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1 Introduction 
Infectious diseases are one of the threats to human 
health and have a non-negligible impact on our 
lives. Historically, infectious diseases such as 
dengue[1], Severe Acute Respiratory Syndrome 
(SARS)[2], pneumonia[3] threaten human life 
safety. Therefore, it is of great significance for the 
study of infectious diseases. By exploring the 
transmission rules of infectious diseases and 
predicting their development trend, it can provide a 
theoretical basis for disease control. In recent years, 
many mathematical scholars have studied the 
dynamics behavior of epidemic models for 
infections by establishing mathematical models. 
Kermack and McKendrick established the SIR 
epidemic model for infections by dynamics methods 
in 1927 [4]; literature [5] established the SEI model 
to study the impact of media reports on the 
transmission and control of infectious diseases in 
specific regions. The SIR model with stochastic 
perturbations is discussed [6]. The global dynamics 
of an SIRS epidemic model for infections with non 
permanent acquired immunity was investigated [7]. 
Literature [8] will describe Tuberculosis 
transmission using the Susceptible-Exposed-
Infected-Recovered (SEIR) model. The SEIR model 
for transmission of Tuberculosis was analyzed and 
performed simulations using data on the number of 
TB cases in South Sulawesi. 

In the epidemic model, the basic regeneration 
number 0R  is one of the important parameters to 
determine the prevalence of infectious diseases. The 
calculation of the basic regeneration number is 
instructive for the prevention and control of 

infectious diseases. Literature [9] introduces the 
calculation method of the basic regeneration number 
in the deterministic model. This paper mainly 
introduces the basic regeneration number of several 
stochastic epidemic models. When 10 R , the 
disease disappears and 10 R  spreads. 
 

 

2 The Basic Reproduction Number of 

the Stochastic Model 
 
2.1 The SIR model 
The SIR model with vaccination: 
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In the SIR model, the population is divided into 
three compartments: susceptible (S), infectious (I) 
and recovered with immunity (R), where   
represents the rate of infection, b  is considered as 
the proportion of new individuals entering the 
population, vaccination proportion coefficient is p , 
  is considered as the emigration rate, the immune 
loss rate is  , c  is considered as the emigration rate 
due to illness, the recovery rate is  . N  is the total 
population size such that )()()( tRtItSN   for 
all t . Assuming the propagation coefficient   is 
assumed to be disturbed by stochastic noise. We 
define 

),(tB   
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where )(tB is the standard Brownian motion and   
is the fluctuation intensity of the white noise. We 
can build the following stochastic SIR model: 














dtIRpbdR

tSIdBdtIcSIdI

tSIdBdtRSISbpdS

])([

)(])([

)(])[(




1

    ⑵                   
The state space of the model (2) is 

  0,0,0:,,3   RISRISRX . 

Define the 2C  function  
))(),(ln())(),((: tItStItSVV  , 

and using the Itô formula can be given as: 
)().))(((ln tIdBdtIRSISbpSSd    221 501  ⑶ 
)()..))(((ln tSdBdtSIcSIIId    221 50  ⑷ 

The Eq.(3) and the Eq.(4) are transformed to 
Stratonovich stochastic differential equation and 
take the mean. Thus, the study of model (2) can be 
turned into a study of the following systems: 
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The disease-free equilibrium point of the model (1) 
and the model (5) can be calculated: 
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The basic reproduction number of the model (1) 
can be calculated: 
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We note TRSIx ),,( ,the system (5) may be 
represented as )()( xxx 11 VF  ,where 
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The Jacobian matrix of )(),( xx 11 VF in SIRE0 note 
11 VF , , we have: 
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The next generation matrix can be calculated: 
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thus, the basic reproduction number of the stochastic 
SIR model (2) is: 
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2.2 The SEIR Model 
The model discussed in the previous section ignores 
the disease latency. Given the latency of many 
infectious diseases, many scholars introduce a latent 
compartment E to indicate the latent status. After 
susceptible individuals are infected, they enter the 
latent status and into the infection compartment pass 
the q/1  day incubation period. The transmission 
process of these infectious diseases can be 
expressed in the following model: 
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Similar to the reasoning in 2.1, we present the 
following system of stochastic differential equations 
for SEIR models with stochastic perturbations: 
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Define the 2C  function 
))(),(ln())(),((: tEtStEtSVV  , 

and using the Itô formula can be expressed as: 
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The Eq.(8) and the Eq.(9) are transformed to 
Stratonovich stochastic differential equation and 
take the mean.Therefore we only need to discuss 
systems such as: 
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where 1c  is constant, so the disease-free equilibrium 
point of the model (6) and the model (10) can be 
calculated: 

).,,,
)(

))((
(),,,(










pbpb
RIESESEIR 001

22220  

The basic reproduction number of the model (6) 
is 
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We note TRSIEx ),,,( ,the system (10) may 
be represented as: 
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The Jacobian matrix of )(),( xx 22 VF  in SEIRE0  
note 22 VF , , we have: 
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The basic reproduction number of the stochastic 
SEIR model (7) is the spectral radius of the next 
generation matrix 1
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2.3 The SEIAR Model 
Some scholars believe that asymptomatic infected 
individuals can also spread the virus. Therefore, if 

we add a compartment A of asymptomatic infected 
individuals, the model take the form: 
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New infections in compartment E arise by 
contacts between susceptible and infected 
individuals in compartments S and A at a rate SAA

. Individuals progress from compartment E to I at a 
rate d . Asymptomatic individuals are recovered at a 
rate .A Assuming the propagation coefficient   
and A  are assumed to be disturbed by stochastic 
noise. We define: 
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The following stochastic SEIAR model can be 
established: 

 
 
 
 
 
























dtAIRpbdR

dtAqEddA

dtIcdqEdI

tSAdBtSIdBdtEqSASIdE

tSAdBtSIdBdtRSASISbpdS

A

A

A

A











)(

)()(

)(

)()()(

)()()(

1

1

2211

2211

⒀Define the 2C  function 
))(),(ln())(),((: tEtStEtSVV  , 

and using the Itô formula can be expressed as: 

)()()](.

))(([ln

tAdBtIdBdtASISS

RSASISbpSSd A

2211
222

2
222

1
2

1

50

1













 

⒁
 

)()(

)](.))(([ln

tSAdBEtSIdBE

dtASISEEqSASIEEd A

22
1

11
1

222
2

222
1

21 50













 
⒂ 

The Eq.(14) and Eq.(15) are transformed to 
Stratonovich stochastic differential equation and 
take the mean,we can study the following systems: 
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where 2c  is constant. 
According to Eq.(11) and Eq.(17), the system 

(12) and (16) has a unique disease-free equilibrium 
point, with 
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The basic reproduction number of the model (12) is 
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We note TRSAIEx ),,,,(  thus, the system 

(16) may be represented as: 
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The Jacobian matrix of )(),( xx 33 VF  in SEIARE0  
note 33 VF , , we have: 
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The basic reproduction number of the stochastic 
SEIAR model (13) is: 
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2
3 121

, 

)())()(( qcN A   22
3 2 . 

 

 

3 Numerical Simulation 
Taking the model (2) as an example, we analyzed 
the effect of the vaccination rate p  and the noise 
intensity   on SIR

SR . We take ,2b ,.040  
,.0250 ,.010c ,.0010 90. . Fig.1 shows 

the change of the basic regeneration number SIR
SR

with vaccination rate p  at 020. , and Fig.2 
shows the change of SIR

SR  with noise intensity  at 

..50p It indicates that SIR
SR decreases 

monotonically with increasing p  and  , which is 
also in line with the actual situation. In Fig. 1c we 
show the results of SIR

SR  as a function of p  and  . 
As seen from Fig.3, the SIR

SR  decrease 
monotonically with the increase of noise intensity 
  for different values of vaccination rate p , which 
shows that the increase of noise intensity   can 
effectively control the spread of the disease. 
 

 
Fig. 1: The change of SIR

SR  with vaccination rate p  
at 020. . 
 

  
Fig. 2: The change of SIR

SR  with noise intensity   at 
50.p . 

 

 
Fig. 3: Three-dimensional plot of SIR

SR  as a function 
of p  and  . 

 
To verify the effect of the basic regeneration 

number on the infectious diseases, now we will 
perform some numerical simulations. The numerical 
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simulations are given by the Milstein's scheme. For 
the model (13), take  ,.70p ,3b ,.040  

,.0250 ,.0150A ,.010c ,.0010 ,.90  
,.950A ,.210q ,.70d ,.01021  cc  

..02021   By calculating 145790  .SEIAR
SR , 

We can see that the disease gradually goes extinct 
(Fig. 4a). When we take 10.p , therefore, the 
basic reproduction number of the random system 
(13) 128611  .SEIAR

SR , the number of infections 
continues to grow and will eventually lead to an 
outbreak (Fig. 4b). Fig.4(a, b) shows the mean value 
of the numerical simulation results when the 
vaccination rate are equal to 0.7 and 0.1 for 100 
runs, respectively. 
 

 
(a): 145790  .SEIAR

SR  when 70.p . 

 
(b):  128611  .SEIAR

SR  when 10.p . 
Fig. 4: Evolution of infected individuals after 100 
number of simulations and taking the mean value, 
with ,.70p ,3b ,.040  ,.0250

,.0150A ,.010c ,.0010 ..90 ,.950A

,.210q ,.70d ,.01021  cc ..02021    
 
 

4 Conclusion 
We study the SIR, SEIR, and SEIAR infectious 
disease models disturbed by random noise, and give 
the calculation of the basic regeneration number of 
the three stochastic models, when 1SR the 

maximum proportion of people who can infect a 
patient in the average disease period is less than 1, 
the disease will not spread. If,the disease will 
spread. Numerical simulation results show that: 
(1) By increasing the vaccination rate p , the basic 
regeneration number will be reduced. This means 
that increasing the vaccination rate can effectively 
inhibit the spread of the disease; 
(2) Increased noise intensity  can also reduce the 
number of infected people. 
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