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Abstract: - Control charts are used to monitor processes and detect changes in a given control scheme. The 
Exponential Weighted Moving Average (EWMA) control chart is a well-recognized control chart used to detect 
small changes in parameters. The efficiency of the chart studied is usually achieved using ARL. Approximating 
ARL using the Gauss-Legendre quadrature method, also known as NIE,. This approach is used to evaluate the ARL 
of developments, such as explicit formulas because it provides a robust way to validate their validity and accuracy. 
Moreover, it evaluates the performance of control charts for time series under exponential white noise. Exponential 
white noise is obtained from a long-memory fractionally integrated AR with exogenous variables or the long-
memory ARFIX process. Under the long-memory ARFIX model, the proposed technique compares the control 
chart's performance to an explicit formula using the criterion of percentage accuracy. The results of the 
comprehensive numerical study include investigations into a wide range of out-of-control processes and situations. 
Specifically, the results from the accuracy percentage in all cases are more than 95%, which means that the 
proposed technique is accurate and completely consistent with the well-defined explicit formula. Therefore, it is 
recommended that it be used in this situation. There are examples from real data that were found to be consistent 
with the research results. 
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explicit formulas, exponential white noise. 
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1   Introduction 
Control charts are statistical tools used to monitor a 
process and indicate when it goes out of control. 
Since the introduction of the Shewhart control chart, 
[1], it has become common practice to make use of 
control charts to monitor changes that can occur in 
various manufacturing and production processes, [2]. 
The Shewhart control charts are frequently referred 
to as memoryless because information from the past 
is not utilized in its derivation, and thus it is only 
suitable for monitoring large process parameter shift 
sizes (i.e., location and/or dispersion). On the other 
hand, memory control charts are extremely useful for 
monitoring small-to-moderate changes in a process 
parameter. An example of this is the exponentially 

weighted moving average (EWMA) control chart, 
[3], which is of interest in the present study. 

Real-world scenarios often contain serially 
correlated data in the underlying observations. One 
technique to deal with autocorrelation in the 
observations of a process running on a control chart 
is to examine the correlation between subsequent 
data points. A comprehensive elucidation of long-
memory processes is presented in [4], [5]. According 
to [6], long-memory processes require differencing 
parameter d in an autoregressive fractionally 
integrated moving average order (p, d, q), 
abbreviated as (ARFIMA(p, d, q) process to fall 
within the range of 0 to 0.5. In addition to the 
primary time series data, there can be auxiliary or 
exogenous variables that are either already accessible 
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or can be easily obtained. These variables can be 
significantly correlated with the primary time series. 
As stated by [7], the inclusion of these exogenous 
variables in time series models enhances their 
performance and improves the forecasting accuracy. 
The fractionally integrated AR model with an 
exogenous variable (ARFIX) is of special interest in 
the present study. 

In a time series model, the difference between the 
actual and estimated values is referred to as the error 
(also known as white noise). This should be 
minimized to achieve the highest possible[ level of 
accuracy with the model. The white noise produced by 
autocorrelated data following a normal distribution is 
commonly referred to as Gaussian white noise, [8]. 
Nevertheless, many phenomena such as wind speed, 
oxygen content, and water flow rate have been studied 
using non-Gaussian white noise, with exponentially 
distributed white noise being particularly intriguing, 
[9]. 

The effectiveness of a control chart is frequently 
evaluated utilizing the average run length (ARL) to 
determine the expected number of observations 
before a control chart signals a change in the 
monitored process. The ARL consists of two parts: 
ARL0 and ARL1. Separate ARL—ARL0, which is the 
in-control state, and ARL—ARL1, which is the out-
of-control state. Ideally, ARL0 should be as large as 
possible, while ARL1 should be as small as possible. 
In the study of techniques for evaluating the 
performance of control charts in terms of ARL. 
These include the Monte Carlo simulation method, 
[10], the Markov chain approach, [11], the explicit 
formulas put forth by [12], [13], [14], [15], and the 
numerical integration equation (NIE) technique, 
which has received support from [16], [17]. The NIE 
technique is considered an efficient technique for the 
computation of ARL. Since it is a computation 
technique to get accurate and precise results for 
research, several rules have been studied, including 
the trapezoidal rule, the Simpsons rule, the midpoint 
rule, and the quadrature rule. This article focuses on 
quadrature rules that incorporate weighting and 
interpolation. This rule is proposed as a technique 
that was chosen from integration for approximating 
ARL. Moreover, it has been devised by many 
researchers to expand in many different fields. 

The author in [18], developed a numerical technique 
for approximating the ARL of processes running on an 
EWMA control chart. In [19], the author resolved an 
integral equation to determine the ARL  of a process 

running on a cumulative sum (CUSUM) chart while in 
the in-control process stage. Numerous studies have 
been devoted to assessing the performance of the NIE 
technique in various scenarios, including detecting 
changes to the mean of an autocorrelation process. In 
the present research, we utilized the NIE technique to 
approximate the ARL through an integral equation 
using the Gauss-Legendre quadrature for a long-
memory ARFIX running on an EWMA control chart. 

The remainder of the paper is organized as 
follows. Section 2 provides brief derivations of a 
long-memory ARFIX(p, d, k) process with 
underlying exponential white noise and an EWMA 
control chart. The numerical approximation of the 
integral equation utilizing the NIE method through 
the application of the Gauss-Legendre rule technique 
is presented in Section 3. The numerical results for the 
NIE technique and explicit formula are compared in 
Section 4. To illustrate the efficacy of the proposed 
technique, an example process involving real data is 
also provided in Section 5. Finally, conclusions and 
future recommendations are offered in Section 6. 
 
 
2 The Long-Memory ARFIX(p, d, k) 

Model With Underlying Exponential 

White Noise and the EWMA Control 

Chart 
The following subsections provide brief derivations 
of the EWMA chart and the model of interest. 
 
2.1  The ARFIX(p, d, k) Model 

Let ; 1, 2, ...tY t  be a sequence of fractionally 
integrated AR models with exogenous variables of 
order ( ,  ,  ),p d k  where p is the order of the AR 
process, d  is the fractional integration parameter, and 
k  is the exogenous variable in the model. The 
ARFIX( ,  ,  )p d k  model with exponential white noise 
can be written as 

1 1
(1 )(1 ) ,  

 

    
p k

i d

i t j jt t
i j

B B Y X   (1) 

where i  is the i-th AR coefficient,  j  the j-th 
coefficients corresponding to ,k  t  is a white noise 
process assumed to follow exponential distribution 

~ ( ) t Exp  when shift parameter 0,   and (1 )dB-
is the fractional differencing operator in which B is 
the backward-shift operator and d  is the degree of 
the differencing parameter. Since the focus of the 
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current investigation is on long-term memory 
processes, d  was limited to between 0 and 0.5. 

Operator (1 )dB  can be expanded using a 
binomial series expansion in the following manner: 

0
(1 ) ( )d r

r

d
B B

r





 
   

 
  

2 31 11 (1 ) (1 )(2 ) ... ,
2 6

dB d d B d d d B        (2) 

For any real value of d , the fractionally integrated 
white noise process (1 ) ,d

t tB Y    can be defined as 

1 2 3
1 1(1 ) (1 )(2 ) ... ,
2 6t t t t tY dY d d Y d d d Y             

(3) 
Note that r

t t rB Y Y  for order r. 
 

Equation (1) can be reformulated to solve for tY  in 
the generalized long-memory ARFIX( ,  ,  )p d k  
process running on an EWMA control chart as 
follows: 

1

1 1
(1 ) (1 ) ,

p k
i d

t i j jt t
i j

Y B B X   

 

      or 

1 1 2 2

1 1 2 2 3 1

2 1 3 2 4 2

...

( ... )

1 ( 1)( ... )
2

t t t p t p

t t t p t p

t t t p t p

Y Y Y Y

d Y Y Y Y

d d Y Y Y Y

  

  

  

  

    

    

   

    

      

 
1 1 2 2... ...t t k kt tX X X                    (4) 

 

where the initial value of 1 2 ( 1), ,..., , ,...,
t t t p t p

Y Y Y Y
      

1 2, ,...,
t t kt

X X X  are equal to 1 and the initial value of 
exponential white noise 1.

t
   

 
2.2  The EWMA Control Chart 
The EWMA control chart is highly effective for 
rapidly detecting small changes in a process 
parameter by appropriately assigning weights to both 
the current and previous observations. According to 

,tM  the plotting statistic for the EWMA control 
chart is defined in the following form: 

1(1 ) ,t t tM M Y     for 1,2,... ,t    (5) 
where tY  is the sequence of the long-memory 
ARFIX( ,  ,  )p d k  process with underlying exponential 
white noise , tM  represents the MA at time 1, tt M

represents the past values, and 0M  represents the 
initial value. If the process parameters are known, the 

target or in-control mean 0( )Y is assumed to be 0M  
while the smoothing parameter (or weighting 
parameter)   is constrained by 0 1.   
 

Note that although the value of   can range 
from zero to one inclusively, it is typically selected to 
be between 0.01 and 0.05 because the EWMA 
control chart is designed to detect small changes in a 
process parameter. When 1,   it becomes the same 
as the Shewhart chart. In addition, the smoothing 
parameter has an inverse relationship with the chart's 
sensitivity to slight shifts. 

Assuming that observations tY  are independent 
random variables with mean 0( )  and variance 

2( ),  the respective mean and variance of the 
EWMA statistic for the in-control process are 

0( ) tE M and  
2 2( ) ( / (2 )) 1 (1 ) .        

t

tV M
      (5) 

 
The upper control limit (UCL) and lower control 

limit (LCL) of the EWMA chart can be derived as 
2

0( , ) 1 (1 ) ,
2


  

     

tUCL LCL L  (6) 

 
where constant L  determines the control limits' 
width, the value of which is determined by the 
desired in-control ARL (ARL0). For sufficiently large 
values of ,t the control limits can be expressed as 

0( , ) ,
2

UCL LCL L


 


 


  (7) 

where L  is the coefficient of the control chart for a 
predetermined rate of false alarms. EWMA statistic 

tM  is plotted to fall between the UCL and the LCL 
when the process is in control. On the contrary, the 
process is considered to be out of control when tM  is 
less than the LCL or more than the UCL. 

The long-memory ARFIX( ,  ,  )p d k process in 
Equation (4) can be replaced with Equation (5). 
Consequently, the EWMA statistic can be expressed 
as 





1 1 1 2 2

1 1 2 2 3 1

2 1 3 2

1 1 2 2

(1 ) ...

( ... )
1 ( 1)( ... )
2

... ...

t t t t p t p

t t t p t p

t t p t p

t t k kt t

M M Y Y Y

d Y Y Y Y

d d Y Y Y

X X X

    

  

 

   

   

    

   

     

    

     

     
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1 1 1 2 2

1 1 2 2 3 1

2 1 3 2

(1 ) ...
( ... )

1 ( 1)( ... )
2

t t t p t p

t t t p t p

t t p t p

M Y Y Y

d Y Y Y Y

d d Y Y Y

   

   

  

   

    

   

     

    

     

 

1 1 2 2... ...
t t k kt t

X X X             (8) 
 
Hence, the stopping time for the EWMA control 
chart ( )b

 can be written as 

 inf 0; ,for ,b tt M b b      (9) 
 
where b  is a constant equivalent to the UCL. 
 

Assume that the process is in control at time t  if 
the EWMA statistics tM  is in range 0  tM b  and 

the process is out-of-control if .tM b  Let us 
establish that the lower limit is 0,L  and the upper 
limit is .U b  Concerning the EWMA statistics 

1M while the process is in an in-control state: 



1 1 1 2 2

1 1 2 2 3 1

2 1 3 2

1 1 2 2 1

0 (1 ) ...
( ... )

1 ( 1)( ... )
2

... ...

t t t p t p

t t t p t p

t t p t p

r r

M Y Y Y

d Y Y Y Y

d d Y Y Y

X X X b

   

   

  

   

   

    

   

     

    

     

      

 

 
Let ( )  denote the ARL to monitor small shifts 

in the mean of the long-memory ARFIX( ,  ,  )p d k

process with an initial value 0( )M  . Now, we 
define the function ( )  as follows: 

.A L 0R ( ) ( ) ,
b

E b  


      (10) 
 
where ( )

b
E 


is the expectation under the density 
function ( , ).

t
f    

Let  1 0 0 1(1 ) ... ( ... )p t p p t pL Y Y d Y Y                 

2 2 1 1
1 ( 1)( ... ) ... ...
2 t p t p k kd d Y Y X X             

 
 1 0 0 1(1 ) ... ( ... )p t p p t pU b Y Y d Y Y               

 

2 2 1 1
1 ( 1)( ... ) ... ...
2 t p t p k kd d Y Y X X             

 

For a probability distribution function 1, , the 
probability that 1( )f  satisfies the constraints in the 
previous equation can be rewritten as follows.  

1( ) ( ) ,
U

L

P L H f z dz     

where ( )f z  is the probability density function of .z  
 
 
3 Approximating the ARL to Monitor 

Small Shifts in the Mean of an 

ARFIX Process Running on an 

EWMAControl Chart 
The numerical approximation of the integral equation 
utilizing the NIE method through the application of 
the Gauss-Legendre rule technique is proposed in this 
section. 

 
Let 0 M  represent an initial value of the 

EWMA statistics, and replace z  with  t
where 

( ) t Exp  represents white noise error terms. 
According to [20], we propose a method where in the 
function ( )  can be reformulated as follows:  







1 0

0 1 2 1

2 1 3 2

1 1

1 1 0

0 1 2 1

2 1 3

( ) 1 (1 ) ...

( ... )

( 1)( ... )
2

... ...

(1 ) ...

( ... )

( 1)( ...
2

p t p

t p t p

t t p t p

k k

p t p

t p t p

t t p

P Y Y

d Y Y Y

d d Y Y Y

X X

b Y Y

d Y Y Y

d d Y Y

    

  


 

  

    

  


 



  

   



  

 

      

  

     

   

      

  

     



2

1 1

)

... ...

t pY

X 

 

   

 



1 0

0 1 2 1

2 1 3 1

1 1 1

 (1 (1 ) ...

( ... )

( 1)( ... )
2

... ... ( )

U

p t p

L

t p t p

t t p t p

r r

Y Y

d Y Y Y

d d Y Y Y

X X f y dy

   

  


 

  



  

   

      

  

     

    



 

1 0

0 1 2 1

1  (1 ) ...

( ... )

U

p t p

L

t p t p

Y Y

d Y Y Y

   

  



  

      

   

  
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

2 1 3 2

1 1 1

1 ( 1)( ... )
2

... ... ( )

t t p t p

k k

d d Y Y Y

X X f y dy

  

  

        

    

 

 

As a result of changing the integral variable, the 
integral equation can be expressed: 
 



1 1
0

1 1 2 1

2 1 3 2

1 1

1 (1 )( ) 1 ( ) ( ...

( ... )

1 ( 1)( ... )
2
... ...

b

t p t p

t t p t p

t t p t p

t k kt

z
z f Y Y

d Y Y Y

d d Y Y Y

X X dz

 
  

 

 

 

 

 

   

   

 
      

   

     

   



 

0

1 1 11 ( )( exp
b

z
  

   



1 1

1 1 2 1

2 2

1 1

(1 )( ...

( ... )

1 ( 1)( .. )
2
... ...

t p t p

t t p t p

t p t p

t k kt

z
Y Y

d Y Y Y

d d Y Y

X X

 
 



 



 

 

   

  

  
   

 
    
 
     
 
 
    

)dz  

 
Thus, we get the integral equation in the following 
manner: 

0

1 (1 )( ) 1 ( ).exp .exp
b

z
z

 


  

    
       

   
  

.exp





1 1 2 2

1 1 2 1

2 1 3 2

1 1

1 ...

( ... )

1 ( 1)( ... )
2
... ...

t t p t p

t t p t p

t t p t p

t k kt

Y Y Y

d Y Y Y

d d Y Y Y

X X

  


 

 

 

  

   

   

 
   

 
    
 
      
 
 
    

dz  (11) 

 
Equation (11) is represented as a linear Fredholm 

integral equation of the second kind, [21]. By using 
the Quadrature Rule, we can approximate the integral 

0
( )

b

f z dz  as the sum of the areas of rectangles. 

These rectangles have bases of length /b m and 
heights determined by the values of f  at the 
midpoints of intervals with a length of / ,b m starting 
from zero. The interval [0, b] is partitioned into a 
sequence of points 1 20 .... ,m b        where 

/ 0.jw b m  represents a set of constant weights. 
An integral equation from Equation (11) can be 

approximated using the quadrature rule as follows: 

10

( ) ( ) ( )
b m

j j

j

W z f z dz w f 


  (12) 

where ( )W z  is a weight function, ( 1 2)j b m j    

and / ; 1,2,..., .jw b m j m   
 
Solving a system of algebraic linear equations 

with m  equations and m  unknowns, can be used to 
approximate the solution for ( )  by replacing   
with i  in Equation (11) as follows: 
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1 1
1

1 1 2 1
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
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    

     

    



 

for 1,2,..., .i m   
 
Let ˆ ( )  denote the NIE method for ARL when 

using the interval  0,b  to apply the Gauss-Legendre 
rule. Hence, the integral equation represented by 
Equation (11) consists of the set 

1 2( ), ( ), ..., ( ),ˆ ˆ ˆ ˆ( ) m         which can be 
approximated as 





1
1 1 1

1

1 1 2 1

2 1 3 2

1 1

(1 )1ˆ ˆ( ) 1 ( ) ...

( ... )

1 ( 1)( ... )
2
... ...

m
j

j j t

j

p t p t t p t p

t t p t p

t k kt t

w f Y

Y d Y Y Y

d d Y Y Y

X X

  
  

 

  

 

  





    

   

 
     



    

     

    



 





2
2 1 1

1

1 1 2 1

2 1 3 2

1 1

(1 )1ˆ ˆ( ) 1 ( ) ...

( ... )

1 ( 1)( ... )
2
... ...

m
j

j j t

j

p t p t t p t p

t t p t p

t k kt t

w f Y

Y d Y Y Y

d d Y Y Y

X X

  
  

 

  

 

  





    

   

 
     



    

     

    



 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.20 Wilasinee Peerajit

E-ISSN: 2224-2678 180 Volume 23, 2024







1 1
1

1 1 2 1
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1 1
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1 ( 1)( ... )
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


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The above set of m equations in m unknowns can 

be rewritten in matrix form.  

Let 1 1 2 (ˆ ˆ( ), ( ),. ., )ˆ.m m  

   
 

L  be a column 

vector of ˆ ( ); 1, 2, ..., ,i i m    1 1,1,...,1m
1  is a 

column vector of ones, and 1 (1,1, ,1)m diag I  is the 

unit matrix order .m  Let matrix m mR  be a matrix 
with dimension m m  with element can be expanded 
as  





1 1

1 1 2 1

2 1 3 2

1 1

(1 )1 ...

( ... )

1 ( 1)( ... )
2
... ...

j i

ij j t

p t p t t p t p
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

 

  

 

  


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
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    

 

where ; , 1,2,....,ij i j mR    
If the inverse of 1( )m m m



I R exists and is invertible, 
then the ARL approximation for the NIE can be 
expressed in a system of linear equations in matrix 
form as follows: 
   1

1 1( ) ,m m m m m



   L I C 1   (13) 
 
Finally, the function 1 2( ), ( ), ..., ( ),ˆ ˆ ˆ

m     is 
obtained by replacing i  with .  Therefore, NIE 
technique for approximating the ARL of a long-
memory ARFIX( ,  ,  )p d k  process running on the 
EWMA control chart is 

 1 1
1

1 1 2 1

2 1 3 2

(1 )1ˆ ˆ( ) 1 ( ) ...

( ... )
1 ( 1)( ... )
2

m
j

j j t
j
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t t p t p
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

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   

 
     



    

     



 
1 1... ...

t k kt t
X X                       (14) 

where ( 1 2)j b m j    and 

/ ; 1,2,..., .jw b m j m   
The NIE technique is used to detect small shifts in the 

mean process and the accuracy of explicit formulas. 
Therefore, the explicit formula for the in-control ARL is 

    





 

0 0 0
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2 2

1 1 0

1
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2
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        
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(15) 
 
On the contrary, the explicit formula for the out-of-
control ARL is:  

    
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(16) 
 
 

4   The Numerical Study 
To assess the efficacy of the proposed NIE technique 
in comparison with deriving the ARL using explicit 
formulas, the accuracy percentage between them can 
be expressed as 

ˆ( ) ( )%Accuracy 100 100%,
( ))

 



  
  


 (17) 

where ˆ ( )  and ( )  are the ARL  results for the 
NIE technique and explicit formulas, respectively. An 
accuracy percentage of greater than 95% means that 
the ARL results of the two methods are close to each 
other (i.e., the results are highly consistent). 

The performances of the NIE technique and 
explicit formulas were assessed using  = 0.03, 0.05, 
or 0.10 to compute the UCL (b) from Equation (14) 
to obtain ARL0 = 370. In the experiment, we 
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generated several long-memory ARFIX(p, d, k) 
processes with exponential white noise running on a 
EWMA control chart using Equation (8) and 
employed a wide range of possible changes and 
autocorrelation coefficient values. The white noise of 
the process in this investigation was exponentially 
distributed ( ( )).t Exp   The in-control process 

0( )   has an exponential mean parameter of 1 
whereas the out-of-control processes was assigned 
changes in the mean 1( )  of 1.025,1.05, 1.075, 
1.100, 1.125, 1.15, 1.20, 1.30, or 1.50. The 
autocorrelation coefficients were assigned values of 

1 20.1, 0.2,    3 10.3, 0.1.    Eight hundred 
division points (m) were utilized in the system of 
linear equations. The calculations for the numerical 
results for the ARL derived by using both techniques 
were performed using Wolfram Mathematica. 

The principal findings using the suggested NIE 
technique for approximating the ARL of the long-
memory ARFIX processes running on a EWMA 
chart for each scenario are reported in Table 1 
(Appendix). The smoothing parameter ( )  of the 
control chart was utilized to determine the optimal 
value for   to compute the UCL ( ).b For each 
coefficient parameter combination in each long-
memory ARFIX process, we found that the values of 
  and b  increased. Furthermore, upon examination 
of the coefficient parameters, contrasting results were 
obtained for the positive and negative values of 1.  

Table 2  (Appendix) and Table 3  (Appendix) 
report the numerical results for the out-of-control 
ARL  1 0( )   computed using the process and 
parameter values in Table 1. The 1ARL was then 
calculated using the NIE technique in Equation (14) 
and explicit formulas in Equation (16) for the long-
memory ARFIX(p, d = 0.1, k = 1) process when p 
was varied as 1, 2, or 3 running on an EWMA control 
chart. To accomplish this, the NIE search algorithm 
was utilized to identify the corresponding values of b. 

The results indicate that the ARL efficacies derived 
from both techniques were similar for detecting small 
changes in the process mean. The 1ARL  results for 
the NIE and the explicit formulas methods decreased 
rapidly as the mean change magnitude was increased. 
When analyzing the chart's properties, it is evident 
that an increase in the   value resulted in a 
proportional rise in 1ARL . This demonstrates that the 

sensitivity of the EWMA chart decreased as   was 

increased. 
Figure 1 shows the 1ARL results for the NIE  

technique where several processes were assigned 
various positive and negative coefficient values. It 
was found that positive coefficient values resulted in 
a reduction in 1ARL  at every change level, which 
resulted in increased detection efficacy. In addition, 
the percentage change results were computed for 
various changes in mean magnitude for each 
scenario. The results of the calculations were greater 
than 95%, which indicates that the suggested 
technique is accurate and fully consistent with the 
explicit formulas method. 
 
 
5 An Illustration of the Efficacy of the 

NIE Technique with Real Data 
For this part of the study, we utilized the weekly 
stock market price data for iron ore futures 62% Fe 
CFR-(TIOc1) from January 5, 2020, to November 
26, 2023, obtained from https://th.investing.com/. In 
addition, daily UDS/THB exchange rate data were 
also included as the exogenous variable. The datasets 
consisted of 204 observations each. 

Estimation of the parameters and testing of the 
distribution of the white noise were performed using 
the statistical software packages Eviews and SPSS, 
respectively (Table 4 and Table 5). The p-values of 
all of the parameters were found to be less than 0.05 
indicating that they were all statistically significant. 
Moreover, the value of d  (0.163219, p-value < 0.5) 
means that this model is a long-memory process. 

 
Table 4. Parameter estimates for the TIOc1 dataset 

including the UDS/THB exchange rates as the 
exogenous variable 

Parameters: Coefficient t-Statistic Prob.   
UDS/THB -3.4336 -2.9599 0.0034* 
d  0.1632 2.7586 0.0063* 
AR(1) 0.9998 177.3717 0.0000* 
R-squared 0.96493 
Adjusted R-squared        0.96458 
*A significance level of 0.05.  
 
 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.20 Wilasinee Peerajit

E-ISSN: 2224-2678 182 Volume 23, 2024



Table 5. The results of testing the distribution of the 
white noise of the TIOc1 dataset 

Testing exponential white noise. 
Exponential Parameter ( 0  ) 3.6471 
Kolmogorov-Smirnov  0.8572 
Asymptotic Significance (2-Sided) 0.4544ns 
ns non-significance level of 0.05.  

 
The residuals (white noise) of the long-memory 

ARFIX model were tested to see whether they 
followed an exponential distribution by using a 
Kolmogorov-Smirnov test, which was the case (p-
value > 0.05). The exponential parameter ( ) was 
3.6471 (Table 5). The model is defined as 
 

1 2 3 401. 0136 0.0949 . 265 0.0418t t t t tY Y Y Y Y      

 
1 4; )3.4 (336 3.6 71t tX Exp    (18) 

 
Subsequently, the NIE technique to solve the 

integral equation in Equation (14) for the ARL of the 
process running on an EWMA control chart becomes 

1

(1 )1ˆ ˆ( )  1 + ( ) j

j

m

j

j

w f
  


 





  


 


  

1 2 3

4 1

0.0949 0.0265
0.04

1.136
3.1 38 4 36

t t t

t t

Y Y Y

Y X 

  



  
   

  (19) 

 
with a set of constant weights ,jw b m  and 

( 1 2) ; 1,2, , .j b m j j m     
The results of the calculations and a comparison 

with those using the explicit formulas are provided in 
Table 6 (Appendix). They reveal that there was no 
difference in the ARL  values obtained by using the 
two techniques when ARL0 = 370 with various 
smoothing parameter values (0.05, 0.10, or 0.20) for 
the ARFIX(1, 0.1632,1) process running on an 
EWMA control chart. As the mean change 
magnitude was increased, the ARL  calculated via 
both methods decreased, yielding the same findings 
as those in Table 2 (Appendix) and Table 3 
(Appendix). Moreover, the percentage accuracy was 
1 0 0 %  in all cases. This indicates high consistency 
between the two techniques. Moreover, for the same 
mean change magnitude, the out-of-control ARL  
increased as the value of the smoothing parameter 
was increased from 0.01 to 0.05. These results are in 
agreement with the numerical results in Section 4. The 
efficacy of both techniques concerning out-of-control 

processes were assessed by comparing the EWMA 
control chart to the CUSUM control chart. 
Calculation of the UCL (b) parameter when the 
reference value (a) is set to 6 on the CUSUM control 
chart and ARL0 is set according to the EWMA 
control chart. For detecting small changes in process 
parameters on both control charts, consistent results 
are obtained. It was later found that the presented 
results were consistent with the previous. Overall, the 
NIE technique is performed as a accomplishing 
choice. 
  
 
6    Conclusions and Recommendations 
The research presented here is an innovative 
approach for detecting mean changes on EWMA 
control charts of the ARFIX time series. The Gauss-
Legend method is applied to an approximation of 
ARL with IE interpolation. The results of a numerical 
study comprising the proposed technique and the 
ARL derived using explicit formulas showed 
excellent agreement between the two methods 
(accuracy percentage > 95%), and it was found that 
the out-of-control ARL results decreased rapidly and 
in the same direction for both techniques. Therefore, 
the NIE technique is a suitable choice for 
determining the ARL for this specific situation. 
Moreover, the method could be modified for other 
control charts and used in practical scenarios that 
include other time series models. 
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APPENDIX 
 

Table 1. Values of the upper control limit ( )b  with optimal values of   for combination long-memory 
)ARFIX , 0( .1, 1p models at ARL0 = 370. 

Long-memory 
)ARFIX ,0( .1, 1p  process 

Coefficient parameters    

1  2  3  1   0.03 0.05 0.10 
p = 1  0.1 - - 0.1  2.5881E-14 2.66337E-08 0.0011283 

 -0.1 - - 0.1  3.0534E-14 3.14211E-08 0.0013324 
p = 2  0.1 0.2 - 0.1  2.1940E-14 2.25758E-08 0.0009556 

 -0.1 0.2 - 0.1  2.5881E-14 2.66337E-08 0.0011283 
p = 3  0.1 0.2 0.3 0.1  1.7125E-14 1.76181E-08 0.000745 

 -0.1 0.2 0.3 0.1  2.0200E-14 2.07849E-08 0.0008795 
 

 

Table 2. Comparison of out-of-control ARL results between the NIE technique and explicit formulas for the long-
memory ARFIX processes when 1 0.1   running on an EWMA control chart 

Long-memory 
ARFIX(p,0.1,1)   Technique 1  

1.00 1.025 1.05 1.075 1.100 1.125 1.15 1.20 1.30 1.50 
p = 1 0.03 NIE 370.000 159.284 71.648 33.721 16.686 8.766 4.962 2.120 1.119 1.003 

  Explicit 370.000 159.284 71.644 33.720 16.686 8.766 4.962 2.120 1.119 1.003 
  %Accuracy 100.000 100.000 99.997 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.05 NIE 370.000 220.118 134.308 83.953 53.716 35.165 23.553 11.338 3.588 1.278 
  Explicit 370.000 220.118 134.308 83.953 53.716 35.165 23.553 11.338 3.588 1.278 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 279.965 214.627 166.595 130.747 103.744 83.156 54.956 26.535 8.608 
  Explicit 370.000 279.965 214.627 166.595 130.747 103.744 83.156 54.956 26.535 8.608 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

p = 2 0.03 NIE 370.000 158.663 71.102 33.350 16.453 8.625 4.878 2.089 1.115 1.003 
  Explicit 370.000 158.672 71.107 33.351 16.453 8.625 4.878 2.089 1.115 1.003 
  %Accuracy 100.000 99.994 99.993 99.997 100.000 100.000 100.000 100.000 100.000 100.000 
 0.05 NIE 370.000 219.237 133.263 83.002 52.930 34.543 23.072 11.056 3.491 1.263 
  Explicit 370.000 219.237 133.263 83.002 52.930 34.543 23.072 11.056 3.491 1.263 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 278.789 212.877 164.581 128.733 101.802 81.340 53.440 25.551 8.191 
  Explicit 370.000 278.789 212.877 164.581 128.733 101.802 81.340 53.440 25.551 8.191 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

p = 3 0.03 NIE 370.000 157.739 70.292 32.800 16.112 8.419 4.755 2.046 1.108 1.003 
  Explicit 370.000 157.733 70.295 32.801 16.112 8.419 4.755 2.046 1.108 1.003 
  %Accuracy 100.000 99.996 99.996 99.997 100.000 100.000 100.000 100.000 100.000 100.000 
 0.05 NIE 370.000 217.921 131.711 81.596 51.773 33.632 22.370 10.650 3.352 1.242 
  Explicit 370.000 217.921 131.711 81.596 51.773 33.632 22.370 10.650 3.352 1.242 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 277.037 210.281 161.659 125.776 98.962 78.693 51.250 24.149 7.609 
  Explicit 370.000 277.037 210.281 161.659 125.776 98.962 78.693 51.250 24.149 7.609 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
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Table 3. Comparison of out-of-control ARL results between the NIE technique and explicit formulas for the long-
memory ARFIX processes when 1 0.1    running on an EWMA control chart 

Long-memory  
ARFIX(p,0.1,1)    Technique 1  

1.00 1.025 1.05 1.075 1.100 1.125 1.15 1.20 1.30 1.50 
p = 1 0.03 NIE 370.000 159.928 72.209 34.102 16.924 8.910 5.048 2.151 1.124 1.003 

  Explicit 370.000 159.929 72.209 34.102 16.924 8.910 5.049 2.152 1.124 1.003 
  %Accuracy 100.000 99.999 100.000 100.000 100.000 100.000 99.980 99.954 100.000 100.000 
 0.05 NIE 370.000 221.004 135.362 84.916 54.515 35.799 24.045 11.626 3.689 1.293 
  Explicit 370.000 221.004 135.362 84.916 54.515 35.799 24.045 11.626 3.689 1.293 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 281.147 216.394 168.566 132.795 105.726 85.017 56.518 27.559 9.050 
  Explicit 370.000 281.147 216.394 168.566 132.795 105.726 85.017 56.518 27.559 9.050 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

p = 2 0.03 NIE 370.000 159.285 71.650 33.721 16.686 8.765 4.962 2.120 1.119 1.003 
  Explicit 370.000 159.284 71.654 33.720 16.686 8.765 4.962 2.120 1.119 1.003 
  %Accuracy 100.000 99.999 99.994 99.997 100.000 100.000 100.000 100.000 100.000 100.000 
 0.05 NIE 370.000 220.118 134.308 83.953 53.716 35.165 23.553 11.338 3.588 1.278 
  Explicit 370.000 220.118 134.308 83.953 53.716 35.165 23.553 11.338 3.588 1.278 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 279.965 214.627 166.559 130.747 103.744 83.156 54.956 26.535 8.608 
  Explicit 370.000 279.965 214.627 166.559 130.747 103.744 83.156 54.956 26.535 8.608 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

p = 3 0.03 NIE 370.000 158.350 70.826 33.166 16.337 8.556 4.836 2.075 1.113 1.003 
  Explicit 370.000 158.349 70.828 33.166 16.337 8.556 4.836 2.075 1.113 1.003 
  %Accuracy 100.000 99.999 99.997 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.05 NIE 370.000 218.797 132.744 82.531 52.541 34.237 22.835 10.919 3.444 1.256 
  Explicit 370.000 218.797 132.744 82.531 52.541 34.237 22.835 10.919 3.444 1.256 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
 0.10 NIE 370.000 278.204 212.008 163.601 127.739 100.846 80.446 52.699 25.074 7.991 
  Explicit 370.000 278.204 212.008 163.601 127.739 100.846 80.446 52.699 25.074 7.991 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

 
 

Table 6. Comparison of out-of-control ARL results between the NIE technique and explicit formulas for the TIOc1 
dataset-based long-memory ARFIX process running on an EWMA  and CUSUM control chart 

Control 
chart   b  ARL 

techniques 
1  

1.025 1.05 1.075 1.100 1.125 1.15 1.20 1.30 1.50 
EWMA 0.01 3.242210-11 NIE 188.471 99.309 54.095 30.474 17.787 10.793 4.56032 1.5915 1.0330 

  Explicit 188.471 99.309 54.095 30.474 17.787 10.793 4.56032 1.5915 1.0330 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

0.03 0.008320382 NIE 293.823 235.804 191.116 156.333 128.992 107.302 75.945 41.184 15.598 
  Explicit 293.823 235.804 191.116 156.333 128.992 107.302 75.945 41.184 15.598 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

0.05 0.213871 NIE 310.138 262.247 223.55 191.994 166.039 144.523 111.442 70.408 33.818 
  Explicit 310.138 262.247 223.55 191.994 166.039 144.523 111.442 70.408 33.818 
  %Accuracy 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

Control 
chart a  b  ARL techniques 1.025 1.05 1.075 1.100 1.125 1.15 1.20 1.30 1.50 

CUSUM 6 16.35156 NIE 310.012 262.582 224.211 192.904 167.156 145.820 113.057 72.541 36.565 
   Explicit 310.674 263.115 224.643 193.258 167.448 146.063 113.228 72.631 36.597 
   %Accuracy 99.787 99.797 99.808 99.817 99.826 99.834 99.849 99.876 99.913 
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Fig. 1: Graphical displays of ARL1 results using NIE method running on an EWMA control chart for the long-

memory ARFIX processes with coefficient value 
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