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Abstract: - This study introduces an extended Lindley distribution utilizing a new family of Marshall-Olkin 

distributions, providing a more flexible framework for modeling lifetime data. The distribution is examined 

within the context of complete sampling for k-level constant stress accelerated life testing. A reliability analysis 

of the proposed model and a discussion on parameter estimation using maximum likelihood estimation are 

presented. Asymptotic confidence intervals for the parameters are derived through the Fisher information 

matrix. Bayesian estimation procedures and the Markov Chain Monte Carlo (MCMC) approach are also 

explored. Real data is analyzed to assess the model's fit, followed by simulation studies to illustrate its 

performance. The paper concludes with a summary of findings and implications for future research. 
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1  Introduction 
In the field of reliability engineering, traditional life 

testing experiments are conducted to analyze failure 

time data obtained under normal operating 

conditions. However, the high cost of these 

experiments can be difficult to get failure 

information under certain conditions. This problem 

makes it difficult to get the life data for devices like 

insulating materials, lasers, engine electronics, and 

power cables. To solve this problem, accelerated life 

testing (ALT) has become a commonly used 

strategy to obtain failure data quickly. ALT is 

subjecting products to higher-than-normal stress 

levels (e.g., voltage, humidity, vibration, 

temperature, or pressure) in order to get early 

failures. By examining the life data from accelerated 

life tests, researchers can estimate the life 

characteristics of the product under normal 

operating conditions. The most regularly used ALT 

techniques include constant stress testing, step stress 

testing, and combinations of both techniques. These 

methods allow researchers to get more valuable, 

reliable information within less time compared to 

traditional life testing methods. 
[1], stated a discussion of the advantages and 

disadvantages of constant-stress and step-stress 

accelerated life testing (ALT) methods. In constant-

stress ALT, units are preserved at a consistently 

high-stress level until all units fail or the test is 

concluded. On the other hand, However, step-stress 

ALT slowly increases the stress level on each unit at 

established times or after a specific number of 

failures. many researchers have investigated 

constant-stress and step-stress models, as well as 

their combinations, in addition to handling problems 

related to optimal ALT planning and result 

interpretation. For further information on this topic, 

refer to works by [2], [3], [4], [5],  [6] and [7]. 

The exponential distribution is commonly used 

in survival analysis and reliability theory for 

analyzing lifetime data due to its simplicity and 

extensive usage throughout multiple fields.  

 However, The exponential distribution has 

restricted when it comes to effectively modeling 

variable failure rates. As a result, Alternative 

distributions have been introduced, including the 

Lindley distribution. 
 [8] in 1958 introduced the Lindley distribution 

offered advantages over the exponential distribution, 

including an increasing risk rate and decreasing 

mean residual life function. The Lindley 

distribution, which was first introduced, has been 
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examined further by researchers like as [9], who 

have proved a benefit over the exponential 

distribution for certain industries. [10] have been 

developed, Methods for estimating reliability under 

progressive type-II censoring for the Lindley 

distribution, while [11] have explored classical 

estimation techniques for constant stress-accelerated 

life tests under the exponential Lindley distribution. 

Researchers have been offering developments to the 

lifetime model's application by various 

generalizations and extensions of the Lindley 

distribution, such as weighted Lindley [12], 

extended Lindley [13], generalized Lindley [14], 

and power Lindley distributions [15]. 
[16] have been the first introduction of a 

transformation of the cumulative distribution 

function (cdf) by the development of a family of 

distributions by adding a new parameter. This 

method has been beneficial for various researchers 

to derive new distributions and investigate their 

properties. For example, [17] explored Marshall-

Olkin logistic processes, [18] introduced the 

Marshall-Olkin power lognormal distribution along 

with its statistical properties, while [19] examined 

the mathematical properties of the Marshall-Olkin 

extended Weibull distribution. Additionally, [20] 

applied the Marshall-Olkin extended Uniform 

distribution, [21] studied the Marshall-Olkin 

Extended Lomax distribution, and [22] incorporated 

the Marshall-Olkin extended generalized linear 

exponential distribution. [23] investigated the 

Marshall-Olkin extended Pareto distribution, while 

[24] conducted a comprehensive analysis of the 

Marshall-Olkin extended Weibull distribution as a 

compound distribution mixed with exponential 

distribution for modeling censored data. 

Furthermore, [25] proposed an extension of the 

inverse Weibull distribution using the Marshall-

Olkin method to provide a more flexible option for 

modeling lifetime data. 

The paper's structure is as follows: The model 

definition and test assumptions are discussed in the 

subsequent section. The maximum likelihood 

estimates (MLEs) of the model parameters and the 

corresponding Fisher information matrix for k-level 

constant-stress accelerated life tests (ALTs) are 

derived in the subsequent section. Additionally, 

Bayesian estimation procedures for the unknown 

parameters and the Markov Chain Monte Carlo 

(MCMC) approach are detailed. Subsequently, two 

real data sets are analyzed to validate the theoretical 

findings presented earlier. The results obtained are 

then illustrated and compared using simulated data 

generated from the proposed model. Finally, 

conclusions drawn from the study are presented. 

2 Describe the Model and 

 Assumptions for Testing 
 

2.1  Lindley Distribution 
The probability density function (pdf) of the Lindley 

(𝜆) distribution is given by:  

𝑓(𝑡) =
𝜆2

(1 + 𝜆)
(1 + 𝑡)𝑒−𝜆𝑡    ,   𝑡 > 0, 𝜆 > 0 .     (1) 

 

The first moment  𝐸(𝑡) =
𝜆+2

𝜆(1+𝜆)
 , the second 

moment  𝐸(𝑡2) =
2(𝜆+3)

𝜆2(1+𝜆)
 .     

 

The corresponding cumulative distribution function 

(cdf) is given by: 

𝐹(𝑡) = 1 −
( 1 + 𝜆 + 𝜆𝑡)

(1 + 𝜆)
𝑒−𝜆𝑡   ,   𝑡 > 0, 𝜆 > 0.  (2) 

 

The corresponding hazard rate function is given by:  

ℎ(𝑡) =
𝜆2

( 1 + 𝜆 + 𝜆𝑡)
(1 + 𝑡)   ,   𝑡 > 0, 𝜆 > 0. 

 

2.2  Marshall-Olkin Method 

[16],  proposed a transformation of the baseline 

(cdf) by adding a new parameter to obtain a family 

of distributions. 

𝐺(𝑥, 𝜃) =
𝐹(𝑥)

1 − 𝜃̅(1 − 𝐹(𝑥))
  ,   − ∞ < 𝑥 < ∞,  

𝜃 > 0, 𝜃̅ = 1 − 𝜃.                                                        (3)  
 

2.3  New Model 
In this section, we will give the Marshall-Olkin 

Extended Lindley distribution (MOEL)  

𝐺(𝑡, 𝜃) =
𝐹(𝑡)

1 − 𝜃̅𝐹̅(𝑡)
  𝑤ℎ𝑒𝑟𝑒  𝑡 > 0 , 𝜃 > 0, 

 𝜃̅ = 1 − 𝜃, 𝐹̅(𝑡) = 1 − 𝐹(𝑡)  .                         
  Then     

       𝐺(𝑡, 𝜃) =    
(1+𝜆)−( 1+𝜆+𝜆𝑡)𝑒−𝜆𝑡

(1+𝜆)−𝜃̅( 1+𝜆+𝜆𝑡)𝑒−𝜆𝑡
   .                  (4) 

 

and, 

𝑔(𝑡, 𝜃) =
𝜆2(1 + 𝜆)(1 + 𝑡)(1 − 𝜃̅)𝑒−𝜆𝑡

[(1 + 𝜆) − 𝜃̅( 1 + 𝜆 + 𝜆𝑡)𝑒−𝜆𝑡]2
.        (5) 

 

2.3.1  Reliability Analysis 

The Reliability function (survival function) of 

(MOEL) distribution is given by 

𝐺̅(𝑡, 𝜃) =
𝜃𝐹̅(𝑡)

1−𝜃̅𝐹̅(𝑡)
  , 𝑤ℎ𝑒𝑟𝑒 𝐹̅(𝑡) =

( 1+𝜆+𝜆𝑡)

(1+𝜆)
𝑒−𝜆𝑡. 

 

Then 

 𝐺̅(𝑡, 𝜃) =
𝜃( 1+𝜆+𝜆𝑡)𝑒−𝜆𝑡

(1+𝜆)−𝜃̅( 1+𝜆+𝜆𝑡)𝑒−𝜆𝑡
 . 
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The Hazard rate function of MOEL distribution is 

given by:  

ℎ(𝑡, 𝜃) =
𝑔(𝑡,𝜃)

𝐺̅(𝑡,𝜃)
   =

𝜆2(1+𝜆)(1+𝑡)

[(1+𝜆)−𝜃̅( 1+𝜆+𝜆𝑡)𝑒−𝜆𝑡]( 1+𝜆+𝜆𝑡)
 . 

 

Note that: 

 𝑔(0, 𝜃) =
𝜆2 

𝜃(1+𝜆)
 

 𝑔(∞, 𝜃) = 0 

 The pdf 𝑔(𝑡, 𝜃) is decreasing (unimodal) if 

𝜃 ≤
2𝜆2

𝜆2+1
   or  ( if 𝜃 >

2𝜆2

𝜆2+1
) see [15]. 

 ℎ(0, 𝜃) = 𝑔(0, 𝜃) =
𝜆2 

𝜃(1+𝜆)
 

 ℎ(∞, 𝜃) = 𝜆 

 

2.3.2  Test Assumptions 

Let 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑘 be the ordered stress levels 

in the tests and 𝑠0  be the use stress. Consider the 

following k levels of constant stress accelerated life 

tests (CSALTs) scheme with the complete sample. 

Under each stress level 𝑠𝑖, 𝑖 =
1,… , 𝑘, 𝑛𝑖 identical units are tested until all the 

 𝑛𝑖 units fail such that 𝑛 = ∑  𝑛𝑖
𝑘
𝑖=1 , 𝑙𝑒𝑡  𝑡𝑖1, 𝑡𝑖2, … ,

𝑡𝑖𝑛𝑖   be the observed failure times at stress level 

𝑠𝑖 such that 0 < 𝑡𝑖1 <  𝑡𝑖2 < ⋯ < 𝑡𝑖𝑛𝑖 , 𝑖 =

1,2,… , 𝑘.  

Note that the failure time 𝑡𝑖𝑛𝑖  at stress 𝑠𝑖 is 

random the objective here is to specify  𝑛1, 𝑛2, … ,
𝑛𝑘  according to some optimality criteria, the 

following assumptions are used through the our 

analysis proceeds: 

A1: Under each stress level 𝑠𝑖 , 𝑖 =
1,… , 𝑘, 𝑛𝑖 identical units are allocated under 

constant stress loading such that: 

 𝑛𝑖 = 𝜋𝑖 𝑛,∑  𝑛𝑖 
𝑘
𝑖=1 = 𝑛,∑  𝜋𝑖 = 1

𝑘
𝑖=1 , 0 ≤ 𝜋𝑖 ≤

1,𝑤ℎ𝑒𝑟𝑒 𝜋𝑖 is the proportion of test units allocated 

to the stress level 𝑠𝑖 , [26]. 

A2: Under each constant stress level 𝑠𝑖 , 𝑖 = 1,… , 𝑘, 

the failure time 𝑡𝑖𝑗 of jth unit (𝑗 = 1,… , 𝑛𝑖 ) follows 

the MOEL distribution. 

A3: [27], gives some life stress relationships 

between the life characteristic 𝜆 and the stress 

loading s as the following: 

 Arrhenius model: ln 𝜆 = 𝑎 +
𝑏

−𝑠
, 𝑏 > 0, 

where s is the absolute temperature. 

 Inverse power model: ln 𝜆 = 𝑎 +
𝑏 ln 𝑠 , 𝑏 > 0, where s is the voltage. 

 Exponential model: ln 𝜆 = 𝑎 + 𝑏𝑠, 𝑏 > 0, 

where s is a weathering variable. 

Thus: ln(𝜆) is a linear function of the transformed 

stress 𝜑(𝑠) =
1

−𝑠
,  ln 𝑠 , 𝑠 for the above three models. 

We assume that the relationship between the 

parameter   𝜆𝑖 and the stress 𝑠𝑖 is given by: 

ln(𝜆𝑖) = 𝑎 + 𝑏𝜑𝑖, , 𝑖 = 0, 1, … , 𝑘, 

 where a and b (> 0) are unknown parameters, and 

𝜑𝑖 = 𝜑(𝑠𝑖) is increased function of s , 𝜆𝑖 
satisfies𝜆0 <  𝜆1 < ⋯ < 𝜆𝑘. 

 

 

3 Maximum Likelihood Estimation 

(MLE) 
The MLE of the model parameters and the 

associated fisher information matrix for k-level 

constant stress ALT are derived in the following 

section. 

 

3.1  Point Estimation 
In this subsection, the likelihood function of our 

model parameters is obtained. Let 𝑡𝑖𝑗 be the failure 

time of jth unit under stress level (i), based on 

assumptions 1, 2, and 3, the likelihood function can 

be written as: 

𝐿(𝑎, 𝑏, 𝜃) =∏𝑔(𝑡, 𝜆, 𝜃)

𝑘

𝑖=1

 

𝐿(𝑎, 𝑏, 𝜃)

=∏∏

(
(exp(𝑎 + 𝑏𝜑𝑖))

2(1 + exp(𝑎 + 𝑏𝜑𝑖))

. (1 + 𝑡𝑖𝑗 )(1 − 𝜃̅)𝑒
−𝑡𝑖𝑗 exp(𝑎+𝑏𝜑𝑖)

)

(
(1 + exp(𝑎 + 𝑏𝜑𝑖)) − 𝜃̅( 1 + exp(𝑎 + 𝑏𝜑𝑖)

+𝑡𝑖𝑗 exp(𝑎 + 𝑏𝜑𝑖))𝑒
−𝑡𝑖𝑗 exp(𝑎+𝑏𝜑𝑖)

)

2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

.         (6)  

𝜆0 = exp(𝑎 + 𝑏𝜑0), 𝜆𝑖 = exp(𝑎 + 𝑏𝜑𝑖), 

 𝑖 =  1, 2,… , 𝑘. 
𝜆𝑖

𝜆0
= exp(a + bφi − a − bφ0),  

𝜆𝑖 = 𝜆0 exp(𝑏{𝜑𝑖 − φ0}) = 𝜆0𝛼
ℎ𝑖. 

 

Where 𝜆0 is the parameter of Lindley distribution 

under use stress 𝑠0, 𝛼
ℎ𝑖 = exp(𝑏{𝜑𝑖 − φ0}) =

𝜆𝑖

𝜆0
 , 

is the acceleration factor from 𝑠𝑖 to 𝑠0.  
 

Then ℎ𝑖(ln 𝛼) = 𝑏{𝜑𝑖 − φ0}, ℎ𝑖 =
𝜑𝑖−φ0

𝜑1−φ0
, 

 ℎ𝑘 > ℎ𝑘−1 > ⋯ > ℎ1 = 1,  

 

Therefore  
𝐿(𝜆0, 𝛼, 𝜃)

=∏∏
(𝜆0𝛼

ℎ𝑖)2(1 + 𝜆0𝛼
ℎ𝑖)(1 + 𝑡𝑖𝑗 )𝜃𝑒

−𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖

[(1 + 𝜆0𝛼
ℎ𝑖) − 𝜃̅( 1 + 𝜆0𝛼

ℎ𝑖 + 𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)𝑒−𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖]2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

                        

=∏∏
(𝜆0𝛼

ℎ𝑖)2(1 + 𝜆0𝛼
ℎ𝑖)(1 + 𝑡𝑖𝑗 )𝜃𝑒

𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖

[(1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖]2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

.       (7) 

= 𝜃∑  𝑛𝑖 
𝑘
𝑖=1 𝜆0

2∑  𝑛𝑖 
𝑘
𝑖=1 𝛼2∑  𝑛𝑖 ℎ𝑖

𝑘
𝑖=1 (1

+ 𝜆0𝛼
ℎ𝑖)∑  𝑛𝑖 

𝑘
𝑖=1 𝑒

𝜆0∑ ∑ 𝑡𝑖𝑗 𝛼
ℎ𝑖

𝑛𝑖
𝑗=1

𝑘
𝑖=1 ∏∏(1

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+ 𝑡𝑖𝑗 )∏∏[(1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖)

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+ ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖]−2   .                                       (8) 

 

The logarithm of the likelihood function is given by: 
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𝑙(𝜆0, 𝛼, 𝜃) =∑ 𝑛𝑖 

𝑘

𝑖=1

log  𝜃 + 2∑ 𝑛𝑖 

𝑘

𝑖=1

log 𝜆0 + 2∑ 𝑛𝑖 ℎ𝑖

𝑘

𝑖=1

log  𝛼

+∑ 𝑛𝑖 

𝑘

𝑖=1

log  (1 + 𝜆0𝛼
ℎ𝑖) + 𝜆0∑∑𝑡𝑖𝑗 𝛼

ℎ𝑖

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+∑∑ log  (1 + 𝑡𝑖𝑗 ) 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

− 2∑∑ log  ((1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+ 𝑒𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) .                    (9) 

 

On differentiating the previous equation (9) 

concerning 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 to get the MLEs of 

𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 as following: 
𝜕𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝜆0

=
2∑ 𝑛𝑖

𝑘
𝑖=1

𝜆0
+∑

𝛼ℎ𝑖𝑛𝑖

1 + 𝛼ℎ𝑖𝜆0

𝑘

𝑖=1

 +∑∑𝛼ℎ𝑖𝑡𝑖𝑗  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

− 2∑∑
𝛼ℎ𝑖( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + 𝛼ℎ𝑖( 𝜃 − 1)𝑡𝑖𝑗 + 𝛼
ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 𝑒

𝛼ℎ𝑖𝑡𝑖𝑗 𝜆0

(1 + 𝜆0𝛼
ℎ𝑖)( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖

 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

    (10) 

𝜕𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝛼

=
2∑ ℎ𝑖𝑛𝑖

𝑘
𝑖=1

𝛼
+∑

𝛼−1+ℎ𝑖𝜆0ℎ𝑖𝑛𝑖
1 + 𝛼ℎ𝑖𝜆0

𝑘

𝑖=1

 + 𝜆0∑∑𝛼−1+ℎ𝑖𝑡𝑖𝑗 ℎ𝑖  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

− 2∑∑
𝛼−1+ℎ𝑖  𝜆0ℎ𝑖 ( 𝜃 − 1 + 𝑒

𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖) + 𝛼−1+ℎ𝑖 ℎ𝑖( 𝜃 − 1)𝑡𝑖𝑗 𝜆0 + ℎ𝑖𝛼

−1+ℎ𝑖𝑒𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 (1 + 𝜆0𝛼

ℎ𝑖)

(1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖

 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

    (11)  

𝜕𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝜃

=
∑ 𝑛𝑖
𝑘
𝑖=1

𝜃

− 2∑∑
1+ 𝜆0𝛼

ℎ𝑖 + 𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 

(1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖

 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

.              (12) 

2∑ 𝑛𝑖
𝑘
𝑖=1

𝜆0̂
+∑

𝛼ℎ𝑖𝑛𝑖

1 + 𝛼ℎ𝑖𝜆0̂

𝑘

𝑖=1

 +∑∑𝛼ℎ𝑖𝑡𝑖𝑗  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

− 2∑∑
𝛼ℎ𝑖 ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0̂𝛼

ℎ𝑖) + 𝛼ℎ𝑖( 𝜃 − 1)𝑡𝑖𝑗 + 𝛼
ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0̂)𝑡𝑖𝑗 𝑒

𝛼ℎ𝑖𝑡𝑖𝑗 𝜆0̂

(1 + 𝜆0̂𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0̂𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0̂𝛼
ℎ𝑖)

 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

= 0  .                                                                                                                                         (13) 

2∑ ℎ𝑖𝑛𝑖
𝑘
𝑖=1

𝛼̂
+∑

𝛼̂−1+ℎ𝑖𝜆0ℎ𝑖𝑛𝑖
1 + 𝛼̂ℎ𝑖𝜆0

𝑘

𝑖=1

 + 𝜆0∑∑𝛼̂−1+ℎ𝑖𝑡𝑖𝑗 ℎ𝑖  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

− 2∑∑
𝛼̂−1+ℎ𝑖 𝜆ℎ𝑖 ( 𝜃 − 1 + 𝑒

𝑡𝑖𝑗 𝜆0𝛼̂
ℎ𝑖) + 𝛼̂−1+ℎ𝑖  ℎ𝑖( 𝜃 − 1)𝑡𝑖𝑗 𝜆0 + ℎ𝑖𝛼̂

−1+ℎ𝑖𝑒𝑡𝑖𝑗 𝜆0𝛼̂
ℎ𝑖𝜆0𝑡𝑖𝑗 (1 + 𝜆0𝛼̂

ℎ𝑖)

(1 + 𝜆0𝛼̂ℎ𝑖) ( 𝜃 − 1 + 𝑒
𝑡𝑖𝑗 𝜆0𝛼̂

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼̂ℎ𝑖)
 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

= 0  .                                                                                                                                                                                    (14) 

∑ 𝑛𝑖
𝑘
𝑖=1

𝜃

− 2∑∑
1+ 𝜆0𝛼

ℎ𝑖 + 𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 

(1 + 𝜆0𝛼
ℎ𝑖) ( 𝜃 − 1 + 𝑒𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖) + ( 𝜃 − 1)𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)
 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

= 0 .                                                                                                                         (15) 

 

As shown in the 3 previous equations are 

nonlinear functions of random quantities Θ̂ = (𝜆0̂, 

𝛼̂, 𝜃) and thus, statistical inference with these MLEs 

can be used on the asymptotic distribution theorem, 

that is the vector Θ̂ = (𝜆0̂, 𝛼̂, 𝜃) is approximately 

distributed as multivariate normal with mean vector 

Θ = (𝜆0, 𝛼, 𝜃) and variance covariance matrix 

𝐼−1(𝜆0, 𝛼, 𝜃), we have √𝑛(Θ̂ − Θ) ∽ 𝑁3(0, 𝐾Θ
−1) 

where ∽ means approximately distributed, 𝐾Θ
−1 is 

unit expected information matrix, the asymptotic 

behavior remains valid if 𝐾Θ
−1 = lim

𝑛→∞
𝑛−1𝐼(Θ), 

where 𝐼(𝜆0, 𝛼, 𝜃) is the fisher information matrix . 

The elements of the fisher information matrix 

for the MLE can be obtained as the negative of the 

second partial derivatives, [22]: 

𝐼 = (

𝐼11 𝐼12 𝐼13
𝐼22 𝐼23

𝐼33

)

= −

(

 
 
 
 

𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝜆0
2

𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝜆0 𝜕 𝛼

𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝜆0 𝜕𝜃

𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝛼2
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝛼 𝜕 𝜃 
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝜃2 )

 
 
 
 

 

𝐼11 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝜆0
2

=
2∑ 𝑛𝑖

𝑘
𝑖=1

𝜆0
2 +∑

𝛼2ℎ𝑖𝑛𝑖
(1 + 𝛼ℎ𝑖𝜆0)2

𝑘

𝑖=1

  

− 2∑∑(
(𝛼ℎ𝑖 (−1 + 𝑒𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) + 𝛼ℎ𝑖(−1 + 𝜃)𝑡𝑖𝑗 + 𝑒
𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 )

2

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

−
2𝑒𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼2ℎ𝑖𝑡𝑖𝑗 + 𝑒
𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼2ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 

2

(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 

) .                                             (16) 

𝐼22 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝛼2

=
2∑ ℎ𝑖𝑛𝑖

𝑘
𝑖=1

𝛼2
−∑(

𝛼−2+ℎ𝑖𝜆0(−1 + ℎ𝑖)ℎ𝑖𝑛𝑖
1 + 𝛼ℎ𝑖𝜆0

−
𝛼−2+2ℎ𝑖𝜆0

2ℎ𝑖
2𝑛𝑖

(1 + 𝛼ℎ𝑖𝜆0)2
)

𝑘

𝑖=1

− 𝜆0∑∑𝛼−2+ℎ𝑖𝑡𝑖𝑗 (−1 + ℎ𝑖)ℎ𝑖  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+ 2 ∑∑

−(
𝛼−1+ℎ𝑖 (−1 + 𝑒𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) 𝜆0ℎ𝑖 + 𝛼
−1+ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 ℎ𝑖 +

𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+ℎ𝑖𝜆0(1 + 𝛼

ℎ𝑖𝜆0)𝑡𝑖𝑗 ℎ𝑖

)

2

 

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+(

 
 
𝛼−2+ℎ𝑖 (−1 + 𝑒𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) 𝜆0(−1 + ℎ𝑖)ℎ𝑖 + 𝛼
−2+ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 (−1 + ℎ𝑖)ℎ𝑖

+𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−2+ℎ𝑖𝜆0(1 + 𝛼

ℎ𝑖𝜆0)𝑡𝑖𝑗 (−1 + ℎ𝑖)ℎ𝑖 + 2𝑒
𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−2+2ℎ𝑖𝜆0

2𝑡𝑖𝑗 ℎ𝑖
2 +

𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−2+2ℎ𝑖𝜆0

2(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗  
2ℎ𝑖
2

)

 
 

(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃)(1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

. (17) 

𝐼33 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕𝜃2

=
∑ 𝑛𝑖
𝑘
𝑖=1

𝜃2

− 2∑∑
(1 + 𝛼ℎ𝑖𝜆0 + 𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 )
2

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼

ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )
2 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

.  (18) 

𝐼12 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝜆0 𝜕 𝛼

= −∑(−
𝛼−1+2ℎ𝑖𝜆0ℎ𝑖𝑛𝑖
(1 + 𝛼ℎ𝑖𝜆0)2

+
𝛼−1+ℎ𝑖ℎ𝑖𝑛𝑖
1 + 𝛼ℎ𝑖𝜆0

)

𝑘

𝑖=1

 −∑∑𝛼−1+ℎ𝑖𝑡𝑖𝑗 ℎ𝑖  

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

+ 2∑∑

 −(((𝛼ℎ𝑖(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) + 𝛼ℎ𝑖(−1 + 𝜃)𝑡𝑖𝑗 + 𝑒

𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼ℎ𝑖(1

+𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 )(𝛼
−1+ℎ𝑖(−1 + 𝑒𝛼

ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃)𝜆0ℎ𝑖 + 𝛼
−1+ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 ℎ𝑖

+𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+ℎ𝑖𝜆0(1 + 𝛼

ℎ𝑖𝜆0)𝑡𝑖𝑗 ℎ𝑖))

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

+

𝛼−1+ℎ𝑖 (−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) ℎ𝑖 + 𝛼

−1+ℎ𝑖(−1 + 𝜃)𝑡𝑖𝑗 ℎ𝑖 + 2𝑒
𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+2ℎ𝑖𝜆0𝑡𝑖𝑗 ℎ𝑖

+𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 ℎ𝑖 + 𝑒

𝛼ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+2ℎ𝑖𝜆0(1 + 𝛼
ℎ𝑖𝜆0)𝑡𝑖𝑗 

2ℎ𝑖)

(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃)(1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

  . (19) 

𝐼13 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝜆0 𝜕𝜃

= 2∑∑(
𝛼ℎ𝑖 + 𝛼ℎ𝑖𝑡𝑖𝑗 

(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼

ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

−

((1 + 𝛼ℎ𝑖𝜆0 + 𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 )(𝛼

ℎ𝑖(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) + 𝛼ℎ𝑖(−1 + 𝜃)𝑡𝑖𝑗 

+𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼ℎ𝑖(1 + 𝛼ℎ𝑖𝜆0)𝑡𝑖𝑗 ))

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼

ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )
2  .     (20)  

𝐼23 = −
𝜕2𝑙(𝜆0, 𝛼, 𝜃)

𝜕 𝛼 𝜕 𝜃 

= 2∑∑(
𝛼−1+ℎ𝑖𝜆0ℎ𝑖 + 𝛼

−1+ℎ𝑖𝜆0𝑡𝑖𝑗 ℎ𝑖

(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

−

(1 + 𝛼ℎ𝑖𝜆0 + 𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 )(𝛼

−1+ℎ𝑖(−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃)𝜆0ℎ𝑖 + 𝛼

−1+ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 ℎ𝑖

+𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 𝛼−1+ℎ𝑖𝜆0(1 + 𝛼

ℎ𝑖𝜆0)𝑡𝑖𝑗 ℎ𝑖))

((−1 + 𝑒𝛼
ℎ𝑖𝜆0𝑡𝑖𝑗 + 𝜃) (1 + 𝛼ℎ𝑖𝜆0) + 𝛼ℎ𝑖(−1 + 𝜃)𝜆0𝑡𝑖𝑗 )

2  .   (21) 
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3.2  Interval Estimation  
In this subsection, the approximate confidence 

intervals (CIs) of the parameter are derived based on 

the asymptotic distributions of MLEs of the 

elements of the vector of unknown parameters 
(𝜆0, 𝛼, 𝜃). 

The asymptotic distribution of the MLEs of 
(𝜆0, 𝛼, 𝜃) is given by: 

((𝜆0̂ − 𝜆0), (𝛼̂ − 𝛼), (𝜃̂ − 𝜃)) → 𝑁(0, 𝐼
−1(𝜆0, 𝛼, 𝜃)),  

 

where 𝐼−1(𝜆0, 𝛼, 𝜃) = the variance – covariance 

matrix of unknown parameters (𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃). 
 

The approximate 100(1 − 𝛿)% confidence 

interval (CIs) for the parameters 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 are: 

(𝜆0𝑙̂ , 𝜆0𝑢̂ ) = 𝜆0̂ ± 𝑍1−𝛿
2

√𝑉(𝜆0̂) 

(𝛼𝑙̂  , 𝛼𝑢̂ ) = 𝛼̂ ± 𝑍1−𝛿
2

√𝑉(𝛼̂) 

(𝜃𝑙̂  , 𝜃𝑢̂ ) = 𝜃 ± 𝑍1−𝛿
2

√𝑉(𝜃) 

 

Respectively, where 𝑉(𝜆0̂), 𝑉(𝛼̂), and 𝑉(𝜃) are 

the variance of 𝜆0̂, 𝛼̂, and 𝜃, which are given by the 

diagonal elements of 𝐼−1(Θ) and 𝑍
1−

𝛿

2

 is the upper 

(1 −
𝛿

2
) percentile of standard normal distribution. 

 

 

4  Bayesian Approach for Estimation 

and Prediction 
In this section, we will introduce Bayesian 

estimation of the unknown parameters 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃. 
The prior knowledge about the parameters are 

represented by independent informative prior 

distributions. The parameters 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 are 

assumed to be independent and follow the gamma 

prior distributions as follows: 

𝜋1(𝜆0) ∝ 𝜆0
𝑎1−1𝑒−𝑏1𝜆0          𝜆0 > 0, 𝑎1 > 0, 𝑏1 > 0, 

𝜋2( 𝛼) ∝  𝛼
𝑎2−1𝑒−𝑏2  𝛼          𝛼 > 0, 𝑎2 > 0, 𝑏2 > 0, 

𝜋3(𝜃) ∝ 𝜃
𝑎3−1𝑒−𝑏3𝜃              𝜃 > 0, 𝑎3 > 0, 𝑏3 > 0 .   (22) 

 

Where the hyperparameters 𝑎𝑖 and 𝑏𝑖 i=1,2,3 

are assumed to be known, and chosen to reflect the 

prior knowledge about the unknown parameters. 

[28], established the Bayesian estimation for their 

parameters models based on informative gamma 

priors.   

Using Baye’s theorem, we can obtain the 

posterior distribution of the parameters 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 

by using the likelihood function (7) with the priors 

(22) and denoted it by 𝜋∗(𝜆0, 𝛼, 𝜃) as follows: 

𝜋∗(𝜆0, 𝛼, 𝜃)

=
𝜋1(𝜆0)𝜋2( 𝛼)𝜋3(𝜃)𝐿(𝜆0, 𝛼, 𝜃|𝑑𝑎𝑡𝑎)

∫ ∫ ∫ 𝜋1(𝜆0)𝜋2( 𝛼)𝜋3(𝜃)𝐿(𝜆0, 𝛼, 𝜃|𝑑𝑎𝑡𝑎)𝑑𝜆0𝑑𝛼𝑑𝜃
∞

0

∞

0

∞

0

 .           (23) 

 

The squared error loss (SEL) function, this type 

of loss function ensures that the model is penalized 

equally for both types of errors. The SEL function 

will be given as: 

𝐿(Φ, Φ̂) = (Φ̂ − Φ)
2
 

 

Therefore, 𝑔(𝜆0, 𝛼, 𝜃) which is Bayes estimate 

of any function of 𝜆0, 𝛼, 𝑎𝑛𝑑  𝜃under SEL function 

is given by:  

ĝ𝐵𝑆(𝜆0, 𝛼, 𝜃) = 𝐸(𝜆0, 𝛼, 𝜃|𝑑𝑎𝑡𝑎)
(𝑔(𝜆0, 𝛼, 𝜃)) 

=
∫ ∫ ∫ 𝑔(𝜆0, 𝛼, 𝜃)𝜋1(𝜆0)𝜋2( 𝛼)𝜋3(𝜃)𝐿(𝜆0, 𝛼, 𝜃|𝑑𝑎𝑡𝑎)𝑑𝜆0𝑑𝛼𝑑𝜃

∞

0

∞

0

∞

0

∫ ∫ ∫ 𝜋1(𝜆0)𝜋2( 𝛼)𝜋3(𝜃)𝐿(𝜆0, 𝛼, 𝜃|𝑑𝑎𝑡𝑎)𝑑𝜆0𝑑𝛼𝑑𝜃
∞

0

∞

0

∞

0

 .  (24) 

 

It is difficult to solve the multiple integrals in 

(24) analytically due to the complexity of the 

likelihood function (7), the Bayes estimate of 

𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 can be computed using the MCMC 

approximation method which is used to generate 

samples from joint posterior density function (23) 

and also to obtain the associated credible intervals. 

The joint posterior distribution can be written as: 

 𝜋∗(𝜆0, 𝛼, 𝜃) ∝ 𝜆0
2∑  𝑛𝑖 

𝑘
𝑖=1 +𝑎1−1𝛼2∑  𝑛𝑖 ℎ𝑖

𝑘
𝑖=1 +𝑎2−1𝜃∑  𝑛𝑖 

𝑘
𝑖=1 +𝑎3−1 

. exp [−(𝑏1𝜆0+𝑏2 𝛼+𝑏3𝜃 + 𝜆0∑∑𝑡𝑖𝑗 𝛼
ℎ𝑖

𝑛𝑖

𝑗=1

𝑘

𝑖=1

)] 

.∏∏
(1 + 𝜆0𝛼

ℎ𝑖)(1 + 𝑡𝑖𝑗 )

[(1 + 𝜆0𝛼
ℎ𝑖) − 𝜃̅( 1 + 𝜆0𝛼

ℎ𝑖 + 𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)𝑒−𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖]
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 .    (25) 

 

The conditional posterior distribution for 

𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 

𝜋1
∗(𝜆0|𝛼, 𝜃, 𝑑𝑎𝑡𝑎) ∝ 𝜆0

2∑  𝑛𝑖 
𝑘
𝑖=1 +𝑎1−1exp [−𝜆0(𝑏1 +∑∑𝑡𝑖𝑗 𝛼

ℎ𝑖

𝑛𝑖

𝑗=1

𝑘

𝑖=1

)] 

.∏∏
(1+ 𝜆0𝛼

ℎ𝑖)

[(1 + 𝜆0𝛼
ℎ𝑖) − 𝜃̅( 1 + 𝜆0𝛼

ℎ𝑖 + 𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)𝑒−𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖]
2

𝑛𝑖

𝑗=1

 

𝑘

𝑖=1

 .    (26) 

𝜋2
∗(𝛼|𝜆0, 𝜃, 𝑑𝑎𝑡𝑎) ∝ 𝛼

2∑  𝑛𝑖 ℎ𝑖
𝑘
𝑖=1 +𝑎2−1exp [−(𝑏2𝛼 + 𝜆0∑∑𝑡𝑖𝑗 𝛼

ℎ𝑖

𝑛𝑖

𝑗=1

𝑘

𝑖=1

)] 

.∏∏
(1+ 𝜆0𝛼

ℎ𝑖)

[(1 + 𝜆0𝛼
ℎ𝑖) − 𝜃̅( 1 + 𝜆0𝛼

ℎ𝑖 + 𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)𝑒−𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖]2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

  .    (27) 

𝜋3
∗(𝜃|𝜆0, 𝛼 , 𝑑𝑎𝑡𝑎) ∝ 𝜃

∑  𝑛𝑖 
𝑘
𝑖=1 +𝑎3−1 exp[−𝑏3𝜃] 

.∏∏[(1 + 𝜆0𝛼
ℎ𝑖) − 𝜃̅( 1 + 𝜆0𝛼

ℎ𝑖 + 𝑡𝑖𝑗 𝜆0𝛼
ℎ𝑖)𝑒−𝑡𝑖𝑗 𝜆0𝛼

ℎ𝑖]−2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

.     (28) 

 

We observed that the conditional posteriors of  

𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 in equations (26), (27), and (28) are not 

known distributions, so a better choice to make the 

MCMC approach is to use Metropolis- Hasting (H-

M) sampler. 

The algorithm that explains the process of the 

Metropolis-Hasting within Gibbs sampling: 
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(1) Start with initial guess (𝜆0
(0), 𝛼(0), 𝜃(0) ) 

(2) Set u=1 

(3) Using the following M-H algorithm, 

generate 𝜆0
(𝑢), 𝛼(𝑢), 𝑎𝑛𝑑 𝜃(𝑢)from 

𝜋1
∗(𝜆0

(𝑢−1)|𝛼(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎), 

 𝜋2
∗(𝛼(𝑢−1)|𝜆0

(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎), and 

𝜋3
∗(𝜃(𝑢−1)|𝜆0

(𝑢−1), 𝛼(𝑢−1) , 𝑑𝑎𝑡𝑎) with the normal 

proposal distributions 

𝑁(𝜆0
(𝑢−1), 𝑣𝑎𝑟(𝜆)),𝑁(𝛼(𝑢−1), 𝑣𝑎𝑟(𝛼)), 𝑎𝑛𝑑 𝑁(𝜃(𝑢−1), 𝑣𝑎𝑟(𝜃)) 

(i) Generate proposal 𝜆0
∗
from 

𝑁(𝜆0
(𝑢−1), 𝑣𝑎𝑟(𝜆)), 𝛼∗ 𝑓𝑟𝑜𝑚  𝑁(𝛼(𝑢−1), 𝑣𝑎𝑟(𝛼)) , 

 𝑎𝑛𝑑 𝜃∗𝑓𝑟𝑜𝑚 𝑁(𝜃(𝑢−1), 𝑣𝑎𝑟(𝜃)). 

(ii) Evaluate the acceptance probabilities 
𝜁𝜆0 =

min [1,
𝜋1
∗(𝜆0

∗
|𝛼(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎)

𝜋1
∗(𝜆0

(𝑢−1)
|𝛼(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎)

], 

𝜁𝛼 =

min [1,
 𝜋2
∗(𝛼∗|𝜆0

(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎)

 𝜋2
∗(𝛼(𝑢−1)|𝜆0

(𝑢−1), 𝜃(𝑢−1), 𝑑𝑎𝑡𝑎)
], 

𝜁𝜃 = min [1,
𝜋3
∗(𝜃∗|𝜆0

(𝑢−1), 𝛼(𝑢−1) , 𝑑𝑎𝑡𝑎)

𝜋3
∗(𝜃(𝑢−1)|𝜆0

(𝑢−1), 𝛼(𝑢−1) , 𝑑𝑎𝑡𝑎)
]. 

(iii) Generate a 𝜈1, 𝜈2, 𝑎𝑛𝑑 𝜈3 from a uniform 

(0,1) distribution. 

(iv) If 𝜈1 < 𝜁𝜆0, accept the proposal and set 

𝜆0
∗ = 𝜆0

(𝑢)
, else set 𝜆0

(𝑢) = 𝜆0
(𝑢−1)

. 

(v) If 𝜈2 < 𝜁𝛼, accept the proposal and 

set 𝛼∗ = 𝛼(𝑢), else set 𝛼(𝑢) = 𝛼(𝑢−1). 
(vi) If 𝜈3 < 𝜁𝜃, accept the proposal and 

set 𝜃∗ = 𝜃(𝑢), else set 𝜃(𝑢) = 𝜃(𝑢−1). 
(4) Set u = u+1. 

(5) Repeat steps (3) – (4) N- times and obtain 

𝜆0
(𝑖), 𝛼(𝑖), 𝑎𝑛𝑑 𝜃(𝑖)𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … ,𝑁. 

 

The first M-simulated varieties will be discarded 

to ensure the convergence and the removal of the 

effect of the selection of initial values. Then the 

selected samples are 𝜆0
(𝑢), 𝛼(𝑢), 𝑎𝑛𝑑 𝜃(𝑢) for u = 

M+1, …, N, for sufficiently large N, form an 

approximate posterior samples which can be used to 

get the Bayesian inferences. 

The proposed distributions are chosen to be 

normal distributions as proposals for generating 

samples in the Metropolis-Hasting (M-H) algorithm, 

as one of the assumptions to apply MCMC is that 

the proposed distribution should be symmetric, [29]. 

The accepted function involved in the (M-H) 

algorithm ensures that the proposed distribution is 

the target posterior that we are interested in [30]. 

Based on SEL, the approximate Bayes estimates 

of Φ = 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 is given by: 

Φ̂𝐵𝑆 =
1

𝑁 −𝑀
∑ Φ𝑖
𝑁

𝑢=𝑀+1

 

 

The credible intervals (CRIs) of 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 

can be computed by sorting 

𝜆0
(𝑢), 𝛼(𝑢), 𝑎𝑛𝑑 𝜃(𝑢)𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑀 + 1,… ,𝑁 Then the 

100(1 −𝜗)% CRIs of Φ = 𝜆0, 𝛼, 𝑎𝑛𝑑 𝜃 will be 

(Φ
(N𝜗

2⁄
)
, Φ

(N
1−𝜗 2⁄

)
). 

 

 

5  Application 
Here, we explain the proposed procedure previously 

with two real data sets. 

 

Example 1 
The failure time in hours of 40 motors with new 

Class-H insulation run at 190° C, 220° C, 240° C, 

and 260° C is represented in Table 1 (Appendix) 

from [27]. For each temperature stage, ten motors 

were inspected for failure over some time, with the 

assigned failure time being the halfway point 

between the inspection time when the failure was 

discovered and the previous inspection time. Our 

test aimed to determine how long such insulation 

would last at its design temperature of 180o C. 

The Arrhenius relationship is expected to 

characterize temperature acceleration dependent on 

engineering practice. Thus, the acceleration model 

can be as: 

ln(𝜆𝑖) = 𝑎 +
𝑏

𝑆𝑖
, 𝑏 >0, 𝑖 = 0, 1, 2, 3, 4. In this example, 

𝑆0 = 180
°𝐶, 𝑆1 = 190

°𝐶, 𝑆2 = 220
°𝐶, 𝑆3 = 240

°,

𝑆4 = 260
°𝐶 𝑎𝑛𝑑 𝜑𝑖 =

1

𝑆𝑖
, 𝑖 = 0, 1, 2, 3, 4. 

 

We compute the Kolmogorov–Smirnov (K-S) 

distance between the empirical distribution function 

and the fitted distribution function when the 

parameters are obtained by maximum likelihood 

estimation. 

 

Example 2 
The data in Table 4 (Appendix) is the times in hours 

of transformer life testing at high voltage, see page 

161, of [27]. In this test, the accelerated stress is the 

voltage from 35.4 to 46.7 KV and the design voltage 

is 14.4 KV.   

Based on engineering experience, the inverse 

power model is expected to be adequate to describe 

the acceleration voltage relationship. Thus, the 

acceleration model can be expressed as  Ln(𝜆𝑖) =
𝑎 + 𝑏 ln 𝑆𝑖 , 𝑏 >0, 𝑖 = 0, 1, 2, 3.   In this example, 

S0 = 14.4 KV, S1 = 35.4 KV, S2 = 42.4 KV, S3 = 

46.7 KV, and 𝜑 𝑖  =  𝑙𝑛 𝑆𝑖 , 𝑖 = 0, 1, 2, 3.    
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From the results, the following notices can be 

observed from Table 2, Table 3, Table 5 and Table 6 

in Appendix: 

(1) The values of K-S distances and the 

corresponding P-values of each stress level are 

presented in Table 2 and Table 5 in Appendix. It is 

clear that the estimated MOEL distribution gives a 

good fit to the given data because all P-values are 

greater than 0.05. 

(2) The MLEs of parameters based on complete data 

for the estimated MOEL distribution and the Bayes 

estimates relative to the SEL function for the 

parameters 𝜆0, 𝛼 𝑎𝑛𝑑 𝜃 with 95% ACIs and CRIs 

are displayed in Table 3 and Table 6 in Appendix. 

We note that: 

(i) The values of estimates are close together which 

indicates the good performance of the estimators for 

different values of stress levels. 

 (ii) the Bayes estimates have the smallest values 

than the MLEs. 

(iii) the CRIs give more accurate results than the 

ACIs for different values of stress levels. 

 

 

6  Simulation Studies 
In this section simulation studies are conducted to 

compare the performance of the MLEs in terms of 

their biases and mean squared errors (MSEs) for 

different choices of n values and different parameter 

values.  

So, the biases and MSEs based on 10000 

simulations are estimated and reported in Table 7 

and Table 8 in Appendix, we carried out this 

simulation study according to the following 

algorithm: 

 

1.  Specify the values of k, 𝑛𝑖, ℎ𝑖 , 𝑠𝑖, 𝑖 = 0, 1,… , 𝑘. 
2. Take prior parameters 𝜆0, 𝛼0, 𝑎𝑛𝑑 𝜃0to generate 𝜆𝑘 =

𝜆0𝛼0
ℎ𝑘 . 

3. Determine the MOEL [𝜆𝑘, 𝜃] probability 

distribution as follows: 

 MOEL [𝜆𝑘 , 𝜃]=
𝜆2(1+𝜆)(1+𝑡)𝜃𝑒𝜆𝑡

[(1+𝜆)(𝜃− 1+𝑒𝜆𝑡)+(𝜃−1)𝜆𝑡]2
 . 

4. Generate a random sample of size 𝑛𝑖 , 𝑖 =
0, 1, … , 𝑘, from the variable that we determined 

in MOEL [𝜆𝑘 , 𝜃] distribution and sort it. 

5. Solve the nonlinear systems to obtain the MLEs 

of the parameters. 

6. Replicate the steps 3-5 10000 times. 

7. Compute the average values of 𝜆0̂, 𝛼̂, and 𝜃. 

8. Compute the biases and MSEs associated with 

MLEs of the parameters 𝜆0̂, 𝛼̂, and 𝜃. 

9. Obtain the fisher information matrix by using 

MLEs of the parameters 𝜆0̂, 𝛼̂, and 𝜃 and 

compute the asymptotic variance and length of 

95% Cis of MLEs. 

10.  Steps 1-9 are done with different values 

of k, 𝑛𝑖, ℎ𝑖, 𝑠𝑖, 𝜆0, 𝛼0, 𝑎𝑛𝑑 𝜃0, 𝑖 = 0, 1, … , 𝑘. 

 

 

The results show the following observations: 

(1) in Table 7 and Table 9 in Appendix, it is 

observed that as the values of n increase, 

the MSEs decrease and Bayes estimates 

have the smallest MSEs for 𝜆0, 𝛼 𝑎𝑛𝑑 𝜃, 

also if we increase the stress levels, the 

average of MLEs and the Bayesian 

estimates decrease. 

(2) From Table 8 and Table 10 in Appendix, it 

can be noticed that the average lengths of 

the approximate confidence intervals for the 

parameters are very high compared to those 

in the Bayesian case, as the values of n 

increase, the average lengths of both 

decrease, also if we increase the stress 

levels, Average lengths of the ACIs and the 

CRIs for the estimates decrease. 

 

 

7  Conclusion 
In this study, it is considered that the lifetimes of the 

units follow our new model MOEL distribution. To 

estimate the acceleration factor and parameters of 

the distribution classical and Bayesian inference 

procedures are discussed based on a complete 

sample under constant stress ALT method. Their 

performance is numerically compared and 

appropriate comments are finally provided. The 

computational results proved that increasing the 

sample size and level of stress improves the 

performances of all estimators. As a future work, 

classical and Bayesian inference procedures under 

the same distribution assuming other progressively 

hybrid censoring schemes will be considered. 
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APPENDIX 
 

Table 1. Time (H) to failure of 40 motors 

  𝑆1 = 190
°𝐶  𝑆2 = 220

°C  𝑆3 = 240
°𝐶 𝑆4 = 260

°𝐶 

7228 1764 1175 600 

7228 2436 1175 744 

7228 2436 1521 744 

8448 2436 1569 744 

9167 2436 1617 912 

9167 2436 1665 1128 

9167 3108 1665 1320 

9167 3108 1713 1464 

10511 3108 1761 1608 

10511 3108 1953 1896 

 

Table 2. K-S distances and the corresponding P-values of each stress level for MOEL distribution 
Stress (Temperature) 190o C 220o C 240o C 260o C 

K-S distances 0.3132  0.2437 0.1762 0.2785 

P-values 0.2804 0.59277 0.9155 0.4201 

 

Table 3. Point estimate and 95% CIs for the parameters 𝜆0, 𝛼 𝑎𝑛𝑑  𝜃 
 k MLE SEL 

𝜆0 2 

 

3 

 

4 

 

0.0001 

[−1.9 × 10−4, 3.9 × 10−4] 
0.0010 

[−0.0404,0.0424] 
0.0003 

[−3.6 × 10−5, 5.3 × 10−4] 

0.0001 

[9.779 × 10−5, 9.785 × 10−5] 
0.0010 

[1.012 × 10−3, 1.016 × 10−3] 
0.0003 

[2.5052 × 10−4, 2.5058 × 10−4] 
𝛼 2 

 

3 

 

4 

 

0.5720 

[0.4076,0.7364] 
0.4510 

[−56.5050,57.4069] 
0.7370 

[0.6164,0.8576] 

0.5720 

[0.57197,0.57199] 
0.4525 

[0.4496,0.4576] 
0.7370 

[0.73697,0.73699] 
𝜃 2 

 

3 

 

4 

 

0.0069 

[−0.0252,0.0391] 
0.0205 

[−28.1637,28.2047] 
0.0108 

[−0.0094,0.0310] 

0.0069 

[6.945 × 10−3, 6.947 × 10−3] 
0.0226 

[0.0206,0.0240] 
0.0108 

[1.0758 × 10−2, 1.0760 × 10−2] 

 

Table 4. The number of failure times in hours of 30 transformer life testing at high voltage 
S1 = 35.4 KV S2 = 42.4 KV S3 = 46.7 KV 

40.1 

59.4 

71.2 

166.5 

204.7 

229.7 

308.3 

537.9 

1002.3 

0.6 

13.4 

15.2 

19.9 

25.0 

30.2 

32.8 

44.4 

50.2 

3.1 

8.3 

8.9 

9.0 

13.6 

14.9 

16.1 

16.9 

21.3 
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1002.3 
 

56.2 
 

48.1 
 

 

 

Table 5. K-S distances and the corresponding P-values of each stress level for MOEL distribution 
Stress (Voltage) 35.4 KV 42.4 KV 46.7 KV 

K-S distances 0.1743  0.2503 0.2655 

P-values 0.9215  0.5582 0.4815 

 

 

Table 6. Point estimate and 95% CIs for the parameters 𝜆0, 𝛼 𝑎𝑛𝑑  𝜃 
 k MLE SEL 

𝜆0 2 

 

3 

 

0.0028 

[−0.0022,0.0078] 
0.0064 

 [−0.0025,0.0154 ] 

0.0028 

[2.8071 × 10−3, 2.8077 × 10−3] 
0.0064 

[6.4196 × 10−3, 6.4206 × 10−3] 
𝛼 2 

 

3 

 

0.9745 

[ −0.1917,2.1408] 
0.5054 

 [0.0726,0.9382 ] 

0.9745 

[0.9745,0.9746] 
0.5054 

 [0.50537,0.50541 ] 
𝜃 2 

 

3 

 

0.0130 

[−0.0215,0.0476] 
0.0044  

[−0.0058,0.0146 ] 

0.0130 

[1.3030 × 10−2, 1.3033 × 10−2] 
0.0044  

[4.4055 × 10−3, 4.4066 × 10−3] 

 

 

Table 7. The comparison between the average of MLEs and the Bayesian estimates according to the MSE with 

true values 𝜆0 = 0.01, 𝛼0 = 0.9, 𝑎𝑛𝑑 𝜃0 = 0.0001 in Arrhenius model 
  𝜆0̂  𝛼̂  𝜃̂  

K n MLE Bayesian MLE Bayesian MLE Bayesian 

4 36 

 

60 

 

96 

 

192 

 

0.0585 

(0.0034) 
0.0542 

(0.0028) 
0.0509 

(0.0024) 
0.0489 

(0.0021) 

0.0585 

(0.0034) 
0.0542 

(0.0028) 
0.0509 

(0.0024) 
0.0489 

(0.0021) 

0.8891 

(0.0057) 
0.8980 

(0.0030) 
0.9000 

(0.0022) 

0.8989 

(0.0011) 

0.8891 

(0.0057) 
0.8980 

(0.0030)  
0.9000 

(0.0022) 

0.8989 

(0.0011) 

0.0031 

(0.00001) 
0.0030 

(0.00001) 
0.0027 

(0.00001) 
0.0026 

(0.00001) 

0.0031 

 (0.00001) 
0.0030 

(0.00001)  
0.0027 

(0.00001) 
0.0026 

(0.00001) 
3 36 

 

60 

 

96 

 

192 

 

0.0571 

(0.0032) 
0.0546 

(0.0028) 
0.0505 

(0.0023) 
0.0477 

(0.0020) 

0.0571  
(0.0032) 
0.0546 

(0.0028) 
0.0505 

(0.0023) 
0.0477 

(0.0020) 

0.8929 

(0.0078) 
0.8984 

(0.0046) 
0.9032 

(0.0031) 
0.9002 

(0.0015) 

0.8929 

(0.0078) 
0.8984 

(0.0046) 
0.9032 

(0.0031) 
0.9002 

(0.0015) 

0.0031 

(0.00002) 
0.0030 

(0.00001) 
0.0028 

(0.00001) 
0.0025 

(0.00001) 

0.0031 

(0.00002) 
0.0030 

(0.00001) 
0.0028 

(0.00001) 
0.0025 

(0.00001) 
2 36 

 

60 

 

96 

 

192 

 

0.0549 

(0.0029) 
0.0546 

(0.0028) 

0.0501 

(0.0022) 

0.0471 

(0.0019) 

0.0549 

(0.0029) 
0.0546 

(0.0028) 

0.0501 
(0.0022) 

0.0471 

(0.0019) 

0.8964 

(0.0120) 
0.8983 

(0.0067) 

0.9010 

(0.0045) 

0.9006 

(0.0024) 

0.8964 

(0.0120) 
0.8983 

(0.0067) 

0.9010 

(0.0045) 

0.9006 

(0.0024) 

0.0030 

(0.00001) 
0.0030 

(0.00001) 

0.0027 

(0.00001) 

0.0024 

(0.00001) 

0.0030 

(0.00001) 
0.0030 

(0.00001) 

0.0027 

(0.00001) 

0.0024 

(0.00001) 
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Table 8. Average lengths of the approximate confidence intervals (ACIs) and the credible intervals (CRIs) for 

the estimates 
  𝜆0̂  𝛼̂  𝜃  

K n MLE Bayesian MLE Bayesian MLE Bayesian 

4 36 

60 

96 

192 

0.5317 

0.3033 

0.2505 

0.1894 

0.00004 

0.00002 

0.00001 

0.00001 

0.2986 

0.2292 

0.1808 

0.1271 

0.00002 

0.00002 

0.00001 

0.00001 

0.0376 

0.0281 

0.0230 

0.0172 

0.000002 

0.000001 

0.000001 

0.000001 

3 36 

60 

96 

192 

0.4688 

0.3193 

0.2431 

0.1838 

0.00003 

0.00002 

0.00002 

0.00001 

0.3448 

0.2661 

0.2105 

0.1478 

0.00002 

0.00002 

0.00001 

0.00001 

0.0360 

0.0288 

0.0228 

0.0165 

0.000002 

0.000002 

0.000002 

0.000001 

2 36 

60 

96 

192 

0.4187 

0.3089 

0.2411 

0.1815 

0.00003 

0.00002 

0.00002 

0.00001 

0.4370 

0.3365 

0.2661 

0.1873 

0.00003 

0.00002 

0.00002 

0.00001 

0.0336 

0.0284 

0.0224 

0.0161 

0.000002 

0.000002 

0.000002 

0.000001 

 

Table 9.    The comparison between the average of MLEs and the Bayesian estimates according to the MSE 

with true values 𝜆0 = 0.007; 𝛼0 = 0.3; 𝜃0 = 3 in the Inverse power model 
  𝜆0̂  𝛼̂  𝜃  

K n MLE Bayesian MLE Bayesian MLE Bayesian 

6 60 

 

120 

 

180 

 

240 

 

0.0060 

(0.000003) 

0.0062 

(0.000001) 

0.0063 

(0.000001) 

0.0065 

(0.000001) 

0.0060 

(0.000003) 

0.0062 

(0.000001) 

0.0063 

(0.000001) 

0.0065 

(0.000001) 

0.3355 

(0.0039) 

0.3242 

(0.0021) 
0.3192 

(0.0015) 
0.3126 

(0.0010) 

0.3355 

(0.0039) 

0.3242 

(0.0021) 
0.3192 

(0.0015) 
0.3126 

(0.0010) 

2.7565 

(0.5377) 

2.8420 

(0.4476) 
2.8705 

(0.3868) 
2.8943 

(0.3289) 

2.7565 

(0.5377) 

2.8420 

(0.4476) 
2.8704 

(0.3868) 
2.8943 

(0.3288) 
5 60 

 

120 

 

180 

 

240 

 

0.0059 

(0.000003) 

0.0061 

(0.000001) 

0.0064 

(0.000001) 

0.0064 

(0.000001) 

0.0059 

(0.000003) 

0.0061 

(0.000001) 

0.0064 

(0.000001) 

0.0064 

(0.000001) 

0.3402 

(0.0050) 

0.3277 

(0.0026) 
0.3180 

(0.0015) 
0.3159 

(0.0013) 

0.3402 

(0.0050) 

0.3277 

(0.0026) 
0.3180 

(0.0015) 
0.3159 

(0.0013) 

2.7556 

(0.5267) 

2.8084 

(0.4420) 
2.9083 

(0.3774) 
2.9126 

(0.3266) 

2.7556 

(0.5267) 

2.8083 

(0.4420) 
2.9083 

(0.3774) 
2.9126 

(0.3266) 
4 60 

 

120 

 

180 

 

240 

 

0.0058 

(0.000003) 

0.0061 

(0.000001) 

0.0063 

(0.000001) 

0.0064 

(0.000001) 

0.0058 

(0.000003) 

0.0061 

(0.000001) 

0.0063 

(0.000001) 

0.0064 

(0.000001) 

0.3467 

(0.0065) 

0.3332 

(0.0040) 
0.3253 

(0.0026) 
0.3192 

(0.0017) 

0.3467 

(0.0065) 

0.3332 

(0.0040) 
0.3253 

(0.0026) 
0.3192 

(0.0017) 

2.7740 

(0.4932) 

2.8445 

(0.4456) 
2.8438 

(0.3666) 
2.9101 

(0.3360) 

2.7740 

(0.4932) 

2.8445 

(0.4456) 
2.8438 

(0.3666) 
2.9101 

(0.3360) 
3 60 

 

120 

 

180 

 

240 

 

0.0059 

(0.000003) 

0.0061 

(0.000001) 

0.0062 

(0.000001) 
0.0064 

(0.000001) 

0.0059 

(0.000003) 

0.0061 

(0.000001) 

0.0062 

(0.000001) 
0.0064 

(0.000001) 

0.3529 

(0.0095) 

0.3370 

(0.0056) 
0.3352 

(0.0046) 
0.3226 

(0.0021) 

0.3529 

(0.0095) 

0.3370 

(0.0056) 
0.3352 

(0.0046) 
0.3226 

(0.0021) 

2.7985 

(0.4988) 

2.8520 

(0.3934) 
2.8981 

(0.3647) 
2.9283 

(0.2627) 

2.7985 

(0.4988) 

2.8520 

(0.3934) 
2.8981 

(0.3647) 
2.9283 

(0.2627) 
2 60 

 

120 

 

180 

 

0.0060 

(0.000003) 

0.0061 

(0.000002) 

0.0062 

(0.000002) 

0.0060 

(0.000003) 

0.0061 

(0.000002) 

0.0062 

(0.000002) 

0.3528 

(0.0108) 

0.3505 

(0.0108) 
0.3433 

(0.0077) 

0.3528 

(0.0108) 

0.3505 

(0.0108) 
0.3433 

(0.0077) 

2.8229 

(0.5169) 

2.9020 

(0.4182) 
2.9069 

(0.3630) 

2.8229 

(0.5169) 
2.9020 

(0.4182) 
2.9069 

(0.3630) 
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240 

 
0.0062 

(0.000002) 

0.0062 

(0.000002) 

0.3382 

(0.0065) 
0.3382 

(0.0065) 
2.9173 

(0.3386) 

2.9173 

(0.3385) 

Table 10. Average lengths of the approximate confidence intervals (ACIs) and the credible intervals (CRIs) for 

the estimates 
  𝜆0̂  𝛼̂  𝜃̂  

K n MLE Bayesian MLE  Bayesian MLE Bayesian 

6 60 

120 

180 

240 

0.0095 

0.0068 

0.0073 

0.0076 

0.000001 

0.0000004 

0.0000005 

0.0000004 

0.3287 

0.2157 

0.1831 

0.1494 

0.00002 

0.000014 

0.00001 

0.00001 

5.6233 

4.0335 

4.9022 

5.1331 

0.0004 

0.0003 

0.0003 

0.0004 

5 60 

120 

180 

240 

0.0103 

0.0117 

0.0062 

0.0053 

0.000001 

0.000001 

0.0000004 

0.0000003 

0.3928 

0.2629 

0.2014 

0.1721 

0.00003 

0.00002 

0.00001 

0.00001 

5.6250 

7.4750 

3.3708 

2.9140 

0.0004 

0.0005 

0.0002 

0.0002 

4 60 

120 

180 

240 

0.0118 

0.0087 

0.0068 

0.0060 

0.000001 

0.000001 

0.0000004 

0.0000004 

0.5001 

0.3363 

0.2534 

0.2139 

0.00003 

0.00002 

0.00002 

0.00001 

5.7634 

4.1255 

3.2951 

2.9126 

0.0004 

0.0003 

0.0002 

0.0002 

3 60 

120 

180 

240 

0.0137 

0.0099 

0.0081 

0.0062 

0.000001 

0.000001 

0.000001 

0.0000004 

0.6464 

0.4332 

0.3500 

0.2345 

0.00004 

0.00003 

0.00002 

0.00002 

5.7088 

4.0746 

3.3663 

2.3909 

0.0004 

0.0003 

0.0002 

0.0002 

2 60 

120 

180 

240 

0.0279 

0.0141 

0.0116 

0.0102 

0.000002 

0.000001 

0.000001 

0.000001 

1.4292 

0.7157 

0.5724 

0.4835 

0.0001 

0.00005 

0.00004 

0.00003 

8.2452 

4.1652 

3.3782 

2.9283 

0.0005 

0.0003 

0.0002 

0.0002 
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