
Spectral methods were mostly developed in the
1970s. They have played an important role in re-

cent studies of numerical solutions of differential equa-
tions in regular domains. They are considered to be
efficient due to their high accuracy [1]. According to
Vilhena et al. [2], spectral methods encompass repre-
senting the solution to the problem as truncated series
of known functions of independent variables. Spectral
methods that make use of collocation methods are usu-
ally called pseudo-spectral methods [3], and these meth-
ods have been widely used [4]. The collocation points
are normally the zeros of the polynomial chosen for ap-
proximation [5]. In the case of Chebyshev collocation
method, the collocation points chosen are the Gauss-
Lobatto points [6], [7], [8], [9]. The Chebyshev Gauss-
Lobatto nodes have also been used in Rashad [10]. More
recently, Legendre and Chebyshev spectral approxima-
tions have been used in PDEs in bounded domains [1].

Some progress have been made in solving problems in
unbounded domains. In particular, Tatari and Haghighi
[1] investigated Laguerre and Hermite polynomials and
used appropriate choices for semi-infinite and infinite do-
mains. Specifically, an accurate Christov-Galerkin spec-
tral technique for the solutions of interacting localized
wave solutions of fourth and sixth order generalized wave
equations was achieved by application of spectral meth-
ods on an infinite domain [11]. The use of spectral meth-
ods has been motivated by their accuracy and robustness
in solving incompressible Navier-Stokes equations [12].
Some approximations like the Galerkin approximations
or collocation schemes have been described by [13]. The

main advantage of the method is that there is no need for
numerical integration [14]. Thus, spectral methods pro-
vide more accurate solution approximations with a small
number of unknowns, and so play important roles in op-
timizing engineering designs and other scientific compu-
tations [15].

Spectral methods are applied in numerical solutions
for neutron transport [16], Darcy and coupled Stokes
equations [17], modelling of bridges [18]. Pozrikidis
[19] applied spectral collocation method with triangular
boundary elements for solving integral equations arising
from boundary integral formulations over surfaces dis-
cretized into flat or curved triangular elements. Dlamini
et al. [20] compared the pseudo-spectral method and
the compact finite difference (CFD) method for solv-
ing boundary layer problems and found that the spectral
method were better than the CFD in terms of computa-
tional speed.

Other applications of spectral methods are in
the spectral local linearization method (SLLM), spec-
tral relaxation method (SRM), the spectral quasi-
linearization method (SQLM), the spectral perturbation
method (SPM), the bivariate quasi-linearization method
(BQLM/BSQLM). Most of these methods are based on
linearization methods. The spectral relaxation method
(SRM) requires converting the equations into a system
of first order differential equations [21] or arranging the
equations in a particular order, placing the equations
with least number of unknowns at the top of the equa-
tion list [22]. The resulting system is then decoupled
using ideas from the Gauss-Seidel method, which is nor-
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mally used to solve linear algebraic systems of equations
[9]. The decoupled system is numerically integrated us-
ing the Chebyshev pseudo spectral method [6]. Unlike
other iterative schemes for solving nonlinear differential
equations, the SRM does not require any evaluation of
derivatives and perturbation [9]. Developments of the
SRM are noted in [20] where a multistage spectral re-
laxation method is used for solving problems of chaos
control and synchronization. Thus, the SRM is an effi-
cient, reliable, convergent, numerically stable and very
easy method to implement that has a great potential as
very useful tool for solving boundary layer flow problems
arising from fluid dynamics applications [9]. In this study
we implement the spectral relaxation method (SRM).
From the literature mentioned above, it is clear that this
method is highly accurate as well as easy to implement.

In this section we give a detailed description of the
spectral relaxation method as described in Motsa et
al. [32]. We consider a system of n nonlinear ordi-
nary differential equations in n unknown functions fi(η),
i = 1, 2, . . . n where η ∈ [a, b] is the dependent variable.
We define a vector F i to be a vector of derivatives of the
variable fi with respect to η

F i(η) =
[
f

(0)
i , f

(1)
i , . . . , f

(mi)
i

]
. (1)

Where f
(0)
i = fi, f

(p)
i , is the pth derivative of fi

with respect to η and mi(i = 1, 2, 3 . . . , n) is the highest
derivative order of the variable fi which is in the system
of equations. The system can be written in terms of F i

as the sum of linear (Li) and nonlinear components (Ni)
as

Li [F1, F2, . . . , Fn] +Ni [F1, F2, . . . , Fn]

= Gi(η), i = 1, . . . n. (2)

Where G(η) is a known function of η.

Eq. (2) is solved subject to two point boundary con-
ditions which are expressed as

n∑
j=1

mj−1∑
p=0

α
(p)
ν,jf

(p)
j (a) = Ka,ν , ν = 1, 2, . . . , na, (3)

n∑
j=1

mj−1∑
p=0

γ
(p)
ν,j f

(p)
j (b) = Kb,σ, σ = 1, 2, . . . , nb, (4)

where α
(p)
ν,j , γ

(p)
σ,j are the constant coefficients of f

(p)
j

in the boundary conditions, and na and nb are the to-
tal number of prescribed boundary conditions at η = a
and η = b respectively. Starting from the initial ap-
proximation F 1,0,F 2,0, . . . ,F n,0, the iterative method
is obtained as

L1 [F1,r+1, F2,r, . . . , Fn,r] = G1

+N1 [F1,r, F2,r, . . . , Fn,r] ,

L2 [F1,r+1, F2,r+1, . . . , Fn,r] = G2

+N2 [F1,r+1, F2,r, . . . , Fn,r] ,

...
...

...
...

...
...

...
...

...
...

Ln−1 [F1,r+1, F2,r+1, . . . , Fn−1,r+1, Fn,r] = Gn−1

+Nn−1 [F1,r+1, . . . , Fn−2,r+1, Fn−1,r, Fn,r] ,

Ln [F1,r+1, F2,r+1, . . . , Fn−1,r+1, Fn,r+1] = Gn

+Nn [F1,r, F2,r, . . . , Fn,r] . (5)

Where F i,r+1 and F i,r are the approximation of F i

at the current and the previous iterations respectively.
We state that Eqs. (5) form a system of n linear de-
coupled equations which can be solved iteratively for
r = 1, 2 . . . . We start from a an appropriate initial ap-
proximation Fi,0 which satisfy boundary conditions. The
iterations are repeated until convergence is reached. The
decoupling error can be used to assess the desired conver-
gence. The decoupling error Er at the (r+1)th iteration
is defined by

The idea incorporated in this method is the Gauss-
Seidel relaxation method which is normally used for solv-
ing large systems of algebraic equations. To implement
the spectral collocation method, we define the differen-
tiation matrix

dfi(ηl)

dη
=

N∑
k=0

Dl,kfi(τk) = D Fi, l = 0, . . . , N.(6)

Where N + 1 is the number collocation points, D =
2D/(b− a) and

F = [f(τ0), f(τ1), . . . , f(τN )]
T

is the vector function of
the collocation points and higher order derivatives are
obtained in powers of D given by

f
(p)
j = DpFj . (7)

We then apply the Chebyshevpseudo spectral method to
the iteration scheme shown in Eqs. (5)-(5). This then
gives

n∑
j=1

mj∑
p=0

β
[p]
i,jf

(p)
j +Ni [F 1,F 2, . . . ,F n] = Gi, (8)

where β
(p)
i,j are constants coefficients of f

(p)
j , the

derivative of fj(j = 1, 2, . . . , n) that is in the ith equa-
tion for i = 1, 2, . . . , n. The iteration scheme used in
Eqs.(5-5) can be expressed as

i∑
j=1

nj∑
p=0

β
[p]
i,jf

(p)
j,r+1 = Gi −

m∑
j=1+1

nj∑
p=0

β
[p]
i,jf

(p)
j,r+1

−Ni [F1,r+1, . . . , Fi−1,r+1, Fi,r, . . . , Fm,r] (9)

1.1 Spectral relaxation method (SRM) 
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for i = 1, 2, . . . ,m. Using the Eq. (8) on Eq. (9) and
the boundary conditions we otain the spectral Gauss-
Seidel relaxation method iteration scheme given by

i∑
j=1

mj∑
p=0

β
[p]
i,jD

(p)Fj,r+1 = Gi −
n∑

j=1+1

mj∑
p=0

β
[p]
i,j D(p)Fj,r

−Ni [F1,r+1, . . . ,Fi−1,r+1,Fi,r, . . . ,Fn,r] , (10)

subject to

i∑
j=1

mj−1∑
p=0

α
(p)
ν,j

N∑
k=0

Dp
N,kfj,r+1(τk) = Ka,ν ,

ν = 1, 2, . . . , na, (11)

n∑
j=1

mj−1∑
p=0

γ
[p]
σ,j

N∑
k=0

Dp
N,kfj,r+1(τk) = Kb,σ,

σ = 1, 2, . . . , nb, (12)

The substitution of previously known functions de-
couples the system of equations and an efficient iteration
scheme is created giving accurate results. The spectral
relaxation method (SRM) will be implemented in the
next section.

Numerical examples

In this section we demonstrate the implementation
of the spectral relaxation method, we give two examples
of applications in ordinary differential equations and two
examples of applications in partial differential equations.
We begin by considering the problem of Ece [24]; free
convection flow about a vertical spinning cone under a
magnetic field. The problem is fully described in Ece
[24]. The governing equations are written as

∂(ru)

∂x
+
∂(rv)

∂y
= 0 (13)

u
∂u

∂x
+ v

∂u

∂y
− Re2

Gr

r′w2

r
=
∂2u

∂y2
+ Θ−MΛ2u,(14)

u
∂w

∂x
+ v

∂w

∂y
− uwr

′

r
=
∂2w

∂y2
−MΛ2u, (15)

u
∂Θ

∂x
+ v

∂Θ

∂y
=

1

Pr

∂2Θ

∂y2
, (16)

where the rotational Reynolds number Re, the magnetic
field function Λ and the magnetic parameter M are given
by

Re =
ΩL2

ν
, Λ =

b(x)

r
√

1− r2
, M =

σB2
0L

Uρ
, (17)

where σ is the electrical conductivity and ρ is the den-
sity of the fluid. Boundary conditions considered are as

follows;

u(x, 0) = 0, v(x, 0) = 0, w(x, 0) = r,

Θ(x, 0) = a(x), (18)

u(x, y)→ 0, w(x, y)→ 0,

Θ(x, y)→ 0 as y →∞, (19)

where

a(x) = [A(x)− T0]/(Tr − T0), (20)

c(x) = Gr−
1
4C(x)/k(Tr − T0) (21)

Using the stream function and boundary layer vari-
ables defined as

ru =
∂ψ

∂y
, rv = −∂ψ

∂x
, (22)

ψ(x, y) = xrF (y), w = rG(y), Θ = xH(y).(23)

where r = x sinφ.
we obtain the following ordinary differential equa-

tions as in Ece[24],

F ′′′ + 2FF ′′ − F ′2 −MF ′ + εG2 +H = 0, (24)

G′′ + 2FG′ − 2F ′G−MG = 0, (25)

1

Pr
H ′′ + 2FH ′ − F ′H = 0, (26)

where ε = (Re sinφ)2/Gr is the spin parameter, the
boundary conditions considered in this example are given
as;

F (0) = 0, F ′(0) = 0, G(0) = 1, H(0) = 1, (27)

F ′(y)→ 0, G(y)→ 0, H(y)→ 0 as y →∞.(28)

Applying the SRM as described in section A. in equa-
tions (24) - (26) and first reducing it to a system of sec-
ond order equations we obtain,

F ′ = K, (29)

K ′′ + 2fK ′ −K2 −MK + εG2 +H = 0, (30)

G′′ + 2FG′ − 2F ′G−MG = 0, (31)

1

Pr
H ′′ + 2FH ′ − F ′H = 0, (32)

with boundary conditions

F (0) = 0, K(0) = 0, G(0) = 1, H(0) = 1, (33)

K(y)→ 0, G(y)→ 0, H(y)→ 0 as y →∞.(34)

The iterative scheme for the system (29) -(32) be-
comes

F ′r+1 = Kr, Fr+1(0) = 0 (35)

K ′′r+1 + 2fr+1K
′
r+1 −MKr+1

= K2
r − εG2

r −Hr, (36)

G′′r+1 + 2Fr+1G
′
r+1 − 2Kr+1Gr+1

−MGr+1 = 0, (37)

1

Pr
H ′′r+1 + 2Fr+1H

′
r+1 −Kr+1Hr+1 = 0, (38)

2. Example 1: Boundary layer free 

convection flow from a spinning cone 

under magnetic field 
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with boundary conditions

Fr+1(0) = 0, Kr+1(0) = 0, Gr+1(0) = 1,

Hr+1(0) = 1, (39)

Kr+1(y)→ 0, Gr+1(y)→ 0,

Hr+1(y)→ 0 as y →∞. (40)

Applying the Chebyshev pseudospectral method on
system (35) -(38) we obtain

A1Fr+1 = B1, Fr+1(τN ) = 0, (41)

A2Kr+1 = B2,Kr+1(τN ) = 0,Kr+1(τ0) = 0,(42)

A3Gr+1 = B3, Gr+1(τN ) = 1, Gr+1(τ0) = 0,(43)

A4Hr+1 = B4, Hr+1(τN ) = 0, Hr+1(τ0) = 0,(44)

where

A1 = D,B1 = Kr, (45)

A2 = D2 + 2diagFr+1D−MI, (46)

B2 = K2
r − εG2

r −Hr, (47)

A3 = D2 + 2diagFr+1D− 2diagKr+1, (48)

B3 = 0, (49)

A4 =
1

Pr
D2 + 2diagFr+1D− diagKr+1, (50)

B4 = 0, (51)

We use the successive over-relaxation (SOR) method
to accelerated the convergence rates of the spectral re-
laxation method. This method is normally used in nu-
merical linear algebra to control the convergence of the
Gauss-Seidel method for linear systems of equations. In
this section we propose a similar method to improve the
convergence of the spectral relaxation method. If the
SRM scheme for solving a function x at the (r + 1)th
iteration is

axr+1 = b, (52)

We define the modified version of the SRM as

axr+1 = (1− ω)axr + ωb, (53)

where a,b are matrices and ω is the convergence con-
trolling relaxation parameter. The case ω = 1 reduce the
system (53) to (52). when ω < 1 convergence speeds up
and slows down when ω > 1. The effect of changing ω
will be discussed in the results and discussion section.

We considering the problem of Awad et al. [25] which
investigated free convection flow from an inverted cone in

porous medium with cross diffusion, the governing equa-
tions were presented as;

∂(ru)

∂x
+
∂(rv)

∂y
= 0 (54)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− ν

K
u

− gβ cos Ω(T − T∞) + gβ∗ cos Ω(C − C∞),(55)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

Dk

CsCp

∂2C

∂y2
, (56)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+

Dk

CsCp

∂2T

∂y2
, (57)

where r = x sin Ω, u and v are velocity components in
the x and y directions respectively. ρ is the fluid density,
g is the acceleration due to gravity, K is the permeabil-
ity, ν is the kinematic viscosity of the fluid. β and β∗

are the thermal expansion and concentration expansion
coefficients respectively. α and D are thermal and mass
diffusivities, k is the thermal diffusion ratio. cp is the
specific heat capacity at constant pressure and cs is the
concentration susceptibility. The boundary conditions
are given by

u = 0, v = 0, T = Tw = T∞ +Axλ,

C = Cw = C∞ +Bxλ, on y = 0, x > 0,

u = 0, T = T∞, C = C∞, as y →∞ (58)

where A,B > 0 are constants and λ is the power-law in-
dex. By using the similarity transformations and stream
functions described in Awad et.al [25], we obtain the fol-
lowing system of ordinary differential equations.

f ′′′ +

(
λ+ 7

4

)
ff ′′ −

(
λ+ 1

2

)
f ′2 − Λf ′

+ θ +N1φ = 0, (59)

θ′′ +Dfφ
′′ + Pr

(
λ+ 7

4

)
fθ′ − Prλf ′θ = 0,(60)

φ′′ + Srθ
′′ + Sc

(
λ+ 7

4

)
fφ′ − Scλf ′φ = 0, (61)

with boundary conditions given as

f = 0, f ′ = 0, θ = φ = 1, on η = 0,

f ′ = 0, θ = 0, φ = 0, as η →∞ (62)

where Df is the Dufour number, Sr is the Soret num-
ber, N1 is the buoyancy parameter, Pr is the Prandtl
number, Sc is the Schmidt number. To solve the system
(59) - (62), we first substitute for θ′′ in equation (61) and
for φ′′ in equation (60) reduces to the following system,

3. Improving the convergence of the 

spectral relaxation method 

4. Example 2: Free convection from 
an  inverted cone in porous medium 
with  cross diffusion effects 
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f ′′′ +

(
λ+ 7

4

)
ff ′′ −

(
λ+ 1

2

)
f ′2 − Λf ′

+ θ +N1φ = 0, (63)

(1−DfSr)θ
′′ − ScDf

(
λ+ 7

4

)
fφ′ + ScDfλf

′φ

+ Pr

(
λ+ 7

4

)
fθ′ − Prλf ′θ = 0,(64)

(1−DfSr)φ
′′ − SrPr

(
λ+ 7

4

)
fθ′ + SrPrλf ′θ

+ Sc

(
λ+ 7

4

)
fφ′ − Scλf ′φ = 0, (65)

subject to boundary conditions

f = 0, f ′ = 0, θ = φ = 1, on η = 0,

f ′ = 0, θ = 0, φ = 0, as η →∞ (66)

We now apply the spectral relaxation technique as
follows, the system is converted yo a system of second
order ordinary differential equations. The iterative sys-
tem as written as;

f ′r+1 = gr, fr+1(0) = 0, (67)

g′′r+1 +

(
λ+ 7

4

)
fr+1g

′
r+1 − Λgr+1

=

(
λ+ 1

2

)
g2
r − θr −N1φr, (68)

(1−DfSr)θ
′′
r+1 − Pr

(
λ+ 7

4

)
fr+1θ

′ − Prλgr+1θr+1

= ScDf

((
λ+ 7

4

)
fr+1φ

′
r − λgr+1φr

)
, (69)

(1−DfSr)φ
′′
r+1 − Sc

(
λ+ 7

4

)
fr+1φ

′ − Scλgr+1φr+1

= SrPr

((
λ+ 7

4

)
fr+1θ

′
r+1 − λgr+1θr+1

)
,(70)

subject to

gr+1(0) = 0, gr+1(∞) = 0, θr+1(0) = 1,

φr+1(0) = 1, φr+1(∞) = 0. (71)

Applying the Chebyshev pseudospectral method on
system (67) -(71) we obtain

A1fr+1 = B1, fr+1(τN ) = 0, (72)

A2gr+1 = B2, gr+1(τN ) = 0, gr+1(τ0) = 0, (73)

A3θr+1 = B3, θr+1(τN ) = 1, θr+1(τ0) = 0, (74)

A4φr+1 = B4, φr+1(τN ) = 0, φr+1(τ0) = 0, (75)

where

A1 = D,B1 = gr, fr+1(τN̄ ) = 0, (76)

A2 = D2 +

(
λ+ 7

4

)
diagfr+1D− ΛI, (77)

B2 = g2
r − θ2

r −N1φr, (78)

gr+1(τN̄ ) = 0, gr+1(τ0) = 0. (79)

A3 = (1−DfSr)D
2 + Pr

(
λ+ 7

4

)
diagfr+1D

− Prλdiaggr+1, (80)

B3 = ScDf

((
λ+ 7

4

)
fr+1φ

′
r − λgr+1φr

)
, (81)

θr+1(τN̄ ) = 0, θr+1(τ0) = 0. (82)

A4 = (1−DfSr)D
2 + Sc

(
λ+ 7

4

)
diagfr+1D

− Scλdiaggr+1, (83)

B4 = SrPr

((
λ+ 7

4

)
fr+1θ

′
r+1 − λgr+1θr+1

)
,(84)

φr+1(τN̄ ) = 0, φr+1(τ0) = 0. (85)

A semi-infinite vertical plate placed in a saturated
porous medium with uniform ambient temperature T∞,
at time t = 0 the fluid is impulsively moved with velocity
Ue and the surface temperature is suddenly raised.

The governing equations in this fluid flow are given

as

∂u

∂x
+
∂v

∂y
= 0, (86)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= Ue

∂Ue
∂x

+
1

ρ

∂

∂y

(
µ
∂u

∂y

)
+ gβT (T − T∞) +

ε

ρK
(µ∞U∞ − µu)

+
F1ε

2

K
1
2

(U2
e − u2) (87)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

(
α
∂2T

∂y2
− 1

k

∂qr
∂y

)
. (88)

with initial conditions

u(x, y) = v(x, y) = 0, T (x, y) = T∞, t < 0, (89)

The boundary conditions for t ≥ 0

u(x, 0) = v(x, 0) = 0, u(x,∞) = Ue = ax, a > 0,

Tx,∞ = T∞, T (x, 0) = Tw(x)bxn, b > 0, n ≥ 0,(90)

The corresponding transformations used are

5. Example 3: Non-Darcy unsteady mixed 

convection flow near the stagnation 

point on a heated vertical surface 

embedded in porous medium with thermal 

radiation and variable viscosity 
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η =

(
aρ

µ∞

) 1
2

yξ−
1
2 , ξ = 1− e−t

∗
, (91)

t∗ = at, a > 0, U(x, y, t) = axf ′, (92)

v(x, y, t) = −
(
aµ∞
ρ

) 1
2

ξ
1
2 f(η, ξ), (93)

T (x, y, t) = T∞ + (Tw − T∞)θ(η, ξ), (94)

Pr =
µ∞
ρα

, λ =
Grx
Re2

x

, (95)

Grx = gβ(Tw − T∞)
x3ρ2

µ2
∞
, (96)

Rex
ax2ρ

µ∞
, (97)

Using equation (91)-(97) in equations (86)-(88) together
with boundary conditions equations (90) we get

(1 + σθ)f ′′′ + σθ′f ′′ +
1

2
η(1− ξ)f ′′

+ ξff ′′ + ξ(1− (f ′)2) + (98)

+ λθξ + γξ(1− (1 + σθ)f ′) + ∆ξ(1− (f ′)2)

= ξ(1− ξ)∂f
′

∂ξ
, (99)

1

Pr
θ′′ −Rξ(θ − 1) +

1

2
η(1− ξ)θ′ + ξ(fθ′ − nf ′θ)

= ξ(1− ξ)∂θ
∂ξ
, (100)

where γ = µ∞ε/aKρ is the first order resistance param-

eter, ∆ =
[
F1ε

4Rexµinfty/aKρ
] 1

2 , is the second order
parameter,R = 4αI/ka is the radiation parameter, λ > 0
for buoyancy assisting flow and λ < 0 for buoyancy op-
posing flow. The boundary conditions reduce to

f(0, ξ) = f ′(0, ξ) = 0, θ(0,∞) = 1,

f ′(∞, ξ) = 1, θ(∞, ξ) = 0. (101)

For the case ξ = 0 and σ = 0 the system admits to the
solution

f = ηerfc(
η

2
)− 2√

π

[
1− exp(−η

2

4
)

]
,

θ = erfc(Pr
1
2
η

2
), (102)

The spectral relaxation method is applied to the sys-
tem (99) and (101) and becomes;

a1,rU
′′
r+1 + a2,rU

′
r+1 + a3,rUr+1

= ξ(1− ξ)∂Ur+1

∂ξ
, (103)

f ′r+1 = Ur+1, (104)

1

Pr
θ′′r+1 + b1,rθ

′
r+1 + b2,rθr+1

= ξ(1− ξ)∂θr+1

∂ξ
, (105)

with boundary conditions;

η = 0, fr+1 = fw,

Ur+1 =

(
1 +

1

β

)
SfU

′
r+1, θr+1 = 1 + ST θ

′
r+1,

η →∞, Ur+1 → 0, θr+1 → 0. (106)

where

a1,r = 1 + σθr, a2,r = σθ′r +
1

2
η(1− ξ) + ξfr,

a3,r = −γξ(1 + σθr), (107)

a4,r = ξ(γ + λθr) + (1− U2
r )(ξ + ∆ξ), (108)

b1,r =
1

2
η(1− ξ) + ξfr,

b2,r = ξ(R− nUr), b3,r = Rξ. (109)

The initial approximations for solving the equations
(99) - (101) are obtained by setting ξ = 0.

f0 = 1− ηe(−η) − e(−η), θ0 = e−η, (110)

The iterative schemes (99) - (101) can be solved it-
eratively for ur+1 when r = 0, 1, 2 . . . , the solution for
ur+1 is used to solve for fr+1. To solve the equations
we use the Chebyshev spectral method in the η− di-
rection and use the implicit finite difference method in
the ξ−direction. The finite difference scheme is applied
with centering about the midpoint halfway between ξn+1

and ξn, which is defined as ξn+ 1
2 = (ξn+1 + ξn)/2. The

derivatives with respect to η are defined in terms of the
Chebyshev differentiation matrices. Using the centering
about ξn+ 1

2 to any function, for example f(η, ξ) and its
corresponding derivative we get,

f(ηj , ξ
n+ 1

2 ) = f
n+ 1

2
j =

fn+1
j + fnj

2
,(

∂f

∂ξ

)n+ 1
2

=
fn+1
j − fnj

∆ξ
. (111)

Writing the system (99) - (101) in terms of the differen-
tiation matrix we obtain,

[
a1,rD

2 + a2,rD + a3,r

]
Ur+1 + a4,r

= ξ(1− ξ)∂Ur+1

∂ξ
, (112)

Dfr+1 = Ur+1, fr+1(ηNx, ξ) = fw (113)[
1

Pr
D2 + b1,rD + b2,r

]
θr+1 + b3,r

= ξ(1− ξ)∂θr+1

∂ξ
, (114)

with boundary conditions;

Ur+1(ηNx, ξ) =

(
1 +

1

β

)
SfU

′
r+1(ηNx, ξ),

θr+1(ηNx, ξ) = 1 + ST θ
′
r+1(ηNx, ξ),

Ur+1(η0, ξ)→ 0, θr+1(η0, ξ)→ 0. (115)
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We now apply the finite difference scheme on (112) -
(115) in the ξ−direction with centering about the mid-

point ξn+ 1
2 to get,

A1U
n+1
r+1 = B1U

n
r+1 + K1, (116)

subject to

Ur+1(η0, ξ
n) = (1 +

1

β
)SfU

′
r+1(η0, ξ

n),

Ur+1(ηNx
, ξn)→ 0, n = 0, 1, 2, . . . , Nt (117)

Uηj ,0 = erfc
(ηj

2

)
, j = 0, 1, 2, . . . , Nx. (118)

where

A1 =
1

2

(
(a1,r)

n+ 1
2 D2 + (a2,r)

n+ 1
2 D + (a3,r)

n+ 1
2

)
− ξn+ 1

2 (1− ξn+ 1
2 )

∆ξ
, (119)

B1 = −1

2

(
(a1,r)

n+ 1
2 D2 + (a2,r)

n+ 1
2 D + (a3,r)

n+ 1
2

)
− ξn+ 1

2 (1− ξn+ 1
2 )

∆ξ
, (120)

K1 = −a
n+ 1

2
4,r , (121)

AFn+1
r+1 = Unr+1, (122)

subject to

Fr+1(ηNx, ξ) = fw. (123)

A2Θn+1
r+1 = B2Θn

r+1 + K2, (124)

subject to

Θr+1(ηNx, ξ) = 1 + STΘ′r+1(ηNx, ξ),

Θr+1(η0, ξ)→ 0, (125)

where

A2 =
1

2

(
1

Pr
D2 + (b1,r)

n+ 1
2 D + b2,r)

n+ 1
2

)
− ξn+ 1

2 (1− ξn+ 1
2 )

∆ξ
, (126)

B2 = −1

2

(
1

Pr
D2 + (b1,r)

n+ 1
2 D + b2,r)

n+ 1
2

)
− ξn+ 1

2 (1− ξn+ 1
2 )

∆ξ
, (127)

K2 = b
n+ 1

2
3,r , (128)

The boundary conditions in (118) are imposed on the
first and last rows of equation (116), those in equation
(123) are imposed on the last row of equation (122) and
those in equation (125) are imposed in the first and last
rows of equation (124).

In this section we make use of the example from Patil
et al. [26] mixed convection from a vertical stretching
surface and viscous dissipation. The governing equation
is given by;

∂u

∂x
+
∂v

∂y
= 0, (129)

u
∂u

∂x
+ v

∂u

∂y
= Ue

dUe
dx

+ ν
∂2u

∂y2

+ gβ(T − T∞) + gβ∗(C − C∞), (130)

u
∂T

∂x
+ v

∂T

∂y
=

ν

Pr

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+Q
T − T∞
ρCp

, (131)

u
∂C

∂x
+ v

∂C

∂y
=

ν

Sc

∂2C

∂y2
, (132)

In the equations, B is the magnetic field strength, β
and β∗ are the thermal and concentration coefficients
of volumetric expansion respectively, σ is the electrical
conductivity. The boundary conditions are given as;

y = 0 :, u = Uw(x), v = vw,

T = Tw,= T∞ + (Tw0 − T∞)exp(
2x

L
),

C = Cw,= C∞ + (Cw0 − C∞)exp(
2x

L
),

y →∞ :, u→ Ue(x), T → T∞, C → C∞.(133)

Using the following dimensionless variables,

ξ =
x

L
, η =

U0

νx
exp(

x

2L
)y, (134)

ψ(x, y) = (νU0x)
1
2 exp(

x

2L
)f(ξ, η), (135)

T − T∞ = (Tw − T∞)G(ξ, η), (136)

T − T∞ = (Tw − T∞)e( x
2L ), (137)

C − C∞ = (Cw − C∞)H(ξ, η), (138)

C − C∞ = (Cw − C∞)e( x
2L ), (139)

u =
∂ψ

∂y
, v = −∂ψ

∂x
, u = U0e

( x
L )f ′, (140)

v = −(
νU0

x
)

1
2 e( x

2L )

(
(1 + ξ)

f

2
+ ξ

∂f

∂ξ
+
η

2

∂f

∂η

)
,(141)

The following system of partial differential equations
is obtained,

f ′′′ +
1

2
(1 + ξ)ff ′′ − ξf ′2 + ξRi(G+NH) + ξε2

= 4ξ

(
f ′
∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)
, (142)

6. Example 4: Double diffusive mixed 

convection flow from a vertical 

exponentially stretching surface in the 

presence of viscous dissipation 
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G′′ +
Pr

2
(1 + ξ)fG′ − 2Prξf ′G+ PrEc(f ′′)2

+ReΓPrξG = Prξ

(
f ′
∂θ

∂ξ
− θ′ ∂f

∂ξ

)
,(143)

H ′′ +
Sc

2
(1 + ξ)fH ′ − 2Scξf ′H

= Scξ

(
f ′
∂H

∂ξ
−H ′ ∂f

∂ξ

)
, (144)

with boundary conditions;

f ′(ξ, 0) = 0, f(ξ, 0) = 0, θ(ξ, 0) = 1, H(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, H(ξ,∞) = 0. (145)

In the above equations, for the case ξ = 0, the equa-
tions do not reduce to those of Magyari and Keller [33],
Bidin and Nazar [29] and Mukhopadhyay [30] as men-
tioned in Patil et al. [26], but rather to those of Watan-
abe and Pop [27]. The spectral relaxation method is
applied to the system (142) and (145) and becomes;

U ′′r+1 + a1,rU
′
r+1 + a2,r = a3,r

∂Ur+1

∂ξ
, (146)

Ur+1(ξ, 0) = 1, Ur+1(ξ,∞) = 0, (147)

f ′r+1 = Ur+1, fr+1(ξ, 0) = 0, (148)

G′′r+1 + b1,rG
′
r+1 + b2,rGr+1 + b3,r

= b4,r
∂Gr+1

∂ξ
, (149)

Gr+1(ξ, 0) = 1, Gr+1(ξ,∞) = 0, (150)

H ′′r+1 + c1,rH
′
r+1 + c2,rHr+1 = c3,r

∂Hr+1

∂ξ
,(151)

Hr+1(ξ, 0) = 1, Hr+1(ξ,∞) = 0, (152)

where

a1,r =
1

2
(1 + ξ)fr + ξ

∂fr
∂ξ

, (153)

a2,r = −ξU2
r + ξRi(Gr +NHr) + ξε2, (154)

a3,r = ξUr, (155)

b1,r =
Pr

2
(1 + ξ)fr + Prξ

∂fr
∂ξ

, (156)

b2,r = −ξPr(2Ur −ReΓ), (157)

b3,r = PrEc(U ′r)
2, b4,r = ξPrUr, (158)

c1,r =
Sc

2
(1 + ξ)fr + Scξ

∂fr
∂ξ

, (159)

c2,r = −2ScξUr, (160)

c3,r = ξScUr, (161)

We now apply the finite difference scheme on (146) -
(152) in the ξ−direction with centering about the mid-

point ξn+ 1
2 to obtain,

A1U
n+1
r+1 = B1U

n
r+1 + K1, (162)

subject to

Ur+1(ηNx, ξ) = 1, Ur+1(η0, ξ)→ 0, (163)

where

A1 =
1

2

(
D2 + (a1,r)

n+ 1
2 D
)

− (a3,r)
n+ 1

2

∆ξ
, (164)

B1 = −1

2

(
D2 + (a1,r)

n+ 1
2 D
)

− (a3,r)
n+ 1

2

∆ξ
, (165)

K1 = −a
n+ 1

2
2,r , (166)

AFn+1
r+1 = Unr+1, (167)

subject to

Fr+1(ηNx, ξ) = 0. (168)

A2θ
n+1
r+1 = B2θ

n
r+1 + K2, (169)

subject to

θr+1(ηNx, ξ) = 1, θr+1(η0, ξ)→ 0, (170)

where

A2 =
1

2

(
D2 + (b1,r)

n+ 1
2 D + b2,r)

n+ 1
2

)
− (b4,r)

n+ 1
2

∆ξ
, (171)

B2 = −1

2

(
D2 + (b1,r)

n+ 1
2 D + b2,r)

n+ 1
2

)
− (b4,r)

n+ 1
2

∆ξ
, (172)

K1 = −b
n+ 1

2
3,r , (173)

A3H
n+1
r+1 = B3H

n
r+1 + K3, (174)

subject to

Hr+1(ηNx, ξ) = 1, Hr+1(η0, ξ)→ 0, (175)

where

A3 =
1

2

(
D2 + (c1,r)

n+ 1
2 D + (c2,r)

n+ 1
2

)
− (c3,r)

n+ 1
2

∆ξ
, (176)

B3 = −1

2

(
D2 + (c1,r)

n+ 1
2 D + (c2,r)

n+ 1
2

)
− (c3,r)

n+ 1
2

∆ξ
, (177)

K3 = 0. (178)
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The spectral relaxation method (SRM) for solving
boundary value problems is presented in this paper, four
examples of boundary value problems were presented in
the previous sections. In this section we discuss the re-
sults for all numerical examples considered. The method
depends on the length of the governing domain (b − a)
and the number of collocation points N sometimes re-
ferred to as grid points. The domain of the given nu-
merical examples are defined on [0,∞), to implement
the SRM scheme we need to find the appropriate finite
value η∞ which is large enough to approximate infinity
for the given example. We start with an initial guess and
solve the SRM scheme over [0, η∞] so we obtain solutions
for the fluid flow functions f(η), g(η), h(η) for example
1, f(η), θ(η), φ(η) for example 2, f(η), θ(η) for example
3 and f(η), θ(η), φ(η) for example 4. The derivatives of
these functions at η = 0 are also computed to obtain the
important values f ′′(0) (skin friction coefficient), −θ′(0)
(heat transfer coefficient) and −φ′(0) (mass transfer co-
efficient).

The numerical scheme is implemented by increasing
the value of η∞ by one and the solution process repeated
until the difference in values of f ′′(0),−θ′(0) and −φ′(0)
between current and previous solution is less that a spec-
ified tolerance level. If the optimal value of η∞ is iden-
tified for a particular set governing constants, the min-
imum number of grid points is obtained using a similar
process. Starting with a small value of N , say N = 40,
the value of N is increased by 10 and the solution is
solved until the results do not change within the spec-
ified tolerance level. The accuracy of the SRM results
presented in this Chapter validated by comparison with
those previously published in the literature. The results
were compared against the MATLAB bvp4c solver. The
comparisons show a good agreement. It is also observed
that the error decrease at every iteration showing the
convergence and stability of the solutions produced by
the SRM.

Table 1: Comparison of the values of f ′′(0) obtained by
SRM against those of Ece [24] and bvp4c for example 1
for ε = M = 0, 90 iterations and η∞ = 10

Pr f ′′(0)Ece [24] f ′′(0) bvp4c f ′′(0) SRM
1 0.68150212 0.68147996 0.68147995
10 0.43327726 0.43327802 0.43327802

In Table 1, the SRM results for skin friction coefficient
agrees with the results of Ece [24] and MATLAB bvp4c

to six decimal places, this shows the accuracy of the SRM
for example 1.

Table 2: Comparison of the values of f ′′(0) obtained by
SRM against those of Awad [25] and bvp4c for example
2 with Sc = 0.2, N1 = 0.5, Df = 0.1, Sr = 0.3, P r =
0.71, λ = 1. 90 iterations and η∞ = 12

Λ f ′′(0) Awad [25] f ′′(0) bvp4c f ′′(0) SRM
0.3 1.0160906 1.0160906 1.0160906
0.5 0.9748755 0.9748755 0.9748755

In Table 2, the SRM results for skin friction coefficient
agrees with the results of Awad [25] and MATLAB bvp4c

to six decimal places, this shows the accuracy of the SRM
for example 2.

Table 3: Comparison of the values of −θ′(0) obtained by
SRM against those of Hassanien and Al-Arabi. [31] and
QLM for example 3 with γ = Λ = σ = R = ξ = 0, n =
0, P r = 0.7 90 iterations and η∞ = 10

ξ −θ′(0) [31] −θ′(0) QLM −θ′(0) SRM
0 0.47204 0.472035 0.472035

0.5 0.46347 0.463471 0.463471

In Table 3, the SRM results for the heat transfer coef-
ficient agrees with the results of Hassanien and Al-Arabi.
[31] and QLM to six decimal places, this shows the ac-
curacy of the SRM for example 3.

Table 4: Comparison of the values of −θ′(0) obtained
by SRM against those of Watanabe [27] and bvp4c for
example 4 with M = N = 0, Sc = 1, P r = 1.

ξ −θ′(0) [27] −θ′(0) QLM −θ′(0) SRM
0 0.33026 0.33025734 0.33025734

0.5 0.40280 0.40279671 0.40279671

In Table 4, the SRM results for the heat transfer coef-
ficient agrees with the results of Watanabe [27] and QLM
to eight decimal places, this shows the accuracy of the
SRM for example 4.

7. Results and discussion
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Fig. 1: Logarithm of the SRM decoupling error for (a)
Example 1 and (b) Example 2.

In Figure 1, the logarithm of the SRM decoupling er-
ror decreases with increasing iteration showing the rapid
convergence and stability of the SRM for (a) Example
1 and (b) Example 2. This is the standard SRM with-
out the successive over-relaxation (SOR). Convergence
is also affected by the parameter values. These affect in
many different ways, they can slow convergence or cause
complete divergence. When certain parameters assume
higher or even lower values, the method might require
more iterations to converge. In the graph, the larger the
negative values on the vertical axis, the smaller the er-
ror. The SRM requires the use of the SOR to control its
convergence. In these two examples, the SRM requires
more than 70 iterations. Example 1 required more iter-
ations to achieve a larger error than that of example 2
that required less number of iterations.
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Fig. 2: Logarithm of the SRM with SOR decoupling
error for (a) Example 1 and (b) Example 2.

The convergence of the SRM can be controlled by us-
ing the successive over-relaxation (SOR) method. This is
achieved by varying the relaxation parameter ω. In Fig-
ure 2, when ω = 0.9 the SRM converges faster and when
ω = 1.1 slows down convergence. The value ω = 1 cor-
responds to the standard SRM (without SOR). The ap-
plication of the successive over-relaxation was consistent
in both examples 1 and 2. The effect of over-relaxation
was is more enhanced in example 2 than in example 1.
This is caused by the parameter values in each of these
examples. The SRM will require a smaller value of ω to
achieve a faster convergence. For values of ω > 1 (purple
line) more iterations are required. For ω = 1 (Red line),
similar to Figure 1. ω < 1 (black line), the number of
iterations is reduced significantly.

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2022.21.22 Gilbert Makanda

E-ISSN: 2224-2678 208 Volume 21, 2022



0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

H
(
η
)

 

 

ε=0,M=0

ε=0,M=1

ε=0,M=2

ε=0,M=5

ε=2,M=0

ε=2,M=1

ε=2,M=2

ε=2,M=5

(a)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

H
(η

)

 

 

Pr=1,M=0

Pr=1,M=1

Pr=1,M=2

Pr=1,M=5

Pr=10,M=0

Pr=10,M=1

Pr=10,M=2

Pr=10,M=5

(b)

Fig. 3: Variation of (a) spin parameter and (b) magnetic
parameter on temperature profiles for Example 1

Figure 3 shows the variation the spin parameter ε
and Prandtl number Pr in the presence of the magnetic
field on temperature profiles. It is observed that increas-
ing both the spin parameter and Prandtl number reduce
temperature profiles. Increasing the spin parameter has
an effect of reducing the velocity profiles, this is because
the direction of rotation is at right angles with the direc-
tion of fluid flow. The reduction in fluid velocity in the
direction of flow cause reduction in heat transfer, thereby
reducing temperature profiles. Increasing the magnetic
parameter will have the same effect of reducing velocity
profiles and also reducing heat transfer. Increasing the
Prandtl number has an effect of reducing thermal diffu-
sivity as shown in this figure. These results are consistent
with those reported by Ece [24]. This confirms that the
SRM is accurate and can also be used as an alternative
method for solving
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Fig. 4: Variation of (a) spin parameter and (b) magnetic
parameter on velocity profiles for Example 1

Figure 4 shows the variation the spin parameter ε
and Prandtl number Pr in the presence of the magnetic
field on velocity profiles. It is observed that increasing
the spin parameter result in the decrease in velocity pro-
files and increasing the Prandtl number reduce velocity
profiles. The increase in spin parameter result in the de-
crease in velocity profiles, this caused by the spin velocity
which is tangential to the velocity of the fluid flow. This
has a dragging effect on the fluid flow. The Increase in
the magnetic parameter result in the retardation of fluid
flow as it is directed perpendicular to the fluid flow. In-
creasing the Prandtl number result in the direct increase
of momentum diffusivity. This agrees with the result re-
ported in Ece [24]. This shows that the SRM is accurate
and can be used to solve boundary value problems in
fluid flow.
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Fig. 5: Variation of (a) concentration buoyancy param-
eter and (b) power-law index on tempearture profiles for
Example 2

Figure 5 shows the variation of concentration buoy-
ancy parameter N1 and power-law index λ on temper-
ature profiles. Increasing both the concentration buoy-
ancy parameter and power-law index result in the de-
crease in temperature profiles. Increasing the concentra-
tion buoyancy parameter result in the decrease in tem-
perature profiles, the high buoyancy aids fluid motion.
The presence of the solute cause a decrease in temper-
ature profiles as shown in Figure 5 (a). Also increasing
the power-law index result in the decrease in tempera-
ture profiles as shown in Figure 5 (b). The results are
consistent with those of Awad et. al [25].
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Fig. 6: Variation of (a) concentration buoyancy param-
eter and (b) power-law index on velocity profiles for Ex-
ample 2

Figure 6 shows the effect of increasing the buoy-
ancy parameter N1 and power-law index λ.Increasing the
buoyancy parameter result in the increase in velocity pro-
files, concentration buoyancy tend to aid fluid motion,
the solute is pushed by the buoyancy force and increase
fluid motion as shown in 6 (a). Increase in power-law
index result in the decrease in velocity profiles as shown
in Figure 6 (b). These results agree with those of Awad
et. al [25].
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Fig. 7: (a) Convergence graph for f(η, ξ), θ(η, ξ), (b)
Residual graph for f(η, ξ) for Example 3

Figure 7 indicates the error graphs for example 3.
Figure 7 (a) shows the rapid convergence of the SRM
after ten iterations, thereafter it is observed that the
SRM is stable. The stability of the SRM was observed for
both momentum and thermal equations. The errors are
as small as the order of 10−12. In Figure 7 (b) we observe
the increase in the error as ξ increase. The error decrease
with increasing iterations. The most important result is
the effect of the time dimension ξ on error propagation.
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Fig. 8: (a) Convergence graph for
f(η, ξ), G(η, ξ), H(η, ξ), (b) Residual graph for f(η, ξ)
for Example 4

The accuracy of the SRM for example 4 is shown in
Figure 8 (a) and Figure 8 (b), showing the reduction
of the error with increasing number of iterations. It is
observed that there is rapid convergence of the SRM in
about 10 iterations, the error being of the order of 10−11.
The stability of the SRM is shown after 10 iterations,
the variation of the error does not change much showing
the accuracy of the method. Figure 8 (b) shows the
plot of residual error of the function f(η, ξ) against ξ
with increasing iteration. It is observed that the rate
of increasing the residual error is almost linear and is
minimum at ξ = 0. The error increases sharply and
reach a level where it is almost constant. We further
observe that the error is small after two iterations in the
entire range of the values of ξ. The small size of the
residual error indicate the accuracy of the method.
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Table 5: Heat transfer coefficient −θ′(0, ξ) for various
values of ξ computed using SRM for example 3.

ξ/∆ξ 0.004 0.001 0.0005
0.1 0.475693 0.475694 0.475694
0.3 0.483407 0.483407 0.483407
0.5 0.491688 0.491688 0.491688
0.7 0.500488 0.500488 0.500488

CPU Time 1.64 5.98 11.79

Tables 5 and 6 show the numerical values of values of
the heat transfer coefficient −θ′(0) for different values of
∆ξ, computed using the SRM and the QLM respectively
for equation (99)-(101).The total computational time to
execute the integration is also shown. The computation
was done using the same number of collocation points
Nx and η∞. Reducing the step size ∆ξ improves the
accuracy of the results until they are consistent to within
six decimal places.

Table 6: Heat transfer coefficient −θ′(0, ξ) for various
values of ξ computed using QLM for example 3.

ξ/∆ξ 0.004 0.001 0.0005
0.1 0.465195 0.467389 0.467922
0.3 0.459767 0.461433 0.461856
0.5 0.455776 0.457277 0.456466
0.7 0.457627 0.456340 0.500488

CPU Time 5.16 20.1 40.5

The SRM takes less computational time than the
QLM, we observe that the SRM converge more rapidly
than the QLM when the step size is reduced. Full con-
vergence to six decimal digits is arrived when ∆ξ = 0.001
in the SRM compared to the QLM which showed con-
vergence at ∆ξ = 0.0002.

Table 7: Skin friction coefficient f ′′(0, ξ) for various val-
ues of ξ computed using SRM for example 4.

ξ/∆ξ 0.004 0.001 0.0005
0.1 0.287824 0.287832 0.287832
0.2 0.249535 0.249542 0.249542
0.3 0.216382 0.216387 0.216387
0.4 0.187672 0.187677 0.187677

CPU Time 4.03 15.8 35.9

Table 8: Skin friction coefficient f ′′(0, ξ) for various val-
ues of ξ computed using QLM for example 4.

ξ/∆ξ 0.004 0.001 0.0005
0.1 0.286511 0.287828 0.287832
0.2 0.248912 0.249538 0.249542
0.3 0.215822 0.216291 0.216387
0.4 0.186538 0.187482 0.187677

CPU Time 5.16 20.1 40.9

The results shown in Tables 7 and 8 show the ac-
curacy of the SRM, the results for the skin friction co-
efficient become consistent to six decimal places when
∆ξ = 0.001 compared to the QLM which become con-
sistent at ∆ξ = 0.0005. This shows that the SRM con-
verges more rapidly than the QLM. The computation
times shown also reveal that the SRM requires less com-
putation time to execute the integration, these results
were also observed in example 3. For further reading,
readers are referred to the works of Magagula et al. [33],
Motsa et al. [34], Kamwswaran et al. [35], Agbaje and
Motsa [36], Shateyi [37] and Motsa and Makukula [38].

The objective of this paper was to describe the spec-
tral relaxation method (SRM) and consider different ex-
amples in implementing it. Two examples involving or-
dinary differential equations and two examples involv-
ing partial differential equations were considered. The
method is easy to implement as compared to finite dif-
ference methods such as the Keller-box method. The
SRM is a robust and accurate method to solve differen-
tial equations and requires less computation time than
the quasi-linearization method. The method can be used
to solve boundary value problems. The method give re-
sults that are accurate in the specified space and time do-
mains. The residual error quickly approaches zero within
a few iterations. The method make use of well-known
Chebyshev spectral collocation method for discretiza-
tion. The method has also been improved by considering
discretization in both space and time. The challenge in
the method is the determination of the appropriate num-
ber of collocation points or grid points.
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vation Committee (FRIC) of the Central University of
Technology, Free State for the sponsorship of this article
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