
Evaluating Quality of Software Systems by the Confidence and

Prediction Intervals of Regressions for RFC, CBO and WMC Metrics

SERGIY PRYKHODKO

Department of Software for Automated Systems,
Admiral Makarov National University of Shipbuilding,

Heroes of Ukraine Ave., 9, Mykolaiv, 54007,
UKRAINE

Abstract: - We have proposed to apply the confidence and prediction intervals of nonlinear regressions for the
metrics RFC, CBO, and WMC at the app level to evaluate the quality of software systems from the point of
view of their object-oriented design (OOD). A modified technique for evaluating the quality of software
systems has been introduced. We have given the example of using the modified technique to detect the software
quality of open-source Java systems.

Key-Words: - quality, software system, confidence interval, prediction interval, nonlinear regression, software

metric, normalizing transformation.

Received: April 9, 2024. Revised: September 11, 2024. Accepted: October 13, 2024. Published: November 25, 2024.

1 Introduction
As we know, “software quality is given high
priority”, [1]. However, despite the existing
methods of software quality assessment, “there is
still a lack of an effective estimation method for
overall quality”, [2]. Also, the importance of the
problem of evaluating the quality of software
systems is evidenced by publications in recent years,
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20].

At the same time, “The backbone of any
software system is its design” [21], including object-
oriented design (OOD). To analyze the object-
oriented system, special sets of metrics are used, for
instance, CK [22] and MOOD, [23]. However, only
the CK metrics are designed to measure the three
non-implementation steps of OOD in Booch’s
definition, [22].

Nowadays, software metrics, [5], [6], [8], [17],
including RFC (response for a class) at the app level
[5], [6], are used for detecting the quality of
software systems. Also, we know that RFC depends
on the metrics CBO (coupling between object
classes) and WMC (weighted methods per class).
Such dependency in the form of a linear regression
was proposed, [24].

Although machine learning algorithms are
becoming increasingly popular for software quality
evaluation, [11], [12], [13], [14], [15], [16], methods
of regression analysis have not yet reached their full
potential, [1], [5], [6], [20]. In [1], the authors

combined multiple linear regression and a fuzzy
comprehensive evaluation method to build a quality
evaluation algorithm. In [20], the authors used the
linear regression algorithm for predicting the defect
density in software apps and concluded existing
approaches, including Case-Based Reasoning, are
less precise than the Linear Regression
methodology.

There is currently a known use of the technique
[5] based on the confidence and prediction intervals
of nonlinear regression for the RFC metric at the
app level to evaluate the quality of open-source apps
developed in Java [5] and Kotlin [6]. However, the
metrics CBO and WMC, like RFC, also should be
considered as the dependent variables that
characterize the quality of software systems. That is
why we proposed to modify the technique [5] to
evaluate the quality of software systems from the
point of view of their OOD. A modification is based
on the confidence and prediction intervals of
nonlinear regressions for RFC, CBO, and WMC at
the app level. To build the nonlinear regression
models, confidence, and prediction intervals of
nonlinear regressions for RFC, CBO, and WMC, we
apply the appropriate techniques based on
multivariate normalizing transformations, [25].

2 Problem Formulation
Suppose given the original sample as the three-
dimensional non-Gaussian data set: actual values of

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 322 Volume 23, 2024

the RFC, CBO, and WMC metrics from N software
systems. Suppose that there are two transformations:
a bijective three-variate normalizing transformation
of a non-Gaussian random vector

 TWMCCBORFC ,,P to a Gaussian random

vector  TWMCCBORFC ZZZ ,,T that is given by:
 PψT  (1)

and the inverse transformation for (1):

 TψP
1 , (2)

ψ is a vector of normalizing transformation (1),

 TWMCCBORFC ψ,ψ,ψψ .
It is required to build three nonlinear regression

models in the form  11 ε,,WMCCBOFRFC  ,
 22 ε,,WMCRFCFCBO  , and
 33 ε,,CBORFCFWMC  , respectively, using

transformations (1) and (2). Here jε is the error
term that is the Gaussian random variable to
describe residuals, jε   2

εσ,0
j

N ,
jεσ is the

standard deviation, 3,2,1j .
Also, it is required to build the confidence and

prediction intervals for the above three nonlinear
regressions for the RFC, CBO, and WMC metrics to
evaluate the quality of software systems from the
point of view of their OOD.

3 Problem Solution
To evaluate the quality of software systems, we
modify the technique for detecting software quality
based on the confidence and prediction intervals of
nonlinear regression for the RFC metric at the app
level, [5]. The need for a modification is primarily
due to that the other two metrics CBO and WMC,
like RFC, should also be considered as dependent
variables. Before using a modified technique, it is
necessary to build nonlinear regression models,
confidence, and prediction intervals. To construct
them, you can use the appropriate techniques based
on multivariate normalizing transformations, [25].

The modified technique follows six steps.
Step 1. Normalize the RFC, CBO, and WMC

values (three-dimensional data point i) for the
software system (system i) by the three-variate
normalizing transformation, which has been used
for finding the confidence and prediction intervals
of nonlinear regressions for the metrics RFC, CBO,
and WMC at the system level (app level).

Step 2. Calculate the squared Mahalanobis
distance (SMD) for the three-dimensional
normalized data point (point i).

Step 3. Check whether the SMD test statistic for
the three-dimensional normalized data point (point
i) is greater than a quantile of the corresponding
distribution for this statistic. If yes then stop and go
away (we cannot use the modified technique for
point i) else go to step 4.

Step 4. Calculate borders of the confidence and
prediction intervals of nonlinear regressions for the
RFC, CBO, and WMC metrics at the system level
for the three-dimensional data point (point i).

Step 5. Detect where the three-dimensional data
point (point i) falls. If the data point (point i) for the
software system is inside all confidence intervals of
nonlinear regressions for the metrics RFC, CBO,
and WMC, then stop (the software system has
medium quality) else go to step 6.

Step 6. If the data point (point i) for the software
system is between the upper borders of confidence
intervals and the lower borders of prediction
intervals for all three metrics, then the software
system has high quality else the software system has
low quality.

In step 1, we recommend using multivariate
transformations, for instance, the Box-Cox [26] or
Johnson, [27]. The choice of the multivariate
transformation will depend on the data set for the
metrics RFC, CBO, and WMC.

To calculate the SMD for a three-dimensional
normalized data point (point i) in step 2, we apply
the following formula:

   TTSTT  
iN

T
iid 12 , (3)

where T is the sample mean vector,

 TWMCCBORFC ZZZ ,,T ; NS is the sample
covariance matrix:

  



N

i

T
iiN

N 1

1
TTTTS . (4)

In step 3, we apply a test statistic for value 2
id as

follows, [28]:
   133 22  NdNN i , (5)

which has an approximate F distribution with a 3
and 3N degrees of freedom and α significance
level. According to [29], we take α as 0.005. We
use the F distribution quantile 005.0,3,3 NF with a 3
and 3N degrees of freedom and 0.005
significance level to compare with (5).

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 323 Volume 23, 2024

We use the appropriate techniques based on
multivariate normalizing transformations [25] to
build models and intervals (confidence and
prediction) of nonlinear regressions for the metrics
RFC, CBO, and WMC. According to [25], we can
build the confidence intervals of nonlinear
regressions for the metrics RFC, CBO, and WMC
as:

   






















 
21

1
ν,2α

1 1ˆψ XZ

T

XZYY
N

StZ
Y

zSz , (6)

where Yψ is the normalizing transformation
component for dependent variable Y; YẐ is a
prediction result by a linear regression equation

22110
ˆˆˆˆ ZbZbbZY  dependent on predictors Z1

and Z2 for the normalized data, which are
transformed by the three-variate normalizing
transformation; ν,2αt is a student's t-distribution

quantile with a 2α significance level and ν

degrees of freedom; 3ν  N ; 
Xz is a vector with

components 11 ZZ
i
 , 22 ZZ

i
 for i-row;





N

i

jj i
Z

N
Z

1

1 , 2,1j ;  
2

1

2 ˆ
ν
1




N

i

YYZ iiY
ZZS ;

ZS is the 22 matrix:
















2221

2111

ZZZZ

ZZZZ

Z SS

SS
S , (7)

where   rr

N

i

qqZZ ZZZZS
iirq


1
, 2,1, rq .

To build the confidence interval of nonlinear
regression for the metric RFC by (6), we need to
substitute RFC, RFCψ , RFCẐ , CBOZ , WMCZ ,

CBOZ , and WMCZ instead of Y, Yψ , YẐ , 1Z , 2Z ,

1Z , and 2Z , respectively. To construct the
confidence interval of nonlinear regression for the
metric CBO by (6), we need to substitute CBO,

CBOψ , CBOẐ , RFCZ , WMCZ , RFCZ , and WMCZ
instead of Y, Yψ , YẐ , 1Z , 2Z , 1Z , and 2Z ,
respectively. To build the confidence interval of
nonlinear regression for the metric WMC by (6), we
need to substitute WMC, WMCψ , WMCẐ ,

RFCZ , CBOZ , RFCZ , and CBOZ instead of Y, Yψ ,

YẐ , 1Z , 2Z , 1Z , and 2Z , respectively.
The prediction interval of the nonlinear

regression is constructed analogously (6) with the

only difference that 1 more must be added to the
sum in curly brackets (6).

4 An Example of Problem Solution
We give an example of using the modified
technique to detect the software quality of open-
source Java systems. To build models, the
confidence and prediction intervals of nonlinear
regressions for the metrics RFC, CBO, and WMC at
the system level by (6) for our example, we use the
data of RFC, CBO, and WMC of 46 open-source
Java-systems hosted on GitHub from [5]. In [5], the
data was obtained using the CK tool and cleaned
from the three-variate outliers. The data of RFC,
CBO, and WMC metrics of 46 open-source Java
systems was supplemented by others of the same
metrics from [30] for three popular open-source
Java systems of some versions: FreeMind
0.9.0Beta17, jEdit (2.6final and 3.0final), and
TuxGuitar 1.3.0. Also, we added the data other three
versions of the above systems hosted on GitHub:
FreeMind 1.1.0Beta2, jEdit 5.5.0, and TuxGuitar
1.5.2src. Thus, we had the data of the metrics RFC,
CBO, and WMC from 53 software systems. Like
[5], the data was cleaned from two three-variate
outliers (FreeMind 1.1.0Beta2 and TuxGuitar 1.3.0).
In the following, we used 51 data points.

As in [5], to normalize the data, we applied the
three-variate Box-Cox transformation (BCT) with
components:

 
 













.0λif,ln

;0λif,λ1λ

jj

jjj

j

X

X
Z

j

 (8)

Here jZ is the Gaussian variable and jλ is a

parameter of BCT, 3,2,1j . The variable RFCZ is
defined analogously (8) with the only difference that
instead of jZ , jX , and jλ should be put RFCZ ,
RFC, and RFCλ , respectively. The variables CBOZ
and WMCZ are defined similarly. The parameter
estimates of the three-variate BCT for the data are
calculated by the maximum likelihood method
according to [29] and are 0.194965λ̂ RFC ,

0.851253λ̂ CBO , 0.567096λ̂ WMC .
We built the nonlinear regression models for the

metrics RFC, CBO, and WMC based on the three-
variate BCT in the form [5]:

   Y

YY ZY
λ̂1

1εˆλ̂  , (9)

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 324 Volume 23, 2024

where YẐ is a prediction result by the linear

regression equation 22110
ˆˆˆˆ ZbZbbZY  dependent

on predictors Z1 and Z2 for the normalized data,
which are transformed by the three-variate
normalizing transformation; ε is a Gaussian random
variable, ε   2

εσ,0N .
To build the nonlinear regression model for the

metric RFC by (9), we need to substitute RFC,

RFCλ̂ , RFCẐ , CBOZ , WMCZ , 1ε , and
1εσ instead of

Y, Yλ̂ YẐ , 1Z , 2Z , ε , and εσ , respectively. To
build the nonlinear regression model for the metric
CBO by (9), we need to substitute CBO, CBOλ̂ ,

CBOẐ , RFCZ , WMCZ , 2ε , and
2εσ instead of Y,

Yλ̂ , YẐ , 1Z , 2Z , ε , and εσ , respectively. To build
the nonlinear regression model for the metric WMC
by (9), we need to substitute WMC, WMCλ̂ , WMCẐ ,

RFCZ , CBOZ , 3ε , and
3εσ instead of Y, Yλ̂ , YẐ ,

1Z , 2Z , ε , and εσ , respectively. The parameter
estimates of the nonlinear regression models for the
metrics RFC, CBO, and WMC are shown in Table
1.

Table 1. The parameter estimates of the nonlinear

regression models
No Y b0 b1 b2 εσ MMRE PRED

1 RFC -3.69701 0.11637 4.59287 0.2743 0.1346 0.8627
2 CBO 8.09952 4.37867 -11.4975 1.6823 0.1974 0.7451
3 WMC 0.99535 0.12980 -0.00864 0.0461 0.1949 0.7059

To assess the predictive accuracy of nonlinear

regression models for RFC, CBO, and WMC in the
form (9), we utilized standard metrics, namely
MMRE and PRED(0.25). The acceptable values of
MMRE and PRED(0.25) are not more than 0.25 and
not less than 0.75, respectively. Table 1 contains the
MMRE and PRED(0.25) values for the above
models. These values indicate the satisfactory
quality of the models.

To calculate SMD for the three-dimensional
normalized data point (point i) in step 2 of the
considered example of the modified technique, we
need to use the following values in (3):

731.3RFCZ 244.8CBOZ , 409.1WMCZ , and
the matrix inverse (4)

























825.479144.4283.62
144.43604.0578.1

283.62578.1561.13
1

NS .

In step 3, we use the F distribution quantile with

3 and 48 degrees of freedom and 0.005 significance
level 85.4005.0,48,3 F .

To calculate the borders of the confidence
interval of nonlinear regression for the RFC metric,
we need to use the following values in (6) and (7):

2799.0
YZ

S , 244.81 Z , 409.12 Z , and















79940.306087.0
06087.0003466.01

ZS .

To calculate the borders of the confidence

interval of nonlinear regression for the metric CBO,
we need to use the following values in (6) and (7):

7170.1
YZ

S , 731.31 Z , 409.12 Z , and















47418.886547.0
86547.013041.01

ZS .

To calculate the borders of the confidence

interval of nonlinear regression for the metric
WMC, we need to use the following values in (6)
and (7): 0471.0

YZ
S , 731.31 Z , 244.82 Z , and















006365.002040.0
02040.010738.01

ZS .

In all cases of the considered example for

calculating borders of the confidence intervals we
need to use the following values in (6):

011.248,205.0 t , N=51, and 48ν  .
We consider the examples of evaluating the

software quality of open-source Java systems by the
proposed technique. We took the values of the RFC,
CBO, and WMC metrics at the app level from three
popular open-source Java systems [30]: FreeMind,
jEdit, and TuxGuitar. Also, we obtained the values
of these metrics using the CK tool for the above
software systems. In addition, we took the values of
the RFC, CBO, and WMC metrics at the app level
from four other open-source Java systems hosted on
GitHub: Apache Commons Lang, Hosebird Client,
gwt-bootstrap, and itcoinj. Apache Commons Lang
(commons-lang) is a package of Java utility classes
for the classes that are in Java.lang's hierarchy.
Hosebird Client (HBC) is a Java HTTP client for
consuming Twitter's real-time Streaming API. Gwt-
bootstrap is a GWT Library that provides the
widgets of Bootstrap, from Twitter. The bitcoinj
library is a Java implementation of the Bitcoin
protocol, which allows it to maintain a wallet and
send/receive transactions without needing a local

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 325 Volume 23, 2024

copy of Bitcoin Core. Table 2 shows the metrics
RFC, CBO, and WMC from the above apps, and test
statistic (TS) (5).

The quality evaluation results from Table 2 are
slightly different from the results from [5]. This can
be explained primarily by the modified technique
(unlike the technique from [5]) considers the other
two metrics CBO and WMC, like RFC, as the
dependent variables.

Table 2. The quality evaluation results

i App name RFC CBO WMC TS (5) quality
1 TuxGuitar 1.5.2-src 15,45 8,54 14,52 0.52 low
2 jEdit 5.5.0 26,49 7,91 39,03 3.38 low
3 jEdit 3.0final 10.38 4.29 14.00 1.28 high
4 jEdit 2.6final 8.84 4.24 9.27 1.68 low
5 FreeMind 0.9.0Beta17 13.29 5.31 12.16 1.88 low
6 commons-lang 4x 25.39 13.80 42.11 0.97 low
7 bitcoinj 37.16 17.81 65.84 1.43 medium
8 gwt-bootstrap 10.62 7.52 12.95 0.55 high
9 HBC 13.10 10.53 13.74 0.13 high

Also, we tried to use the modified technique

example to evaluate the quality of three software
systems (A, B, and C), for which the quality is
classified in NASA's research as low, high, and
medium, respectively [24]. We could not evaluate
the quality of these systems by the modified
technique example since their relevant values of the
test statistic (5) for the normalized metrics RFC,
CBO, and WMC are greater than 4.85. These results
may be explained by the system A is commercial
software, system B is NASA software, and system C
is developed in C++.

5 Discussion
To evaluate the quality of software systems, we
propose the modified technique based on the
confidence and prediction intervals of nonlinear
regressions for the metrics RFC, CBO, and WMC.
This choice is due to the following. Firstly,
according to [22], the CK metrics are designed to
measure the three non-implementation steps in
Booch’s definition of OOD. These are the metrics
WMC, DIT, NOC, RFC, CBO, and LCOM, which
define the OOD complexity in the above steps. In
particular, the metrics RFC and CBO define the
OOD complexity due to the relationships between
classes, [31]. And, as we know, the OOD
complexity affects the quality of software systems.

Finally, the above metrics together characterize
the OOD complexity and quality of software
systems that require the use of multivariate analysis
methods, such as multivariate statistical analysis.
One of them is regression analysis. In this case, as a
rule, nonlinear regression analysis should be used

since only in special cases can the use of a linear
regression model be theoretically justified for
estimating software metrics.

We apply the three-variate Box-Cox
normalizing transformation to build the nonlinear
regression models, the confidence and prediction
intervals for the nonlinear regressions for the
metrics RFC, CBO, and WMC by [25] since, firstly,
according to the Mardia test [32], the distribution of
the three-dimensional normalized data is Gaussian
and, secondly, the residuals distribution of
corresponding linear regression models for
normalized data is Gaussian.

To build the confidence and prediction intervals
for the nonlinear regressions for the metrics RFC,
CBO, and WMC for evaluating the quality of
software systems, we used a 0.05 significance level,
as the appointed one usually, although this value
may be discussed.

Preliminary, we have studied the stability of the
quality evaluation results dependent on a
significance level value. We evaluated the quality of
software systems from Table 2 for two values of
significance level: 0.04 and 0.06. The results are the
same as for a 0.05 significance level. That indicates
the stability of the quality evaluation results at least
within a 20 percent change in a significance level.

Concerning the example of using the modified
technique to detect the software quality of open-
source Java systems two limitations should be
acknowledged and addressed concerning the data
sample from 51 open-source apps in Java. The first
limitation concerns the estimation of the data
sample for open-source apps developed in Java
only. The evaluation of other data samples, for
instance, the industrial systems in Java, may affect
the bounds of the confidence and prediction
intervals of the nonlinear regressions for the metrics
RFC, CBO, and WMC. In such cases, the proposed
bounds of the confidence and prediction intervals of
the nonlinear regressions for the metrics RFC, CBO,
and WMC remain to be confirmed or changed.

The second limitation concerns the sample size,
which equals 51. This value cannot be
unambiguously considered as the lower size limit of
the large sample. Larger sample sizes may lead to a
reduction of the widths of the confidence and
prediction intervals of nonlinear regressions for the
metrics RFC, CBO, and WMC.

The quality of some Java systems from Table 2
is rated as low because the upper bound of the
prediction interval is exceeded for only one metric.
For instance, TuxGuitar 1.5.2-src, jEdit 5.5.0, and
jEdit 2.6final have low quality since the RFC values
of these systems exceed the upper bounds of the

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 326 Volume 23, 2024

prediction intervals on 11, 18, and 6 percent,
respectively. These results can be explained by the
above systems having such classes for which the
RFC values are greater than 100 (an acceptable
maximum limit [33]). For instance, there are two
such classes in TuxGuitar 1.5.2-src:
org.herac.tuxguitar.app.action.installer.TGActionIns
taller and
org.herac.tuxguitar.android.action.installer.TGActio
nInstaller for which the RFC values equal 252 and
178, respectively. In this case, it is necessary to
decide whether these classes are difficult to
understand due to the large number of methods in
every class's response set, and if necessary, reduce
their number.

Also, the quality of the above systems can be
improved by improving the relationships between
classes. In our opinion, the modified technique
allows us to assess how balanced OOD of a
software system using the metrics RFC, CBO, and
WMC. And, as we know [34], “Systems engineering
seeks a safe and balanced design in the face of
opposing interests and multiple, sometimes
conflicting constraints.”

The given example of the modified technique
use is illustrative and demonstrates its capabilities.
In the future, it is necessary to build corresponding
models, the confidence, and prediction intervals of
nonlinear regressions for the metrics RFC, CBO,
and WMC based on various data sets.

6 Conclusion
We have proposed to apply the confidence and
prediction intervals of nonlinear regressions for the
RFC, CBO, and WMC metrics for evaluating the
quality of software systems from the point of view
of their OOD. To estimate the confidence and
prediction intervals of nonlinear regressions for the
RFC, CBO, and WMC metrics need to use
multivariate normalizing transformations. In this
case, we have used the three-variate Box-Cox
transformations.

We have introduced the modified technique for
evaluating the quality of software systems. We have
given the example of using the modified technique
to detect the software quality of open-source Java
systems.

Moving forward, we plan to develop examples
of applying the modified technique that does not
have the above limitations due to the programming
language and the sample size.

References:

[1] C. Gao, W. Luo, J. Wang, and Y. Zhang,
Software quality evaluation model based on
multiple linear regression and fuzzy
comprehensive evaluation method,
Proceedings of the 2022 9th International

Conference on Dependable Systems and Their

Applications (DSA), Wulumuqi, China, 2022,
pp. 383-389. DOI:
https://doi.org/10.1109/DSA56465.2022.0005
8.

[2] C. Chen, M. Shoga, and B. Boehm, Exploring
the dependency relationships between
software qualities, Proceedings of the 2019

IEEE 19th International Conference on

Software Quality, Reliability and Security

Companion (QRS-C), Sofia, Bulgaria, 2019,
pp. 105-108. DOI:
https://doi.org/10.1109/QRS-C.2019.00032.

[3] A. Madaehoh and T. Senivongse, OSS-AQM:
An open-source software quality model for
automated quality measurement, Proceedings

of the 2022 International Conference on Data

and Software Engineering (ICoDSE),
Denpasar, Indonesia, 2022, pp. 126-131. DOI:
https://doi.org/10.1109/ICoDSE56892.2022.9
972135.

[4] T. B. Alakus, R. Das, and I. Turkoglu, An
overview of quality metrics used in estimating
software faults, Proceedings of the 2019

International Artificial Intelligence and Data

Processing Symposium (IDAP), Malatya,
Turkey, 2019, pp. 1-6. DOI:
https://doi.org/10.1109/IDAP.2019.8875925.

[5] S. Prykhodko and N. Prykhodko, A technique
for detecting software quality based on the
confidence and prediction intervals of
nonlinear regression for RFC metric,
Proceedings of the 2022 IEEE 17th

International Conference on Computer

Sciences and Information Technologies

(CSIT), Lviv, Ukraine, 2022, pp. 499-502.
DOI:
https://doi.org/10.1109/CSIT56902.2022.1000
0532.

[6] S. Prykhodko and N. Prykhodko, Estimating
quality of open-source Kotlin-based apps by
the confidence and prediction intervals of
nonlinear regression for RFC metric,
Proceedings of the 2023 IEEE 18th

International Conference on Computer

Science and Information Technologies (CSIT),
Lviv, Ukraine, 2023, pp. 1-4. DOI:
https://doi.org/10.1109/CSIT61576.2023.1032
4187.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 327 Volume 23, 2024

https://doi.org/10.1109/DSA56465.2022.00058
https://doi.org/10.1109/DSA56465.2022.00058
https://doi.org/10.1109/QRS-C.2019.00032
https://doi.org/10.1109/ICoDSE56892.2022.9972135
https://doi.org/10.1109/ICoDSE56892.2022.9972135
https://doi.org/10.1109/IDAP.2019.8875925
https://doi.org/10.1109/CSIT56902.2022.10000532
https://doi.org/10.1109/CSIT56902.2022.10000532
https://doi.org/10.1109/CSIT61576.2023.10324187
https://doi.org/10.1109/CSIT61576.2023.10324187

[7] A. Jabborov, A. Kharlamova, Z. Kholmatova,
A. Kruglov, V. Kruglov, and G. Succi,
Taxonomy of quality assessment for
intelligent software systems: A systematic
literature review, IEEE Access, vol. 11, 2023,
pp. 130491-130507. DOI:
https://doi.org/10.1109/ACCESS.2023.33339
20.

[8] I. M. A. Wikantyasa, A. P. Kurniawan, and S.
Rochimah, CK metric and architecture smells
relations: towards software quality assurance,
Proceedings of the 2023 14th International

Conference on Information & Communication

Technology and System (ICTS), Surabaya,
Indonesia, 2023, pp. 13-17. DOI:
https://doi.org/10.1109/ICTS58770.2023.1033
0874.

[9] A. Almogahed, M. Omar, N. H. Zakaria, G.
Muhammad, and S. A. AlQahtani, Revisiting
scenarios of using refactoring techniques to
improve software systems quality, IEEE

Access, vol. 11, 2023, pp. 28800-28819. DOI:
https://doi.org/10.1109/ACCESS.2022.32180
07.

[10] D. K. K. Shyamal, P. P. G. D. Asanka, and D.
Wickramaarachchi, A comprehensive
approach to evaluating software code quality
through a flexible quality model, Proceedings

of the 2023 International Research

Conference on Smart Computing and Systems

Engineering (SCSE), Kelaniya, Sri Lanka,
2023, pp. 1-8. DOI:
https://doi.org/10.1109/SCSE59836.2023.102
15004.

[11] O. Bombiri, P. Poda, and T. F. Ouedraogo,
Application of machine learning in software
quality: a mini-review, Proceedings of the

2023 IEEE Multi-conference on Natural and

Engineering Sciences for Sahel's Sustainable

Development (MNE3SD), Bobo-Dioulasso,
Burkina Faso, 2023, pp. 1-7. DOI:
https://doi.org/10.1109/MNE3SD57078.2023.
10079800.

[12] M. Jukaria, O. H. Saif, M. Enas, H. M. J.
Abdul, H. Laith, A. Sajjad, and Ali
SaadAlwan, Exploring perspectives, issues,
and practices in the testing and quality
validation of AI software, Proceedings of the

2024 4th International Conference on

Advance Computing and Innovative

Technologies in Engineering (ICACITE),
Greater Noida, India, 2024, pp. 768-772. DOI:
https://doi.org/10.1109/ICACITE60783.2024.
10617318.

[13] R. Li, Software Quality Testing Framework
based on Machine Learning Analysis,
Proceedings of the 2024 5th International

Conference on Mobile Computing and

Sustainable Informatics (ICMCSI), Lalitpur,
Nepal, 2024, pp. 396-401. DOI:
https://doi.org/10.1109/ICMCSI61536.2024.0
0063.

[14] Y. Qi, Research on quality prediction of
airborne software based on neural network
optimized by ant colony algorithm,
Proceedings of the 2024 IEEE 4th

International Conference on Power,

Electronics and Computer Applications

(ICPECA), Shenyang, China, 2024, pp. 1338-
1343. DOI:
https://doi.org/10.1109/ICPECA60615.2024.1
0471180.

[15] D. Choudhury and D. Gupta, Investigation on
integration of machine learning techniques
into LC/NC platforms for code review, quality
assessment, and error detection automation,
Proceedings of the 2024 11th International

Conference on Reliability, Infocom

Technologies and Optimization (Trends and

Future Directions) (ICRITO), Noida, India,
2024, pp. 1-7. DOI:
https://doi.org/10.1109/ICRITO61523.2024.1
0522267.

[16] V. K. Swain, R. Panigrahi, K. K. Sahu, and N.
Padhy, Revealing MOVE METHOD:
Machine learning-driven real-time refactoring
identification for enhanced software quality,
Proceedings of the 2024 International

Conference on Emerging Systems and

Intelligent Computing (ESIC), Bhubaneswar,
India, 2024, pp. 572-578. DOI:
https://doi.org/10.1109/ESIC60604.2024.1048
1609.

[17] S. Jin, Z. Li, B. Chen, B. Zhu, and Y. Xia,
Software code quality measurement:
implications from metric distributions,
Proceedings of the 2023 IEEE 23rd

International Conference on Software

Quality, Reliability, and Security (QRS),
Chiang Mai, Thailand, 2023, pp. 488-496.
DOI:
https://doi.org/10.1109/QRS60937.2023.0005
4.

[18] F. Basciani, D. Di Pompeo, J. Di Rocco, and
A. Pierantonio, A customizable approach to
assess software quality through multi-criteria
decision making, Proceedings of the 2023

IEEE 20th International Conference on

Software Architecture Companion (ICSA-C),

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 328 Volume 23, 2024

https://doi.org/10.1109/ACCESS.2023.3333920
https://doi.org/10.1109/ACCESS.2023.3333920
https://doi.org/10.1109/ICTS58770.2023.10330874
https://doi.org/10.1109/ICTS58770.2023.10330874
https://doi.org/10.1109/ACCESS.2022.3218007
https://doi.org/10.1109/ACCESS.2022.3218007
https://doi.org/10.1109/SCSE59836.2023.10215004
https://doi.org/10.1109/SCSE59836.2023.10215004
https://doi.org/10.1109/MNE3SD57078.2023.10079800
https://doi.org/10.1109/MNE3SD57078.2023.10079800
https://doi.org/10.1109/ICACITE60783.2024.10617318
https://doi.org/10.1109/ICACITE60783.2024.10617318
https://doi.org/10.1109/ICMCSI61536.2024.00063
https://doi.org/10.1109/ICMCSI61536.2024.00063
https://doi.org/10.1109/ICPECA60615.2024.10471180
https://doi.org/10.1109/ICPECA60615.2024.10471180
https://doi.org/10.1109/ICRITO61523.2024.10522267
https://doi.org/10.1109/ICRITO61523.2024.10522267
https://doi.org/10.1109/ESIC60604.2024.10481609
https://doi.org/10.1109/ESIC60604.2024.10481609
https://doi.org/10.1109/QRS60937.2023.00054
https://doi.org/10.1109/QRS60937.2023.00054

L'Aquila, Italy, 2023, pp. 264-271. DOI:
https://doi.org/10.1109/ICSA-
C57050.2023.00063.

[19] F. Témolé and D. Atanasova, Role,
importance and significance of software
quality, Proceedings of the 2023 46th MIPRO

ICT and Electronics Convention (MIPRO),
Opatija, Croatia, 2023, pp. 1658-1663. DOI:
https://doi.org/10.23919/MIPRO57284.2023.1
0159733.

[20] N. Saravanan, C. Dharanya, M. Dhina, E.
Ranjth Kumar, and L. Shanmathi Devi, A
novel approach to predict the defect density in
software application using linear regression
algorithm, Proceedings of the 2024

International Conference on Science

Technology Engineering and Management

(ICSTEM), Coimbatore, India, 2024, pp. 1-5.
DOI:
https://doi.org/10.1109/ICSTEM61137.2024.1
0560850.

[21] F. B. Abreu, M. Goulilo, and R. Esteves,
Toward the design quality evaluation of
object-oriented software systems, Proceedings

of the 5th International Conference on

Software Quality, Austin, Texas, USA,
October 1995, pp. 1-4, [Online].
https://www.academia.edu/3853615/Toward_t
he_Design_Quality_Evaluation_of_Object_Or
iented_Software (Accessed Date: June 21,
2024).

[22] S. R. Chidamber and C. F. Kemerer, Towards
a metrics suite for object oriented design,
ACM SIGPLAN Notices, Vol. 26, Issue 11,
1991, pp. 197–211. DOI:
https://doi.org/10.1145/118014.117970.

[23] F. Brito e Abreu and W. Melo, Evaluating the
impact of object-oriented design on software
quality, Proceedings of the 3rd International

Software Metrics Symposium, Berlin,
Germany, 1996, pp. 90-99, DOI:
https://doi.org/10.1109/METRIC.1996.49244
6.

[24] V. Laing and C. Coleman, Principal

components of orthogonal object-oriented

metrics, White Paper Analyzing Results of
NASA Object-Oriented Data. SATC, NASA,
2001, [Online].
https://www.semanticscholar.org/paper/Princi
pal-Components-of-Orthogonal-Object-
Oriented-Laing-
Coleman/10260d67fa5ed4ecea9dd4398c3f236
c52cabf6b (Accessed Date: June 21, 2024).

[25] S. Prykhodko and N. Prykhodko,
Mathematical modeling of non-Gaussian

dependent random variables by nonlinear
regression models based on the multivariate
normalizing transformations, Proceedings

from MODS'2020: Mathematical Modeling

and Simulation of Systems. Advances in

Intelligent Systems and Computing, Vol.
1265, Springer, Cham, 2021, pp. 166-174.
DOI: https://doi.org/10.1007/978-3-030-
58124-4_16.

[26] S. Velilla, A note on the multivariate Box-
Cox transformation to normality. Statistics

and Probability Letters, 17, 1993, pp. 259–
263. DOI: https://doi.org/10.1016/0167-
7152(93)90200-3.

[27] P. M. Stanfield, J. R. Wilson, G. A. Mirka, N.
F. Glasscock, J. P. Psihogios, and J. R. Davis,
Multivariate input modeling with Johnson
distributions, Proceedings of the 28th Winter

simulation conference WSC'96, 8-11
December 1996, Coronado, CA, USA, ed.
S.Andradóttir, K.J.Healy, D.H.Withers, and
B.L.Nelson. IEEE Computer Society
Washington, DC, USA, 1996, pp.1457-1464,
[Online]. https://www.informs-
sim.org/wsc96papers/209.pdf (Accessed Date:
June 21, 2024).

[28] A. A. Afifi and S. P. Azen, Statistical

analysis: a computer-oriented approach, New
York, London, Academic Press, 1972. DOI:
https://doi.org/10.1016/C2013-0-10273-5.

[29] R. A. Johnson and D. W. Wichern, Applied

Multivariate Statistical Analysis, Pearson
Prentice Hall, 2007, [Online].
https://books.google.com.ua/books/about/App
lied_Multivariate_Statistical_Analysi.html?id
=gFWcQgAACAAJ&redir_esc=y (Accessed
Date: June 21, 2024).

[30] AJ. Molnar, A. Neamţu, and S. Motogna,
Evaluation of software product quality
metrics, In E. Damiani, G. Spanoudakis, L.
Maciaszek. Eds. Evaluation of Novel

Approaches to Software Engineering. ENASE

2019. Communications in Computer and

Information Science, Vol. 1172, Springer,
Cham, 2020, pp. 163-187. DOI:
https://doi.org/10.1007/978-3-030-40223-5_8.

[31] S. R. Chidamber and C. F. Kemerer, A
metrics suite for object-oriented design, IEEE

Transactions on Software Engineering, Vol.
20, No. 6, 1994, pp. 476-493. DOI:
https://doi.org/10.1109/32.295895.

[32] K. V. Mardia, Measures of multivariate
skewness and kurtosis with applications,
Biometrika, 57, 1970, pp. 519–530. DOI:
https://doi.org/10.1093/biomet/57.3.519.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 329 Volume 23, 2024

https://doi.org/10.1109/ICSA-C57050.2023.00063
https://doi.org/10.1109/ICSA-C57050.2023.00063
https://doi.org/10.23919/MIPRO57284.2023.10159733
https://doi.org/10.23919/MIPRO57284.2023.10159733
https://doi.org/10.1109/ICSTEM61137.2024.10560850
https://doi.org/10.1109/ICSTEM61137.2024.10560850
https://www.academia.edu/3853615/Toward_the_Design_Quality_Evaluation_of_Object_Oriented_Software
https://www.academia.edu/3853615/Toward_the_Design_Quality_Evaluation_of_Object_Oriented_Software
https://www.academia.edu/3853615/Toward_the_Design_Quality_Evaluation_of_Object_Oriented_Software
https://doi.org/10.1145/118014.117970
https://doi.org/10.1109/METRIC.1996.492446
https://doi.org/10.1109/METRIC.1996.492446
https://www.semanticscholar.org/paper/Principal-Components-of-Orthogonal-Object-Oriented-Laing-Coleman/10260d67fa5ed4ecea9dd4398c3f236c52cabf6b
https://www.semanticscholar.org/paper/Principal-Components-of-Orthogonal-Object-Oriented-Laing-Coleman/10260d67fa5ed4ecea9dd4398c3f236c52cabf6b
https://www.semanticscholar.org/paper/Principal-Components-of-Orthogonal-Object-Oriented-Laing-Coleman/10260d67fa5ed4ecea9dd4398c3f236c52cabf6b
https://www.semanticscholar.org/paper/Principal-Components-of-Orthogonal-Object-Oriented-Laing-Coleman/10260d67fa5ed4ecea9dd4398c3f236c52cabf6b
https://www.semanticscholar.org/paper/Principal-Components-of-Orthogonal-Object-Oriented-Laing-Coleman/10260d67fa5ed4ecea9dd4398c3f236c52cabf6b
https://doi.org/10.1007/978-3-030-58124-4_16
https://doi.org/10.1007/978-3-030-58124-4_16
https://doi.org/10.1016/0167-7152(93)90200-3
https://doi.org/10.1016/0167-7152(93)90200-3
https://www.informs-sim.org/wsc96papers/209.pdf
https://www.informs-sim.org/wsc96papers/209.pdf
https://doi.org/10.1016/C2013-0-10273-5
https://books.google.com.ua/books/about/Applied_Multivariate_Statistical_Analysi.html?id=gFWcQgAACAAJ&redir_esc=y
https://books.google.com.ua/books/about/Applied_Multivariate_Statistical_Analysi.html?id=gFWcQgAACAAJ&redir_esc=y
https://books.google.com.ua/books/about/Applied_Multivariate_Statistical_Analysi.html?id=gFWcQgAACAAJ&redir_esc=y
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.1109/32.295895
https://doi.org/10.1093/biomet/57.3.519

[33] Response for Class, [Online].
https://objectscriptquality.com/docs/metrics/re
sponse-for-class (Accessed Date: June 23,
2024).

[34] SEH 2.0. Fundamentals of Systems
Engineering, [Online].
https://www.nasa.gov/reference/2-0-
fundamentals-of-systems-engineering/
(Accessed Date: June 23, 2024).

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

Prof. Sergiy Prykhodko is the only author of this
article. He made an alone contribution to this
research at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The author has no conflicts of interest to declare that
are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2024.23.36 Sergiy Prykhodko

E-ISSN: 2224-2678 330 Volume 23, 2024

https://objectscriptquality.com/docs/metrics/response-for-class
https://objectscriptquality.com/docs/metrics/response-for-class
https://www.nasa.gov/reference/2-0-fundamentals-of-systems-engineering/
https://www.nasa.gov/reference/2-0-fundamentals-of-systems-engineering/
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

