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Abstract: The system dynamics of the randomly perturbed SIS depend on a certain threshold RS . If RS < 1,
the disease is removed from our community, whereas an epidemic will occur ifRS > 1. However, what happens
when RS = 1? In this paper, we give a solution to this problem. Furthermore, we make some improvements to
the free disease equilibrium state E0 whenRS < 1. Last, we give some computational simulations to explain our
results.
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1 Introduction
The standard SIS epidemic model is defined as the
following system{

dS = (µ− µS − βSI + γI) dt,
dI = (−(µ+ γ)I + βSI) dt,

(1)

where S and I are the numbers of susceptible and
infected individuals, respectively. This model as-
sumes a vital dynamic with a mortality rate that cor-
responds to the birth rate, implying that S + I =
1. Besides, β is the rate of infection, and γ is the
rate of recovery. A deterministic form of system (1)

given by the threshold R0 =
β

µ+ γ
[3]. In other

words, if R0 ≤ 1, then the free disease equilib-
rium state E0 (1, 0) is globally asymptotically stable.
While if R0 > 1, E0 will become unstable, there is

an endemic state of equilibrium E∗

(
1

R0
,
R0 − 1

R0

)
that is globally asymptotically stable. During the
past few years, several mathematical programs for
transmission dynamics of infectious diseases have
been suggested [1, 2] such as (Susceptible-Infectious-
Susceptible), SEIR (Susceptible-Exposed-Infectious-
Recovered), SIRS (Susceptible-Infectious-Reduced-
Susceptible). The purpose of building these models
is to gain knowledge of the phenomenon of infec-
tious diseases and forecast the consequences of ap-
plying public health actions to reduce the propaga-
tion of diseases, which helps us plan successful strate-
gies for reducing the impact of infectious diseases.
The SIS models provide adequate classifications of
human population dynamics for particular bacterial

diseases such as malaria, some protozoan diseases
such as meningitis, and some sexually acquired dis-
eases such as tuberculosis (”gonorrhea”), where in-
dividuals usually build up their immunity to the dis-
ease over 24 hours and do not develop any resis-
tance to the disease when infected. There are various
forms of model SIS diseases in continuous determin-
istic and stochastic settings in the literature (see, e.g.,
[3, 4, 5, 6, 7, 8, 9, 10, 11]). In [4], CAI. has considered
the following stochastic form of model (1)

dS = (µ− µS − βSI + γI) dt
−σSIdB,

dI = (−(µ+ γ)I + βSI) dt
+σSIdB.

(2)

According to the following initial conditions (S0, I0)
in the set ∆ =

{
x ∈ R2

+; x1 + x2 = 1
}
. Here,

B is a Brownian motion on the probability space
(Ω,F , {Ft}t≥0,P) and σ > 0 denotes the white
noise intensity. CAI. [4] has shown that the set ∆
is almost certainly positively invariant by the system
(2). Next, the authors studied the dynamic behavior
of I(t) as a function of the new stochastic thresh-

old RS =
β

µ+ γ + 1
2σ

2
. They proved that if ei-

ther RS < 1 and β ≥ σ2 or σ2 > β ∨ β2

2(µ+ γ)
,

the disease will vanish. However, if RS > 1, then
the disease will continue, and the model (2) will take
a unique stationary distribution. CAI. [4] also sug-

gested that if RS < 1 and β < σ2 ≤ β2

2(µ+ γ)
, then

the disease disappears with the probability of 1. Now,
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in our work, we consider the following deterministic
system{

dS =
(
µ− µS − βS2I + γI

)
dt,

dI =
(
−(µ+ γ)I + βS2I

)
dt.

(3)

Using the technique of perturbation on the parameter
β, we get the following stochastic form of the deter-
ministic model (3)

dS =
(
µ− µS − βS2I + γI

)
dt

−σS2IdB,
dI =

(
−(µ+ γ)I + βS2I

)
dt

+σS2IdB.

(4)

Therefore, it is enough to study the SDE for I(t)

dI =
[
−(µ+ γ)I + β(1− I)2I

]
dt

+σ(1− I)2IdB, (5)
≜ f1(I)dt+ f2(I)dB(t).

For any twice continuously differentiable V (.), the
formula of Itô associated with (4) is defined by

dV (X) = LV (X)dt+ f2(X)
∂V (X)

∂X
dB(t),

where

LV (X) = f1(X)
∂V (X)

∂X
+

1

2
f2
2 (X)

∂2V (X)

∂X2
,

is the generator of the process X ∈ (0, 1).
In this article, we assume that β ≥ σ2 is not exactly a
limitation because it indicates that the estimation error
σ2 is smaller than the estimated value β. We inves-
tigated the case where RS ≤ 1. More precisely, we
show that if RS < 1, the equilibrium state without
disease E0 is κ-th exponentially stable moment. If
RS = 1, E0 is exponentially stable. Furthermore, the
disease will be extinct on average.

2 Stability of disease
In this section, we will investigate the stability of the
disease in the SDE system (4) to give the stochastic
threshold condition for disease control or elimination.

Theorem 2.1 Let (S0, I0) ∈ ∆. If RS < 1, then for
every κ such that

0 < κ <
2β

σ2

(
1

RS
− 1

)
, (6)

the solution I(t) satisfies

E (Iκ(t)) ≤ Iκ0 e
−ξt,

where

ξ = −κ

[
β

(
1− 1

RS

)
+

1

2
κσ2

]
> 0. (7)

Thus, the disease-free equilibrium stateE0 isκ-th mo-
ment exponentially stable.

Proof 1 Let the function of Lyapunov V (I) = Iκ,
where κ > 0 is real constants check the condition
(6). By the formula of Itô, we obtain

dV (I) = LV (I)dt+ κσ(1− I)2IκdB, (8)

or

LV = κIκ
[
−(µ+ γ) + β(1− I)2

+
1

2
σ2 (κ− 1) (1− I)4

]
,

≤ κIκ

[
sup

0<x≤1

(
− (µ+ γ) + βx2 − 1

2
σ2x4

)
+
κ

2
σ2
]
,

≜ κIκ
(
h(x) +

κ

2
σ2
)
. (9)

We can show clearly that if β ≥ σ2 andRS < 1, then

h(x) = sup
0<x≤1

(
− (µ+ γ) + βx2 − 1

2
σ2x4

)
,

= β

(
1− 1

RS

)
. (10)

Combining this with (9), we get

LIκ(t) ≤ −ξIκ(t),

where ξ is given in (7). Injecting it into (8), then inte-
grating the result and taking the expectations on both
sides, we get

E (Iκ(t)) ≤ Iκ0 − ξ

∫ t

0
E (Iκ(u)) du,

which implies with the Gronwall inequality that

E (Iκ(t)) ≤ Iκ0 e
−ξt.

The proof is finished.

Now, we will study the extinction of disease.

3 Extinction of disease
The following theorems discuss the situation where
the stochastic thresholdRS = 1.
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Theorem 3.1 For any initial value (S0, I0) ∈ ∆, if
RS = 1, then the solution of equation (5) follows

lim sup
t→∞

1

t

∫ t

0
I(s)ds = 0. (11)

Proof 2 Let (S0, I0) ∈ ∆ and the Lyapunov function

V (I) = log(I).

Using the formula of Itô, the equation (5), I ≤ 1, the
binomial formula of Newton, and RS = 1, we have

dV =

[
−(µ+ γ) + β(1− I)2 − 1

2
σ2(1− I)4

]
dt

+σ(1− I)2dB,

≤ −
(
β − 4σ2

)
Idt+ σ(1− I)2dB. (12)

By integrating (12) from 0 to t, we obtain

log I(t) ≤ log I(0)−
(
β − 4σ2

) ∫ t

0
I(s)ds

+σ

∫ t

0
(1− I(s))2dBs. (13)

According to the theorem of large numbers for mar-
tingales, there is a Ω1 ⊂ Ω with P(Ω1) = 1, so that
for every ω ∈ Ω1 and ϵ > 0, there is T (w, ϵ) such
that for all t ≥ T , we obtain

log I(0) + σ

∫ t

0
(1− I(s))2dBs ≤ ϵt,

which implies with (13) that

eϵt ≥ I(t)e
(β−4σ2)

∫ t

0
I(s)ds

, (14)

≜ 1

(β − 4σ2)

d

dt

e(β−4σ2)

∫ t

0
I(s)ds

 .

By integrating (14) from T to t and multiplying both
sides by

1

t
, one obtains

1

t

∫ t

0
I(s)ds ≤ 1

(β − 4σ2) t
log
[
e(β−4σ2)

∫ T

0
I(s)ds

+
β − 4σ2

ϵ

(
eϵT − eϵt

)]
. (15)

Hence, applying the rule of Hospital on (15), we get

lim sup
t→∞

1

t

∫ t

0
Is(ω)ds ≤

ϵ

β − 4σ2
.

Letting ε → 0, we obtain the requested result (11).

Theorem 3.2 Let (S0, I0) ∈ ∆. If RS = 1, then for
all n > 0 and ε > 0, we obtain

lim
I0→0

P

(
sup

0≤t≤n
I(t) > ε

)
= 0, (16)

that is, the disease-free steady state E0 is stable in
probability.

Proof 3 Let κ ≤ 1, (S0, I0) ∈ ∆ and the Lyapunov
function

V (I(t)) = Iκ(t).

Using the formula of Itô, (8), (9), (10), and RS = 1,
we obtain

dV (I(t)) ≤ κ2

2
σ2Iκ + κσ(1− I)2IκdB.

Integrating this inequality between (0, t), and using
I ≤ 1, we can have easily for κ ≤ 1

Iκ(t)− Iκ(0) ≤ κ2

2
σ2t

+κσ

∫ t

0
(1− I(s))2Iκ(s)dBs,

thus

sup
0≤t≤n

Iκ(t) ≤ Iκ(0) +
κ2

2
σ2n

+κσ sup
0≤t≤n

∫ t

0
(1− I(s))2IκdBs.

By I < 1, we obtain

P

(
sup

0≤t≤n
I(t) > ε

)
≤ IIκ

0 ≥ ε

3
+ Iκ2

2
σ2n≥ ε

3

+P

(
κσ sup

0≤t≤n
Mt >

ε

3

)
,

where IA denotes the characteristic function of A and

Mt =

∫ t

0
(1− I(s))2Iκ(s)dBs,

which implies that

l = lim
I0→0

P

(
sup

0≤t≤n
I(t) > ε

)
,

≤ Iκ2

2
σ2n≥ ε

3

+ lim
I0→0

P

(
κσ sup

0≤t≤n
Mt >

ε

3

)
. (17)
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Or,Mt is a continuous real-valued martingale, hence
by the inequality of Doob, we obtain

P = P

(
κσ sup

0≤t≤n
Mt >

ε

3

)
,

≤ 9κ2σ2

ε2
E

((∫ η

0
(1− I(s))2Iκ(s)dBs

)2
)
,

≜ 9κ2σ2

ε2
E
(∫ η

0

(
(1− I(s))2Iκ(s)

)2
ds

)
,

≤ 9κ2σ2

ε2
η.

Using it in combination with (17), we get

lim
I0→0

P

(
sup

0≤t≤n
I(t) > ε

)
≤ Iκ2σ2n

2
≥ ε

3

+
9κ2σ2η

ε2
.

By letting κ → 0, we get the required statement (16).

4 Simulation
The following simulation illustrates that if RS = 1,
the stochastic disease will die when the deterministic
illness occurs.

Figure 1: Single path computer simulation of I(t)
for the SDE model (5) with initial condition I0 = 0.4
and its related deterministic model for the parameters:
µ = 0.5, β = 0.902, γ = 0.4, σ = 0.2, then R0 > 1
andRS = 1.

5 Conclusion
This article studied a stochastic SIS epidemiological
model with a constant population size under white
noise control. We discussed the behavior of the
stochastic epidemiological SIS model over the long
term. We show sufficient conditions for the extinction

and stability of the disease. The stochastic popula-
tion model provides one of several possible stochastic
forms of the deterministic model. This model is gen-
eralizable. The argument is that the population can
experience sudden changes in its parameters [5].
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