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Abstract: - The analysis of data, while interesting when a single variable is involved, becomes truly fascinating 

and challenging when several variables are present. There are various multivariate analysis methods available 

for examining the relationships among multiple variables simultaneously. Principal component analysis and 

cluster analysis are two commonly used techniques that are valuable tools in many scientific fields. Principal 

component analysis is employed to reduce the dimensionality of correlated measurements, whereas cluster 

analysis is utilized to classify objects or cases into relatively homogeneous groups. On the other hand, 

Ostracods can be utilized as bioindicators of the surrounding physical and chemical conditions. This paper 

presents a methodology for employing principal component analysis to cluster Ostracods based on their habitat 

preferences. Simulation results obtained using Mathematica software, demonstrate that anthropogenic water 

sources significantly influence the distribution of non-marine Ostracods. 
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1  Introduction 
In today's world, we are living in the information 

age, where computational technology and modern 

facilities are rapidly developing. We frequently 

encounter large data sets generated by experiments 

and computer simulations, [1], [2]. Multivariate 

statistical methods, [3], [4] are employed to 

identify patterns within a set of variables. One such 

method is principal component analysis, [5], [6], 

[7], which employs mathematical procedures to 

simplify interrelated measures within the data. 

Principal component analysis (PCA) is the most 

popular multivariate statistical technique, used by 

almost all scientific disciplines. PCA is a powerful 

tool that can be applied to a wide variety of 

problems in behavioral and social sciences, 

engineering [8], genetics [9], [10], neuroscience 

[11] and geography [12]. The advent of computing 

technology has enabled the application of PCA in a 

variety of fields. It is also probable that this 

technique is the oldest multivariate technique. It 

was initially introduced by [13] and subsequently 

developed by [14], who also created the 

terminology “principal component.”. Currently, it 

is one of the most frequently employed tools for 

exploratory data analysis and the creation of 

predictive models. 

Cluster analysis (CA) is an unsupervised 

learning technique that aims to divide a set of data 

into groups or clusters. The observations within the 

same group tend to exhibit similarities, whereas 

those in different groups display differences. 

Further detailed information regarding clustering 

methods can be found in the references [15], [16], 

[17], [18], [19]. 

The main objective of principal component 

analysis is to reduce the dimensionality of a data 

set containing a high number of related variables 

while preserving as much of the variation in the 

data set as possible. This is achieved by 

transforming the original variables into a new set of 

uncorrelated variables known as principal 

components (PCs). They are ordered in such a way 

that the first few retain most of the variation 

present in all the original variables.  

Ostracods are a type of small bivalved 

crustacean that have been around for 500 million 

years, [20]. Despite their relatively small size, these 

organisms play a crucial role in a variety of 

important ecological processes, including 

sedimentation, mineralization and biochemical 

cycling. They are distributed worldwide and can 

live in a wide range of habitats, from hot springs to 

Maar lakes and salt marshes, [21], [22], [23]. 
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Ostracods are of significant value in the field of 

biostratigraphy due to their rapid evolutionary rates 

and extensive geographic distribution. The faunal 

pattern of an area is highly related to the habitat 

variety, which depends on ecological variations. 

The variety of habitat types, such as lakes, streams, 

and lagoons, plays a critical role in the diversity of 

species. It is therefore crucial to consider the 

impact of habitat types on species diversity.  

Several studies, [24], [25] have been conducted to 

elucidate the relationship between habitat 

characteristics and faunal patterns. These studies 

demonstrate that species richness is frequently 

associated with habitat diversity, which is in turn 

related to the size of the study area. Furthermore, 

they contribute to our comprehension of past 

environmental conditions and climate change.  

However, the classification of Ostracods based on 

their habitat preferences using principal component 

analysis was not presented. Consequently, this 

paper will focus on this problem. 

The objective of this paper is to identify the 

relationship between the distribution of Ostracoda 

species and their habitat preferences. To this end, 

an effective classification algorithm has been 

developed based on principal component analysis 

and cluster analysis in Mathematica software on a 

set of Ostracoda data. The region of Thrace was 

selected as the study area, which comprises five 

provinces with a multitude of water sources, both 

natural and artificial. 

 

 

2  Materials and Methods 
 

2.1  Principal Component Analysis 
Principal component analysis is a statistical 

technique that identifies patterns in data and 

expresses the data in a way that highlights 

similarities and differences. PCA is an invaluable 

tool for data analysis, particularly in the context of 

large data sets that are challenging to represent 

graphically. It effectively identifies patterns in data 

that would otherwise be difficult to discern. It is a 

widely employed technique for extracting the 

maximum variance from a dataset, which results in 

a reduction of the number of variables into a 

smaller number of components, [26], [27]. The 

objective of PCA is to identify a new set of 

uncorrelated variables (principal components) that 

can explain the greatest possible proportion of the 

total variation.  In other words, PCA is designed to 

reduce the number of variables that need to be 

considered to a small number of indices, which are 

called principal components. These are linear 

combinations of the original variables. In essence, 

PCA is a method of simplifying data by reducing 

the number of variables. 

Suppose that X  is a vector of p
 

random 

variables
1 2
, ,...,

p
X X X . To simplify the description 

of these variables, we subtract the mean of each 

dataset from each observation. This produces a 

dataset with a mean of zero, thus, 

, 1, 2,...,
j j j

x X X j p  
                  (1) 

 

Let  1 2
, ,...,

T

p
x x xx  be a random vector with 

covariance matrix Σ . Consider forming new 

variables 1 2, ,..., ( )kZ Z Z k p   linear combination 

of x-variables: 

1 1 11 1 12 2 1
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    
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PCA is a technique for dimensionality 

reduction from p  dimensions to k p  

dimensions. It tries to find, in order, the most 

informative k  linear combinations of set 

variables
1 2
, ,..., .

k
Z Z Z   

Having defined PCs, we need to know how to 

find them. We consider the vector of random 

variables x  has a known covariance matrix Σ  but 

the more realistic case, where Σ  is unknown, 

follows by replacing Σ  by a sample covariance 

matrix S . To derive the form of the PCs, consider 

first 1 1

TZ α x
 

where the vector 1α maximizes 

 1 1 1

TVar Z α Σα  subject to 1 1. 1T α α . In this 

case, the standard approach is to use the technique 

of Lagrange multipliers  i  that are frequently 

used when maximizing functions subject to some 

constraints. To maximize  1Var Z , Lagrange 

function  1 1
,L α , 

   1 1 1 1 1 1 1
1, ,T T

L    α α Σα α α             (3) 

 

where 1  is a Lagrange multiplier. Differentiation 

with respect to 1α  gives, 

 1 1 0p Σ Ι α                        (4)  
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where pΙ  is the  p p  identity matrix. Hence, 
1  

is an eigenvalue of Σ  and 
1α  is the corresponding 

eigenvector or the weight. Note that the quantity to 

be maximized is 

 1 1 1 1 1

TVar   Z α α  .                    (5) 

 

So 
1  must be as large as possible. In this case 

1α  is the eigenvector corresponding to the largest 

eigenvalue of Σ  and 
1  is the largest eigenvalue. 

In order to obtain second PC, we want to 

 2Var Z subject to 2 1 0T α α  and 
2 2 1T α α . Thus, 

Lagrange function is, 

     1 2 2 2 2 2 2 2 2 1
1, , ,

T T T
L       α α α Σα α α α α  (6)                       

 

where 2  and   are Lagrange multipliers.  

 

Differentiation with respect to 2α  gives, 

2 2 2 1 0,   Σα α α                 (7)                                                               

and multiplication of Eq. (7) on the left by 1

T
α gives 

1 2 2 1 2 1 1 0,T T T   α Σα α α α α               (8) 

 

which, since 2 1 0T α α  and 
2 2 1T α α , Eq. (8) 

reduces to 0  . Thus Eq. (7) becomes, 

 2 2 0p Σ Ι α  .                     (9) 

 

Hence 2 once more eigenvalue of  ,Σ and 

2α the corresponding eigenvector. Again, 

 2 2 ,Var Z  so 
2 is to be as large as possible. 

In general, the thk principal component  of  x  

is 
T

k kZ α x  and    2 ,T

k kVar Var  Z α x  where 

k  is the thk  largest eigenvalue of Σ , and kα  is 

the corresponding eigenvector. Therefore 

1 2 ... 0k       condition holds for the 

eigenvalues. Namely, the obtained principal 

components are in decreasing order of variance, 

     1 2 ... .kVar Var Var  Z Z Z In this case 

1Z  explains as much variance as possible and 2Z  

explains as much of the remaining variance as 

possible. The kth PC, 
T

k kZ α x
 

maximizes 

  T

k k kVar Z α Σα  subject to  . 1T

k k α α  and 

 , 0,( )i kCov i k Z Z . It can be shown that for 

the third, fourth, ..., thp  PCs, the vectors of 

coefficients 
3 4, ,..., pα α α are the eigenvectors of 

Σ  corresponding to 3 4, ,..., p   ,the third and 

fourth largest,...,and the smallest eigenvalue, 

respectively. 

It is important to note that on occasion, the 

vectors kα  are referred to as principal components. 

Although this usage is occasionally defended, it is 

nonetheless confusing. It is therefore preferable to 

reserve the term ‘principal components or principal 

components scores P’ for the derived variables, 

              .P xα ,                       (10) 

and refer to α as the eigenvectors or loadings 

matrix. Consequently, in a PCA model, each 

eigenvalue represents the degree of variation in the 

original features that can be explained by the 

associated principal components. For a more 

comprehensive understanding, please refer to the 

information provided in reference, [5]. The degree 

to which the selected principal components 

"explain" the variance of each of the variables is 

quantified by a statistic known as communality. 

The commonalities for the kth variable are 

computed by taking the sum of the squared 

loadings for that variable, [28]. This is expressed 

by: 

2 2

1

p

k ki

i

h a


 ,                          (11) 

where 
ki

a  represents the loadings of variables 
k

Z .   

 

2.2  Cluster Analysis 
The term "cluster analysis" is used to describe a 

wide range of techniques employed in the 

construction of classifications. A number of these 

techniques are discussed in detail by [29] and [30]. 

Cluster analysis is a method of identifying groups 

of individuals who are similar to one another. This 

concept of similarity is of great importance in all 

scientific fields. The utilization of appropriate 

measures not only enhances the quality of 

information selection but also minimizes the time 

and processing costs. There are numerous 

similarity measures [31] available for use in a 

variety of applications and contexts. The Euclidean 

distance is a metric that is widely known to be the 

most commonly used to determine the distance 

between two vectors  1 2
, ,...,

p
x x xx  and 

 1 2
, ,...,

p
y y yy defined as,    

    

 
2

1

,
T

p

j j

j

d

x y


  

 

x y x y x y
            (12) 
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Once you have selected the distance or 

similarity measure, you must choose the 

appropriate clustering algorithm. Ward’s method, 

also known as the incremental sum of squares 

method, is a commonly used approach in 

hierarchical clustering. This method utilizes both 

the within-cluster (squared) distances and the 

between-cluster (squared) distances, [32], [33]. The 

objective is to generate clusters that minimize the 

within-cluster variance and maximize the between-

cluster variance. This approach differs from the 

conventional approach in that it does not combine 

the two most similar objects successively. Instead, 

those objects whose merger results in the smallest 

possible increase in the within-cluster variance are 

combined. If AB  is the cluster obtained by 

combining clusters A  and B , then the sum of 

within-cluster distances (equivalent to within-

cluster sums of squares (SSE)) are: 

  
1

, ( , and )
rn

T

r i r i r

i

SSE r A B AB


    y y y y  , (13) 

where    /
AB A A B B A B

n n n n  y y y , ,
A B

n n  and 

AB A B
n n n    are the numbers of points in A , B  

and AB   respectively. In this case Ward’s method 

joins the two clusters A  and B  that minimize the 

increase in SSE , defined as 

 

   .

AB AB A B

TA B

A B A B

A B

I SSE SSE SSE

n n

n n

  

  


y y y y
    (14) 

 

In this paper, we utilize the Ward’s method, 

which is based on Euclidean distances. 

 

 

3  Simulations and Results 
This study definitively identified 27 Ostracoda 

species in only 60 of the 95 stations in the Thrace 

region, as shown in Table 1. The full names of the 

abbreviated codes for the Ostracoda taxa are 

provided in [34]. The abbreviations employed for 

these species are presented in Table 1. The 

similarities of species were analyzed based on their 

habitat distribution. The analyses were performed 

using Mathematica software. The differentiation of 

habitat preferences in the Ostracoda genus 

represents the most useful taxonomic 

characterization. The distribution and numbers of 

these organisms in their habitat preferences play a 

significant role in the infrageneric classification of 

their genus. Table 1 provides a clear illustration of 

the distribution of species and their habitat 

preferences, presented in a data matrix comprising 

27 rows and 5 columns. 

 

Table 1. Species distribution and habitat 

preferences with number of stations 

S
p

ec
ie

s 

A
b

b
re

v
ia

ti
o

n
s 

L
ag

o
o

n
s 

R
es

er
v

o
ir

s 

L
ak

es
 

S
tr

ea
m

s 

T
ro

u
g
h

s 

lehi 1 0 0 0 0 

liin 0 6 0 0 0 

list 0 1 0 0 0 

pare 0 0 1 0 0 

cyto 2 0 0 1 0 

poel 1 0 0 0 0 

potu 0 0 0 1 0 

tyam 0 0 1 0 0 

llgi 0 1 0 2 0 

llbi 0 1 0 0 4 

llde 0 2 0 0 1 

llmo 0 1 2 0 0 

llbr 0 0 0 5 9 

cane 0 0 1 3 0 

psha 0 0 2 0 0 

cyov 0 0 0 1 0 

phkr 0 0 3 0 0 

cyop 0 0 2 0 0 

euin 0 0 0 1 1 

prze 0 0 0 2 3 

hesa 0 1 0 6 11 

hein 1 0 0 9 16 

hech 0 0 0 0 4 

psol 0 0 0 2 8 

cyvi 0 4 2 4 1 

pova 0 0 0 0 1 

povi 0 0 0 0 2 

  

A confident classification of Ostracoda species 

will be achieved by assessing their habitat 

preference variability using the data matrix 

presented in Table 1. Principal component analysis 

was used to identify groups among the 27 

individuals in the sample. Traditional taxonomic 

methods are not suitable for species identification, 

so this method was employed. In a similar manner, 

the distance between all other pairs of objects can 

be computed and expressed in a distance matrix.  

The non-diagonal elements of the matrix 

represent the distances between pairs of objects. 

The diagonal elements are all zero, as the distance 

from an object to itself is always zero. 

In order to ascertain the optimal number of 

clusters for the data, it is possible to utilize the 

dendrogram, which illustrates the distance level at 
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which a combination of objects and clusters was 

formed. Figure 1 depicts the dendrogram resulting 

from the application of Ward’s clustering method 

to the complete Ostracoda taxa data set presented in 

Table 1.  

 
Fig. 1: Similarity analysis of species of Ostracods, 

calculated using Euclidean distance index and 

Ward’s method 

 

The dendrogram is read from left to right in 

order to ascertain the distance at which objects 

have been combined. For example, according to 

our calculations above, objects “liin”, and “cyvi” 

are combined at a distance level of 5.0.  By looking 

at the dendrogram, we could justify an eight-cluster 

solution ([llbr, hesa, psol, hein], [prze, povi,, hech, 

ılbi],…etc), as well as a lot of cluster subgroups 

([liin, cyvi], [lehi, poel, cyto], [list, ılde], …etc]). 

In principal component analysis, factor 

loadings, also known as component loadings, 

represent the correlation coefficients between the 

variables and observations. The total proportion of 

the variance in the sentence that is explained by the 

two factors is simply the sum of their squared 

factor loadings. This is referred to as the 

communality of the variable sentence. Table 2 

provides the first two factor loadings and 

communalities for variables. The third column of 

Table 2 shows coefficients of linear combination 

that define loading 1 or PC1, and the fourth column 

shows coefficients for loading 2 or PC2. The 

loadings of the variable reservoirs on PC1 and PC2 

are (-0.03) and (-0.91), respectively. The minus 

sign indicates an inverse or negative relationship; 

the absence of a sign is meant to imply a plus sign 

indicating a direct or positive relationship.  Table 2 

shows that variables lagoons have a very small role 

in explaining the variation on PC1, whereas 

reservoirs are highly correlated with PC2, but 

negligibly correlated with PC1. 

 

Table 2. Principal component solution, first two 

factor loadings and communalities for Ostracoda 

data 

 

On the other hand, the troughs variable has the 

highest loading (0.89) on PC 1. Namely, troughs 

play a big role in explaining the variation on PC1, 

and reservoirs play a big role in explaining the 

variation on PC2. The commonality, or the 

proportion of the variance in each variable 

accounted for by two components shown in Table 

2. For instance, 42.94 % of the variance in 

reservoirs is accounted for in Table 2. We also 

observed that the factor model explains nearly  

1%, 43%, 1 %, 7%, and 5%, respectively of the 

observed variance of lagoons, reservoirs, lakes, 

streams, and troughs. 

    How many principal components are needed to 

reproduce the observed covariance matrix to a 

satisfactory level of accuracy? It can be posited that 

a more straightforward determination of the 

optimal number of principal components, m, may 

be achieved through the utilization of graphical 

approaches, as proposed by [35], namely, the scree 

plot, which is a plot of eigenvalues versus 

component numbers, [36]. With regard to the 

Ostracod data, Figure 2 illustrates an optimal 

pattern in the plotted data. 

Figure 2 demonstrates a sharp increase in the 

first two eigenvalues, followed by a bend, and then 

a gradual decrease. The elbow is clearly located at 

the second principal component. This means that 

the first two components should be kept for the 

analysis. Thus, we decide that the optimal number 

of components m should be 2. Once the number of 

principal components to be included has been 

V a r i a b l e s O b s e r v e d  V a r i a n c e s   L o a d i n g 1
 

 ( P C 1 )   
  

  
  

  

L o a d i n g 2
 

  
 

( P C 2 )   
  

  
  

C o m m u n a l i t y
 

 P e r c e n t  e x p l a i n e d   

Lagoons 0.23 0.01 0.05 0.002 0.98 

Reservoirs 1.93 -0.03 -0.91 0.83 42.94 

Lakes 0.80 -0.06 -0.08 0.009 1.16 

Streams 5.09 0.44 -0.37 0.336 6.61 

Troughs 16.7 0.89 0.15 0.821 4.92 
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determined, the next step is to calculate the 

component scores. Table 3 provides the first two 

component scores for 27 Ostracoda species in the 

columns labeled PC Score 1 and PC Score 2.  

 

 
Fig. 2: Scree graph for the covariance matrix for 

data that most likely have 2 underlying factors 

 

Table 3. The first two principal component scores 

of Ostracoda data 

Species PC Score1 PC Score 2 

lehi -2.57 0.83 

liin -2.77 -4.68 

list -2.61 -0.13 

pare -2.64 0.71 

cyto -2.11 0.50 

poel -2.57 0.83 

potu -2.14 0.41 

tyam -2.63 0.71 

llgi -1.72 -0.88 

llbi 0.97 0.46 

llde -1.74 -0.89 

llmo -2.72 -0.28 

llbr 7.68 0.24 

cane -1.30 -0.42 

psha -2.70 0.63 

cyov -2.13 0.41 

phkr -2.76 0.56 

cyop -2.70 0.63 

euin -1.24 0.56 

prze 0.99 0.48 

hesa 9.88 -0.75 

hein 15.72 -0.18 

hech 0.99 1.38 

psol 5.46 1.22 

cyvi -0.16 -4.37 

pova -1.69 0.93 

povi -0.79 1.08 

 

Table 3 clearly shows that the PC Score 1 and 

PC Score 2 values represent the coordinates for 

each of the 27 Ostracoda species in the original 

axis system. Thus, we are now ready to plot the 

principal component scores in a 2D graph. 

Figure 3 displays the corresponding map, 

which shows a set of observations plotted 

concerning the first two principal component 

scores. We can say that the Ostracoda species are 

confidently grouped into eighth functional classes. 

The first cluster specifically includes hein and hesa, 

while the eight cluster is comprised of liin and cyvi. 

 

 
Fig. 3: Plot of the first and second principal 

component scores. The symbols in the figure 

legend correspond to the eight functional classes. 

 

 

4  Conclusions 
This paper presents a method that directly applies 

principal component analysis to correlated 

multivariate data. The utility of clustering analysis 

using PCA in identifying the habitat preferences of 

Ostracoda species is demonstrated through an 

illustrative example. Ostracods are extremely 

sensitive to environmental parameters, including 

temperature, salinity, and oxygen levels. Our 

analysis used a hierarchical clustering algorithm, 

but other clustering algorithms such as fuzzy 

clustering and density-based clustering can also 

enhance classification. The paper argues that PCA 

is an advantageous approach for clustering 

Ostracoda species based on their habitat 

preferences, particularly when analyzing 

multivariate data. An increase in the number of 

artificial water sources may result in an increased 

likelihood of encountering certain species of 

Ostracoda, which could potentially give rise to a 

false sense of richness. It seems likely that new 

technologies will provide a range of novel 
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applications for PCA in the years to come. In future 

research, we intend to expand our classification of 

many more Ostracoda species to encompass a 

greater diversity of habitats, employing factor 

analysis and the silhouette coefficient. 
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