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Abstract: - We have proposed to apply the confidence and prediction intervals of nonlinear regressions for the 
metrics RFC, CBO, and WMC at the app level to evaluate the quality of software systems from the point of 
view of their object-oriented design (OOD). A modified technique for evaluating the quality of software 
systems has been introduced. We have given the example of using the modified technique to detect the software 
quality of open-source Java systems. 
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1  Introduction 
As we know, “software quality is given high 
priority”, [1]. However, despite the existing 
methods of software quality assessment, “there is 
still a lack of an effective estimation method for 
overall quality”, [2]. Also, the importance of the 
problem of evaluating the quality of software 
systems is evidenced by publications in recent years, 
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], 
[14], [15], [16], [17], [18], [19], [20]. 

At the same time, “The backbone of any 
software system is its design” [21], including object-
oriented design (OOD). To analyze the object-
oriented system, special sets of metrics are used, for 
instance, CK [22] and MOOD, [23]. However, only 
the CK metrics are designed to measure the three 
non-implementation steps of OOD in Booch’s 
definition, [22]. 

Nowadays, software metrics, [5], [6], [8], [17], 
including RFC (response for a class) at the app level 
[5], [6], are used for detecting the quality of 
software systems. Also, we know that RFC depends 
on the metrics CBO (coupling between object 
classes) and WMC (weighted methods per class). 
Such dependency in the form of a linear regression 
was proposed, [24]. 

Although machine learning algorithms are 
becoming increasingly popular for software quality 
evaluation, [11], [12], [13], [14], [15], [16], methods 
of regression analysis have not yet reached their full 
potential, [1], [5], [6], [20]. In [1], the authors 

combined multiple linear regression and a fuzzy 
comprehensive evaluation method to build a quality 
evaluation algorithm. In [20], the authors used the 
linear regression algorithm for predicting the defect 
density in software apps and concluded existing 
approaches, including Case-Based Reasoning, are 
less precise than the Linear Regression 
methodology. 

There is currently a known use of the technique 
[5] based on the confidence and prediction intervals 
of nonlinear regression for the RFC metric at the 
app level to evaluate the quality of open-source apps 
developed in Java [5] and Kotlin [6]. However, the 
metrics CBO and WMC, like RFC, also should be 
considered as the dependent variables that 
characterize the quality of software systems. That is 
why we proposed to modify the technique [5] to 
evaluate the quality of software systems from the 
point of view of their OOD. A modification is based 
on the confidence and prediction intervals of 
nonlinear regressions for RFC, CBO, and WMC at 
the app level. To build the nonlinear regression 
models, confidence, and prediction intervals of 
nonlinear regressions for RFC, CBO, and WMC, we 
apply the appropriate techniques based on 
multivariate normalizing transformations, [25]. 
 
 
2  Problem Formulation 
Suppose given the original sample as the three-
dimensional non-Gaussian data set: actual values of 
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the RFC, CBO, and WMC metrics from N software 
systems. Suppose that there are two transformations: 
a bijective three-variate normalizing transformation 
of a non-Gaussian random vector 

 TWMCCBORFC ,,P  to a Gaussian random 

vector  TWMCCBORFC ZZZ ,,T  that is given by: 
 PψT   (1) 

 
and the inverse transformation for (1): 

 TψP
1 , (2) 

 
ψ  is a vector of normalizing transformation (1), 

 TWMCCBORFC ψ,ψ,ψψ . 
It is required to build three nonlinear regression 

models in the form  11 ε,,WMCCBOFRFC  , 
 22 ε,,WMCRFCFCBO  , and 
 33 ε,,CBORFCFWMC  , respectively, using 

transformations (1) and (2). Here jε  is the error 
term that is the Gaussian random variable to 
describe residuals, jε   2

εσ,0
j

N , 
jεσ  is the 

standard deviation, 3,2,1j . 
Also, it is required to build the confidence and 

prediction intervals for the above three nonlinear 
regressions for the RFC, CBO, and WMC metrics to 
evaluate the quality of software systems from the 
point of view of their OOD. 

 
 

3  Problem Solution 
To evaluate the quality of software systems, we 
modify the technique for detecting software quality 
based on the confidence and prediction intervals of 
nonlinear regression for the RFC metric at the app 
level, [5]. The need for a modification is primarily 
due to that the other two metrics CBO and WMC, 
like RFC, should also be considered as dependent 
variables. Before using a modified technique, it is 
necessary to build nonlinear regression models, 
confidence, and prediction intervals. To construct 
them, you can use the appropriate techniques based 
on multivariate normalizing transformations, [25]. 

The modified technique follows six steps. 
Step 1. Normalize the RFC, CBO, and WMC 

values (three-dimensional data point i) for the 
software system (system i) by the three-variate 
normalizing transformation, which has been used 
for finding the confidence and prediction intervals 
of nonlinear regressions for the metrics RFC, CBO, 
and WMC at the system level (app level). 

Step 2. Calculate the squared Mahalanobis 
distance (SMD) for the three-dimensional 
normalized data point (point i). 

Step 3. Check whether the SMD test statistic for 
the three-dimensional normalized data point (point 
i) is greater than a quantile of the corresponding 
distribution for this statistic. If yes then stop and go 
away (we cannot use the modified technique for 
point i) else go to step 4. 

Step 4. Calculate borders of the confidence and 
prediction intervals of nonlinear regressions for the 
RFC, CBO, and WMC metrics at the system level 
for the three-dimensional data point (point i). 

Step 5. Detect where the three-dimensional data 
point (point i) falls. If the data point (point i) for the 
software system is inside all confidence intervals of 
nonlinear regressions for the metrics RFC, CBO, 
and WMC, then stop (the software system has 
medium quality) else go to step 6. 

Step 6. If the data point (point i) for the software 
system is between the upper borders of confidence 
intervals and the lower borders of prediction 
intervals for all three metrics, then the software 
system has high quality else the software system has 
low quality. 

In step 1, we recommend using multivariate 
transformations, for instance, the Box-Cox [26] or 
Johnson, [27]. The choice of the multivariate 
transformation will depend on the data set for the 
metrics RFC, CBO, and WMC. 

To calculate the SMD for a three-dimensional 
normalized data point (point i) in step 2, we apply 
the following formula: 

   TTSTT  
iN

T
iid 12 , (3) 

 
where T  is the sample mean vector, 

 TWMCCBORFC ZZZ ,,T ; NS  is the sample 
covariance matrix: 

  



N

i

T
iiN

N 1

1
TTTTS . (4) 

In step 3, we apply a test statistic for value 2
id  as 

follows, [28]: 
   133 22  NdNN i , (5) 

 
which has an approximate F distribution with a 3 
and 3N  degrees of freedom and α  significance 
level. According to [29], we take α  as 0.005. We 
use the F distribution quantile 005.0,3,3 NF  with a 3 
and 3N  degrees of freedom and 0.005 
significance level to compare with (5). 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 323 Volume 23, 2024



We use the appropriate techniques based on 
multivariate normalizing transformations [25] to 
build models and intervals (confidence and 
prediction) of nonlinear regressions for the metrics 
RFC, CBO, and WMC. According to [25], we can 
build the confidence intervals of nonlinear 
regressions for the metrics RFC, CBO, and WMC 
as: 

   






















 
21

1
ν,2α

1 1ˆψ XZ

T

XZYY
N

StZ
Y

zSz , (6) 

 
where Yψ  is the normalizing transformation 
component for dependent variable Y; YẐ  is a 
prediction result by a linear regression equation 

22110
ˆˆˆˆ ZbZbbZY   dependent on predictors Z1 

and Z2 for the normalized data, which are 
transformed by the three-variate normalizing 
transformation; ν,2αt  is a student's t-distribution 

quantile with a 2α  significance level and ν  

degrees of freedom; 3ν  N ; 
Xz  is a vector with 

components 11 ZZ
i
 , 22 ZZ

i
  for i-row; 





N

i

jj i
Z

N
Z

1

1 , 2,1j ;  
2

1

2 ˆ
ν
1




N

i

YYZ iiY
ZZS ; 

ZS  is the 22  matrix: 
















2221

2111

ZZZZ

ZZZZ

Z SS

SS
S , (7) 

 

where   rr

N

i

qqZZ ZZZZS
iirq


1
, 2,1, rq . 

To build the confidence interval of nonlinear 
regression for the metric RFC by (6), we need to 
substitute RFC, RFCψ , RFCẐ , CBOZ , WMCZ ,  

CBOZ , and WMCZ  instead of Y, Yψ , YẐ , 1Z , 2Z , 

1Z , and 2Z , respectively. To construct the 
confidence interval of nonlinear regression for the 
metric CBO by (6), we need to substitute CBO, 

CBOψ , CBOẐ , RFCZ , WMCZ , RFCZ , and WMCZ  
instead of Y, Yψ , YẐ , 1Z , 2Z , 1Z , and 2Z , 
respectively. To build the confidence interval of 
nonlinear regression for the metric WMC by (6), we 
need to substitute WMC, WMCψ , WMCẐ ,  

RFCZ , CBOZ , RFCZ , and CBOZ  instead of Y, Yψ , 

YẐ , 1Z , 2Z , 1Z , and 2Z , respectively. 
The prediction interval of the nonlinear 

regression is constructed analogously (6) with the 

only difference that 1 more must be added to the 
sum in curly brackets (6). 

 
 

4 An Example of Problem Solution 
We give an example of using the modified 
technique to detect the software quality of open-
source Java systems. To build models, the 
confidence and prediction intervals of nonlinear 
regressions for the metrics RFC, CBO, and WMC at 
the system level by (6) for our example, we use the 
data of RFC, CBO, and WMC of 46 open-source 
Java-systems hosted on GitHub from [5]. In [5], the 
data was obtained using the CK tool and cleaned 
from the three-variate outliers. The data of RFC, 
CBO, and WMC metrics of 46 open-source Java 
systems was supplemented by others of the same 
metrics from [30] for three popular open-source 
Java systems of some versions: FreeMind 
0.9.0Beta17, jEdit (2.6final and 3.0final), and 
TuxGuitar 1.3.0. Also, we added the data other three 
versions of the above systems hosted on GitHub: 
FreeMind 1.1.0Beta2, jEdit 5.5.0, and TuxGuitar 
1.5.2src. Thus, we had the data of the metrics RFC, 
CBO, and WMC from 53 software systems. Like 
[5], the data was cleaned from two three-variate 
outliers (FreeMind 1.1.0Beta2 and TuxGuitar 1.3.0). 
In the following, we used 51 data points. 

As in [5], to normalize the data, we applied the 
three-variate Box-Cox transformation (BCT) with 
components: 

 
 













.0λif,ln

;0λif,λ1λ

jj

jjj

j

X

X
Z

j

 (8) 

 
Here jZ  is the Gaussian variable and jλ  is a 

parameter of BCT, 3,2,1j . The variable RFCZ  is 
defined analogously (8) with the only difference that 
instead of jZ , jX , and jλ  should be put RFCZ , 
RFC, and RFCλ , respectively. The variables CBOZ  
and WMCZ  are defined similarly. The parameter 
estimates of the three-variate BCT for the data are 
calculated by the maximum likelihood method 
according to [29] and are 0.194965λ̂ RFC , 

0.851253λ̂ CBO , 0.567096λ̂ WMC . 
We built the nonlinear regression models for the 

metrics RFC, CBO, and WMC based on the three-
variate BCT in the form [5]: 

   Y

YY ZY
λ̂1

1εˆλ̂  , (9) 
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where YẐ  is a prediction result by the linear 

regression equation 22110
ˆˆˆˆ ZbZbbZY   dependent 

on predictors Z1 and Z2 for the normalized data, 
which are transformed by the three-variate 
normalizing transformation; ε  is a Gaussian random 
variable, ε   2

εσ,0N . 
To build the nonlinear regression model for the 

metric RFC by (9), we need to substitute RFC, 

RFCλ̂ , RFCẐ , CBOZ , WMCZ , 1ε , and 
1εσ  instead of 

Y, Yλ̂  YẐ , 1Z , 2Z , ε , and εσ , respectively. To 
build the nonlinear regression model for the metric 
CBO by (9), we need to substitute CBO, CBOλ̂ , 

CBOẐ , RFCZ , WMCZ , 2ε , and 
2εσ  instead of Y,  

Yλ̂ , YẐ , 1Z , 2Z , ε , and εσ , respectively. To build 
the nonlinear regression model for the metric WMC 
by (9), we need to substitute WMC, WMCλ̂ , WMCẐ , 

RFCZ , CBOZ , 3ε , and 
3εσ  instead of Y, Yλ̂ , YẐ , 

1Z , 2Z , ε , and εσ , respectively. The parameter 
estimates of the nonlinear regression models for the 
metrics RFC, CBO, and WMC are shown in Table 
1. 

 
Table 1. The parameter estimates of the nonlinear 

regression models 
No Y b0 b1 b2 εσ  MMRE PRED 

1 RFC -3.69701 0.11637 4.59287 0.2743 0.1346 0.8627 
2 CBO 8.09952 4.37867 -11.4975 1.6823 0.1974 0.7451 
3 WMC 0.99535 0.12980 -0.00864 0.0461 0.1949 0.7059 

 
To assess the predictive accuracy of nonlinear 

regression models for RFC, CBO, and WMC in the 
form (9), we utilized standard metrics, namely 
MMRE and PRED(0.25). The acceptable values of 
MMRE and PRED(0.25) are not more than 0.25 and 
not less than 0.75, respectively. Table 1 contains the 
MMRE and PRED(0.25) values for the above 
models. These values indicate the satisfactory 
quality of the models. 

To calculate SMD for the three-dimensional 
normalized data point (point i) in step 2 of the 
considered example of the modified technique, we 
need to use the following values in (3): 

731.3RFCZ  244.8CBOZ , 409.1WMCZ , and 
the matrix inverse (4) 

 

























825.479144.4283.62
144.43604.0578.1

283.62578.1561.13
1

NS .  

 
In step 3, we use the F distribution quantile with 

3 and 48 degrees of freedom and 0.005 significance 
level 85.4005.0,48,3 F . 

To calculate the borders of the confidence 
interval of nonlinear regression for the RFC metric, 
we need to use the following values in (6) and (7): 

2799.0
YZ

S , 244.81 Z , 409.12 Z , and 















79940.306087.0
06087.0003466.01

ZS .  

 
To calculate the borders of the confidence 

interval of nonlinear regression for the metric CBO, 
we need to use the following values in (6) and (7): 

7170.1
YZ

S , 731.31 Z , 409.12 Z , and 















47418.886547.0
86547.013041.01

ZS .  

 
To calculate the borders of the confidence 

interval of nonlinear regression for the metric 
WMC, we need to use the following values in (6) 
and (7): 0471.0

YZ
S , 731.31 Z , 244.82 Z , and 















006365.002040.0
02040.010738.01

ZS .  

 
In all cases of the considered example for 

calculating borders of the confidence intervals we 
need to use the following values in (6): 

011.248,205.0 t , N=51, and 48ν  . 
We consider the examples of evaluating the 

software quality of open-source Java systems by the 
proposed technique. We took the values of the RFC, 
CBO, and WMC metrics at the app level from three 
popular open-source Java systems [30]: FreeMind, 
jEdit, and TuxGuitar. Also, we obtained the values 
of these metrics using the CK tool for the above 
software systems. In addition, we took the values of 
the RFC, CBO, and WMC metrics at the app level 
from four other open-source Java systems hosted on 
GitHub: Apache Commons Lang, Hosebird Client, 
gwt-bootstrap, and itcoinj. Apache Commons Lang 
(commons-lang) is a package of Java utility classes 
for the classes that are in Java.lang's hierarchy. 
Hosebird Client (HBC) is a Java HTTP client for 
consuming Twitter's real-time Streaming API. Gwt-
bootstrap is a GWT Library that provides the 
widgets of Bootstrap, from Twitter. The bitcoinj 
library is a Java implementation of the Bitcoin 
protocol, which allows it to maintain a wallet and 
send/receive transactions without needing a local 
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copy of Bitcoin Core. Table 2 shows the metrics 
RFC, CBO, and WMC from the above apps, and test 
statistic (TS) (5). 

The quality evaluation results from Table 2 are 
slightly different from the results from [5]. This can 
be explained primarily by the modified technique 
(unlike the technique from [5]) considers the other 
two metrics CBO and WMC, like RFC, as the 
dependent variables. 

 
Table 2. The quality evaluation results 

i App name RFC CBO WMC TS (5) quality 
1 TuxGuitar 1.5.2-src 15,45 8,54 14,52 0.52 low 
2 jEdit 5.5.0 26,49 7,91 39,03 3.38 low 
3 jEdit 3.0final 10.38 4.29 14.00 1.28 high 
4 jEdit 2.6final 8.84 4.24 9.27 1.68 low 
5 FreeMind 0.9.0Beta17 13.29 5.31 12.16 1.88 low 
6 commons-lang 4x 25.39 13.80 42.11 0.97 low 
7 bitcoinj 37.16 17.81 65.84 1.43 medium 
8 gwt-bootstrap 10.62 7.52 12.95 0.55 high 
9 HBC 13.10 10.53 13.74 0.13 high 

 
Also, we tried to use the modified technique 

example to evaluate the quality of three software 
systems (A, B, and C), for which the quality is 
classified in NASA's research as low, high, and 
medium, respectively [24]. We could not evaluate 
the quality of these systems by the modified 
technique example since their relevant values of the 
test statistic (5) for the normalized metrics RFC, 
CBO, and WMC are greater than 4.85. These results 
may be explained by the system A is commercial 
software, system B is NASA software, and system C 
is developed in C++. 

 
 

5  Discussion 
To evaluate the quality of software systems, we 
propose the modified technique based on the 
confidence and prediction intervals of nonlinear 
regressions for the metrics RFC, CBO, and WMC. 
This choice is due to the following. Firstly, 
according to [22], the CK metrics are designed to 
measure the three non-implementation steps in 
Booch’s definition of OOD. These are the metrics 
WMC, DIT, NOC, RFC, CBO, and LCOM, which 
define the OOD complexity in the above steps. In 
particular, the metrics RFC and CBO define the 
OOD complexity due to the relationships between 
classes, [31]. And, as we know, the OOD 
complexity affects the quality of software systems. 

Finally, the above metrics together characterize 
the OOD complexity and quality of software 
systems that require the use of multivariate analysis 
methods, such as multivariate statistical analysis. 
One of them is regression analysis. In this case, as a 
rule, nonlinear regression analysis should be used 

since only in special cases can the use of a linear 
regression model be theoretically justified for 
estimating software metrics. 

We apply the three-variate Box-Cox 
normalizing transformation to build the nonlinear 
regression models, the confidence and prediction 
intervals for the nonlinear regressions for the 
metrics RFC, CBO, and WMC by [25] since, firstly, 
according to the Mardia test [32], the distribution of 
the three-dimensional normalized data is Gaussian 
and, secondly, the residuals distribution of 
corresponding linear regression models for 
normalized data is Gaussian. 

To build the confidence and prediction intervals 
for the nonlinear regressions for the metrics RFC, 
CBO, and WMC for evaluating the quality of 
software systems, we used a 0.05 significance level, 
as the appointed one usually, although this value 
may be discussed. 

Preliminary, we have studied the stability of the 
quality evaluation results dependent on a 
significance level value. We evaluated the quality of 
software systems from Table 2 for two values of 
significance level: 0.04 and 0.06. The results are the 
same as for a 0.05 significance level. That indicates 
the stability of the quality evaluation results at least 
within a 20 percent change in a significance level. 

Concerning the example of using the modified 
technique to detect the software quality of open-
source Java systems two limitations should be 
acknowledged and addressed concerning the data 
sample from 51 open-source apps in Java. The first 
limitation concerns the estimation of the data 
sample for open-source apps developed in Java 
only. The evaluation of other data samples, for 
instance, the industrial systems in Java, may affect 
the bounds of the confidence and prediction 
intervals of the nonlinear regressions for the metrics 
RFC, CBO, and WMC. In such cases, the proposed 
bounds of the confidence and prediction intervals of 
the nonlinear regressions for the metrics RFC, CBO, 
and WMC remain to be confirmed or changed. 

The second limitation concerns the sample size, 
which equals 51. This value cannot be 
unambiguously considered as the lower size limit of 
the large sample. Larger sample sizes may lead to a 
reduction of the widths of the confidence and 
prediction intervals of nonlinear regressions for the 
metrics RFC, CBO, and WMC. 

The quality of some Java systems from Table 2 
is rated as low because the upper bound of the 
prediction interval is exceeded for only one metric. 
For instance, TuxGuitar 1.5.2-src, jEdit 5.5.0, and 
jEdit 2.6final have low quality since the RFC values 
of these systems exceed the upper bounds of the 
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prediction intervals on 11, 18, and 6 percent, 
respectively. These results can be explained by the 
above systems having such classes for which the 
RFC values are greater than 100 (an acceptable 
maximum limit [33]). For instance, there are two 
such classes in TuxGuitar 1.5.2-src: 
org.herac.tuxguitar.app.action.installer.TGActionIns
taller and 
org.herac.tuxguitar.android.action.installer.TGActio
nInstaller for which the RFC values equal 252 and 
178, respectively. In this case, it is necessary to 
decide whether these classes are difficult to 
understand due to the large number of methods in 
every class's response set, and if necessary, reduce 
their number. 

Also, the quality of the above systems can be 
improved by improving the relationships between 
classes. In our opinion, the modified technique 
allows us to assess how balanced OOD of a 
software system using the metrics RFC, CBO, and 
WMC. And, as we know [34], “Systems engineering 
seeks a safe and balanced design in the face of 
opposing interests and multiple, sometimes 
conflicting constraints.” 

The given example of the modified technique 
use is illustrative and demonstrates its capabilities. 
In the future, it is necessary to build corresponding 
models, the confidence, and prediction intervals of 
nonlinear regressions for the metrics RFC, CBO, 
and WMC based on various data sets. 
 
 
6 Conclusion 
We have proposed to apply the confidence and 
prediction intervals of nonlinear regressions for the 
RFC, CBO, and WMC metrics for evaluating the 
quality of software systems from the point of view 
of their OOD. To estimate the confidence and 
prediction intervals of nonlinear regressions for the 
RFC, CBO, and WMC metrics need to use 
multivariate normalizing transformations. In this 
case, we have used the three-variate Box-Cox 
transformations. 

We have introduced the modified technique for 
evaluating the quality of software systems. We have 
given the example of using the modified technique 
to detect the software quality of open-source Java 
systems. 

Moving forward, we plan to develop examples 
of applying the modified technique that does not 
have the above limitations due to the programming 
language and the sample size. 
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