change of R3™ with noise intensity o at
p=05.

Fig. 3: Three-dimensional plot of R§* as a function

of pand .

To verify the effect of the basic regeneration
number on the infectious diseases, now we will
perform some numerical simulations. The numerical
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simulations are given by the Milstein's scheme. For
the model (13), take p =0.7, b = 3, i = 0.04,

B =0.025, B, =0.015, ¢ = 0.01, y = 0.001, & = 0.9,
a, =095 4g=021,d =07, ¢ =c, =0.0],

o, = 0, = 0.02.By calculating R§®“R = 0.4579 <1,
We can see that the disease gradually goes extinct
(Fig. 4a). When we take p = 0.1, therefore, the
basic reproduction number of the random system
(13) RSFAR = 12861 > 1, the number of infections

continues to grow and will eventually lead to an
outbreak (Fig. 4b). Fig.4(a, b) shows the mean value
of the numerical simulation results when the
vaccination rate are equal to 0.7 and 0.1 for 100
runs, respectively.

o7fl .
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Q3

02

ar

00k . \-\_-——T-T--r“»—ﬂ
0 20 40 60 80 100

(a): R{®R =0.4579 <1 when p =0.7.

14

—X0

: 'V\ f\f\J 2
P

02

ooks i " " i 3
0 20 40 80 80 100
(b): R§F“R —=12861>1 when p =0.1.

Fig. 4: Evolution of infected individuals after 100
number of simulations and taking the mean value,
with p=07b=3 u=004, B = 0.025,
B, = 0.015, ¢ =001, y =0.001, @ = 0.9. &, = 0.95,

q = 021, d= 07, CL =C = 001, O-l = 0-2 = 0.02.

4 Conclusion

We study the SIR, SEIR, and SEIAR infectious
disease models disturbed by random noise, and give
the calculation of the basic regeneration number of
the three stochastic models, whenRg < 1the
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maximum proportion of people who can infect a
patient in the average disease period is less than 1,
the disease will not spread. Ifjthe disease will
spread. Numerical simulation results show that:

(1) By increasing the vaccination rate p, the basic

regeneration number will be reduced. This means
that increasing the vaccination rate can effectively
inhibit the spread of the disease;

(2) Increased noise intensity o can also reduce the
number of infected people.
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