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Abstract: - The paper investigates the influence of different types of loads on the deformation of building 

structures, particularly beams, using second-order differential equations that allow modeling deformation 

processes. For this purpose, we considered two beam deflection equations under concentrated and distributed 

loads. Several experiments were conducted under different geometrical conditions (variable parameters of the 

beam cross-section, length, and loads). The solutions were studied using graph-analytical methods: constructing 

a graph of solutions reflecting the system's behaviour, a hodograph allowing tracking of additional nuances of 

the studied process, and amplitude and phase-frequency characteristics. The influence of conditions on the 

nature of system behavior is determined. The study's results can be used to optimise design solutions in 

construction. 

 

Key-Words: - differential equations, beam deflection, hodograph, amplitude phase-frequency characteristic, 

second-order curves, building structures. 

 
Received: April 25, 2024. Revised: October 26, 2024. Accepted: November 27, 2024. Published: December 31, 2024.   

 

 

1  Introduction 
In the construction industry, modeling and careful 

analysis of the behaviour of structures under various 

types of loads is an important step. This is necessary 

to ensure the reliability of construction projects in 

operation. To study the effect of concentrated and 

distributed loads on the deformation of structures, in 

particular beams, it is advisable to use second-order 

differential equations [1], which allow for detailed 

analysis and modelling of the behaviour of 

structures. The analysis of their solutions is 

particularly relevant, as it makes it possible to: 

- understand how the system functions and what 

physical or mathematical laws govern its behaviour. 

This, in turn, allows us to predict and control the 

behaviour of the system; 

- determine such properties of the system as 

stability, convergence, extremes, periodicity and 

other characteristics; 

- to assess the adequacy of the results obtained to 

verify the realism of the model and its compliance 

with experimental data; 

- to identify new phenomena or patterns that may 

be useful for further study and development of 

science and technology, [2]. 

Second-order differential equations play an 

essential role in physics, engineering, and other 

scientific disciplines due to their ability to model 

various physical phenomena. However, they can be 

challenging to solve due to several features: 

nonlinearity, lack of analytical solutions, presence 

of derivatives with negative values, the need to 

define boundary conditions, etc. 

The study aims to study the influence of various 

types of loads on building structures using second-

order differential equations. 

Objectives of the study: 

- selection of two second-order equations (beam 

deflection equations with concentrated and 

distributed load). 

- checking the stability of the selected equations; 

- solving these equations for different geometric 

conditions; 

- plotting solutions for each load condition to 

visualize and compare them; 

- building hodographs to detect amplitudes and 

phase shifts in solutions; 

- analysis of the results. 

 

 

2  Literature Review 
Many scientific papers have studied differential 

equations and their solutions over the years. For 

example, authors in [3] determined whether a 
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sequence of minimizers converges to the solution of 

partial differential equations. To achieve this goal, 

they used neural networks and Schauder's 

Approach. 

Other authors in [4] investigating the spring-

pendulum obtained the system's equations of motion 

using the Lagrange and Hamilton equations. Paper 

[5] aims to study the geometry and physics of the 

Raychaudhuri equation in the homogeneous and 

anisotropic spacetime described by the Kantowski-

Sachs metric. Authors in [6] improved Hille-type 

oscillation conditions for quasilinear functional 

dynamical equations of the second order with 

arbitrary time were developed. The authors argue 

that these findings extend and enhance previous 

studies. Paper [7] is devoted to the heat conduction 

equation, a parabolic partial differential equation 

characterising the diffusion process. The authors 

consider a new fractional operator based on the 

Rabotnov fractional-exponential kernel. The authors 

in [8] study three models where the kernels are a 

power law, an exponential decay law, and a 

generalised Mittag-Leffler kernel law. A detailed 

analysis is presented for each case, including 

numerical solution, stability analysis, and error 

analysis. Article [9] is devoted to positive solutions 

and stability of Atangana-Baleanu-Caputo fractional 

differential equations with singularity and nonlinear 

p - Laplacian. A similar study was conducted [10], 

which analyzed the stability of neutral stochastic 

differential equations and established the existence 

of solutions and stability for impulsive neutral 

stochastic equations. The authors in [11] conducted 

the stability analysis and proposed a numerical 

algorithm to study the fractional vibration equation. 

Article [12] presents a new bilinear neural network 

method and proposes a corresponding tensor 

formula for obtaining accurate analytical solutions 

to nonlinear partial differential equations. 

Nevertheless, researchers have paid little 

attention to the solutions of differential equations, 

which could provide more helpful information about 

the processes they model. 

 

 

3  Methods 
This paper focuses on two second-order differential 

equations: the beam deflection equation under 

concentrated load (1) and beam deflection under 

distributed load (2). 

For the deflection v(x) of a beam under the 

action of a concentrated moment, the second-order 

differential equation is as follows: 

          (1) 

where v(x) is the beam deflection at distance x; 

M0 is the concentrated moment applied to the 

beam; 

E is the Young's modulus of the beam material; 

I am the moment of inertia of the beam cross-

section, calculated by the width b and the height of 

its cross-section h: 

 

(2) 

 

δ(x - a)  – is the Dirac's delta function, indicating 

that the moment M0 is applied at the point  

x = a (in the models constructed in this study, the 

concentrated moment is applied to the geometric 

center of the beam to simplify the simulation). 

The second-order differential equation for the 

deflection of a beam under a distributed is as 

follows: 

 

 (3) 

 

where v(x) is the beam deflection at distance x; 

q(x) is a function of the distributed load along the 

length of the beam; 

a - load position on the beam; 

l is the length of the beam. 

Before studying the solutions of these equations 

and the influence of geometric conditions on them, 

it is advisable to confirm or refute the hypothesis of 

their stability. A differential equation's stability is its 

property of preserving the nature of solutions 

regardless of the initial conditions. A differential 

equation is usually considered stable if small 

changes in the initial conditions or input signals do 

not lead to significant changes in the system's 

solution over time. 

In this paper, the Routh-Hurwitz stability 

criterion determines the asymptotic stability of the 

studied equations. The algorithm for its 

determination is as follows: 

1. Find a characteristic polynomial that has the 

following general form: 

          (4) 

 

2. The coefficients of the characteristic 

polynomial are used to create the Hurwitz 

determinant n using an algorithm: 

1) all the coefficients of the characteristic 

polynomial from a1 to a0 are placed from left to right 

along the main diagonal; 

2) from each element of the diagonal, fill in the 

columns of the determinant in the up and down 

directions so that the indices decrease from top to 

bottom; 
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3) Zeros are placed in the case of coefficients 

with indices less than zero or greater than n. 

Then, according to the Hurwitz criterion, [13]: 

For a dynamical system to be stable, all diagonal 

minors of the Hurwitz determinant must be positive. 

Consider the beam deflection equation with a 

concentrated moment (1). Its characteristic 

polynomial corresponds to the equation of the 

substituted wave operator. For this equation, where 

there are no higher-order derivatives, the 

characteristic polynomial has degree 2 and is equal 

to 0: 

 

 (5) 

 

 

Then, the Routh-Hurwitz matrix has the 

following form: 

 

          (6) 

 

 

Accordingly, the primary minor determinant is 

equal: 

 

 

          (7) 

 

 

This system is stable since all minor 

determinants are nonnegative numbers Δ1=1>0, 

Δ2=0≥0. 

Similarly, let us test the hypothesis of stability of 

the beam deflection equation under the distributed 

load (2): 

Its characteristic polynomial has degree 4 and is 

equal to 0: 

 

     (8) 

Then, 

the 

Routh-

Hurwitz matrix has the following form: 

 

          (9) 

 

Accordingly, the main minor determinants are 

equal:  

 

 

 

(10) 

This 

system is 

stable since all minor determinants are nonnegative 

numbers Δ1=1>0, Δ2=0≥0, and Δ3=0≥0. 

Thus, according to the Routh-Hurwitz criterion, 

the stability hypothesis of the studied differential 

equations is proved, allowing further analysis of 

these equations' solutions under different 

geometrical conditions. 

Table 1 shows the layout of the experiment and 

characteristic parameters (beam length l, m; 

concentrated moment M0, N·m / distributed load q, 

N/m; Young's modulus E, GPa; beam cross-sectional 

width b, m; beam cross-sectional height h, m and, 

accordingly, the moment of inertia of the cross-

section I, m4) of each. 

 
Table 1. Layout of experiment and characteristic 

parameters 
No. of 

experiment 
1 2 3 4 5 
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l, m 1 20 100 10 2 

М0, N·m / 

q, N/m 
50 5000 10 2000 10 

Е, GPa 10 200 69 210 1 

b, m 0,05 0,5 0,5 0,3 0,01 

h, m 0,1 1 0,1 0,6 0,02 

I, m4 4,17е-6 0,0417 1е-6 0,0054 6,67е-9 

 

A hodograph, an amplitude response, and a 

phase-frequency characteristic were constructed to 

analyze the solutions of the differential equations 

for each experiment. 

A hodograph is a graphical representation of 

solutions to differential equations in the complex 

plane. It allows you to study the influence of system 

parameters on the stability and dynamic properties 

of the equation. 

The first step in constructing a hodograph is to 

find the transfer function G(s) (s is a complex 

variable), which is the relation between the input 

N(s) and output D(s) functions of the system. For 

linear differential equations, this can be the Laplace 

transform. A hodograph is a graph in the complex 

plane, where the abscissa axis is defined as the axis 

of the real part of the values (R), and the ordinate 

axis is the axis of the imaginary part of the values 

(I) of the transfer function. Analysis of the shape 

and position of the hodograph provides information 

about the system's stability.  

The system is unstable if the hodograph crosses 

the abscissa axis in the right half-plane. If all points 

of the hodograph are located in the left half-plane, 

the system is stable. Thus, a hodograph is a 
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convenient tool for analysing a system's stability 

and dynamic properties, as well as its response to 

changes in input data. 

The amplitude response illustrates the change in 

the amplitude of the system's input signal, which 

depends on its frequency. It is plotted in Cartesian 

coordinates, where the abscissa axis is the frequency 

f and the ordinate axis is the amplitude of the input 

signal A. 

The amplitude response allows us to analyse the 

gain or attenuation of a signal at different frequency 

values. 

The amplitude-frequency response shows the 

change in phase of the input signal depending on the 

change in its frequency. 

The amplitude frequency response is a graph in 

Cartesian coordinates, where the abscissa axis is the 

frequency f and the ordinate axis is the phase of the 

input signal p. 

The analysis of the phase-frequency response 

allows you to detect the delay or advance of the 

input signal at different frequencies. 

A thorough analysis of the amplitude and phase-

frequency characteristics of differential equations 

allows you to assess the system's stability, 

performance, and accuracy. 

The equations and their solutions were analysed 

using models built in the PyCharm programming 

environment in the Python programming language. 

 

 

4  Results 
The results of the experiments carried out in this 

study are illustrated by hodographs and the 

amplitude and phase-frequency characteristics of the 

corresponding differential equations. 

The graphs of solutions to the equation of 

deflection of a beam under a concentrated load 

allow you to model the shape of the deflection of a 

beam by representing it as a function of coordinates 

with a certain discreteness along the length of the 

beam. The curves that illustrate the deflection of a 

beam have a single point of extremum, which 

corresponds to the point of load application. 

Determining the maximum deflection of a beam 

is essential for assessing its strength. 

The deflection geometry can also be evaluated, 

as the graphs' shape indicates the beam's deflection 

type. Comparative analysis of these graphs makes it 

possible to determine the effect of different values 

of the moment or geometrical parameters of the 

beam on the deflection. 

Figure 1 shows the graphs of solutions of a beam 

deflection differential equation under a concentrated 

load. 

 

 

 

 

 
Fig. 1: Graphs of solutions to the differential 

equation of beam deflection under concentrated 

load: a - graph of solutions of experiment 1;  

b - graph of solutions of experiment 2; c - graph of 

solutions of experiment 3; d - graph of solutions of 

experiment 4; e - graph of solutions of experiment 5 
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It is expected that up to the point of application 

of the concentrated moment M0, the deflection v(x) 

is 0. After the point of application of the moment, 

the deflection graph changes linearly in the negative 

half-plane, indicating a negative deflection, namely, 

the concavity of the beam. The deflection value 

reaches its maximum extreme point at the final 

coordinate of the beam. The practical value of such 

a calculation is to make design decisions regarding 

the optimisation of the beam structure, selection of 

materials, or reinforcement of beam seats. 

Figure 2 shows the graphs of solutions to the 

differential equation of a beam deflection under a 

distributed load. 

The solutions graph relays the load effect's 

physical meaning on the beam. In the case of a 

distributed load, the solution graph of this 

differential equation has the form of a second-order 

parabolic curve that is concave downward. This is a 

typical deflection pattern for a beam under a 

distributed load. Suppose we take the second-order 

derivative of the deflection for a coordinate. In that 

case, the resulting equation includes a term 

proportional to the square of the distance from a 

point to each end of the beam, corresponding to a 

downward concave parabola. 

Figure 3 shows hodographs of the beam 

deflection equation under concentrated load. 

The hodograph of Experiment 1 has the shape 

of an asymmetric arc, as the beam deflection is not 

the same on both sides of the point where the 

moment is applied. The intersection with the 

ordinate axis means that the solution to the equation 

has a non-zero initial condition, i.e., the beam 

deflection at the moment's point of application is not 

zero. 

The hodograph of Experiment 2 has an unusual 

shape. The circle with a curl in the center indicates 

that the beam deflection is not the same along its 

length under the action of a point moment. The 

symmetrical shapes at the ends of the hodograph 

suggest that the beam has a symmetrical deflection 

at the ends relative to the point of moment 

application. This deflection pattern can be caused by 

the geometry of the beam or the distribution of its 

internal forces. 

The hodograph of Experiment 3 forms 

concentric circles, a complex phenomenon. 

Concentric circles indicate beam deflection, which 

is symmetrical about the center of the coordinates. 

The loop in the central circle indicates that the beam 

deflection has a non-zero value at the centre of the 

coordinates. 

 

 

 

 

 

 

 
Fig. 2: Graphs of solutions to the differential 

equation of deflection of a beam under distributed 

load: a - graph of solutions of experiment 1; b - 

graph of solutions of experiment 2; c - graph of 

solutions of experiment 3; d - graph of solutions of 

experiment 4; e - graph of solutions of experiment 5 
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Fig. 3: Hodographs of the differential equation of a 

beam deflection under concentrated load: a - 

hodograph of experiment 1; b - hodograph of 

experiment 2; c - hodograph of experiment 3; d - 

hodograph of experiment 4; e - hodograph of 

experiment 5 

The hodograph of Experiment 4 forms an 

asymmetrical circle with a loop on the left-hand side 

of the coordinates and a crossing of the ends on the 

right-hand side, which may indicate a complex 

strain distribution. Such abrupt changes can occur 

due to sudden changes in load, geometric features of 

the beam, or fixing conditions. 

The hodograph of Experiment 5 has the shape 

of a half-ellipse. It is almost entirely located in the 

right part of the coordinates, which may also 

indicate unusual properties of the strain distribution. 

Such changes may result from uneven distribution 

of moments along the beam or other external 

factors. 

The hodographs of the deflection equation of a 

beam under concentrated load are pretty sensitive to 

the nature of the load and, in particular, the 

geometry of the beam. This sensitivity means that 

even small changes in these parameters significantly 

affect the system's behaviour, which is reflected in 

the change in the shape of the hodographs, allowing 

for better analysis of the deformation and stability of 

structures. 

Figure 4 shows the hodographs of a beam 

deflection differential equation with a distributed 

moment. 

As seen in Figure 4, the hodograph has the form 

of a parabola on the left side of the coordinates. This 

indicates that the beam deflection decreases with 

increasing distance from the beginning of the beam 

(usually the left end). This shape of the hodograph 

shows that the beam is bending in the negative 

direction from its initial position. In this case, the 

parabola lying to the left may indicate that the 

maximum deflection of the beam is located near the 

left end of the beam. Then, the deflection gradually 

decreases to zero near the right end of the beam. 

The position of the hodograph on the left 

relative to the ordinate axis confirms the stability of 

this equation, which has already been announced in 

the results of the Routh-Hurwitz criterion. 

Thus, hodographs represent a system's 

responses to various inputs in a complex plane. 

Multiple factors, such as load type, beam geometry, 

material properties, etc., can determine the 

hodograph's shape. 

The hodograph of the deflection equation of a 

beam under a distributed load can take the form of a 

parabola of the features of its solutions related to the 

load parameters and properties of the beam. 

The hodograph of the deflection equation of a 

beam under a concentrated load can have a more 

complex shape. Depending on the point of 

application of the load, the geometry of the beam, 
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and other factors, it may have loops, concentric 

circles, etc. 

Thus, the different shapes of the hodographs of 

the equations of various types of loading reflect the 

nature of the system's responses to other types of 

input signals (i.e., the deflection of the beam under 

load). 

The amplitude and phase-frequency 

characteristics demonstrate the dynamics of the 

beam's response to the load applied to it. To assess 

the system's dynamic stability, it is essential to 

evaluate the amplitude change with the signal's 

frequency change. Changes in the phase value allow 

us to estimate the delay between the change in load 

value and the signal response. 

Figure 5 and Figure 6 show the amplitude and 

phase-frequency characteristics of the beam 

deflection equations under concentrated and 

distributed loading, respectively, for the first 

experiment. 

The downward curve of the amplitude response 

of the equation of deflection of a beam under a 

concentrated load (Figure 5) indicates that the 

beam's amplitude of deflection decreases with 

increasing load frequency. This can be interpreted as 

the beam's response to high-frequency loads when 

the deformation absorption capacity of its material 

is limited. 

The graph of the phase-frequency response 

(Figure 5) is a straight line with a constant phase 

value of -1.57 rad, which indicates that the 

deflection phase lags the load phase. This can be 

caused by the beam's inertial or damping response to 

changes in load frequency. 

The amplitude characteristic of the deflection 

equation of a beam with a distributed load (Figure 

6) is an increasing curve.  

This indicates an increase in the deflection 

amplitude with an increase in the load frequency. 

This may be due to the beam's dynamic response to 

various frequency disturbances, where an increase 

in frequency provokes an increase in beam 

deflection. 

The phase-frequency characteristic (Figure 6), a 

straight line with a constant value of 0, indicates that 

the beam's deflection phase coincides with the load 

phase. A value of 0 means no delay between the 

deflection and load phases. 

In general, such characteristics can indicate the 

dynamic behavior of a beam under a distributed 

load. An increase in amplitude with increasing 

frequency can indicate significant dynamic effects 

such as resonance or dynamic amplification.  

 

 

 

 

 
Fig. 4: Hodographs of the beam deflection equation 

under distributed load: a - hodograph of experiment 

1; b - hodograph of experiment 2; c - hodograph of 

experiment 3; d - hodograph of experiment 4; e - 

hodograph of experiment 5Step 4: Open your 

manuscript file, repeat Step 1-3 and copy all styles 

entitled with HRPUB to your manuscript file. 
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Fig. 5: This is an example of the amplitude diagram 

and phase-frequency characteristic of the beam 

deflection equation under concentrated load for the 

first experiment 

 

 
Fig. 6: This is an example of the amplitude and 

phase-frequency characteristics of the equation of a 

beam deflection under the action of a distributed 

load for the first experiment 

 

Phase coherence between deflection and load 

may indicate efficient energy transfer from the load 

to the structure. 

Since the considered characteristics are typical 

for each equation, Table 2 and Table 3 in Appendix 

give the different amplitude values АN (N is the 

experiment number) for the beam deflection 

equations with a concentrated and distributed 

moment. Each experiment's frequency f and phase p 

values are constant. (f = const, p = const). 

According to the values given in Table 3 

(Appendix), the phase and frequency values remain 

constant. The system's properties do not change with 

changes in load intensity or beam parameters, at 

least within the limits of the experiment. Such 

properties are essential for analyzing system 

dynamics and stability. 

 

 

5  Discussion 
The analysis of the results obtained in this article 

shows ways to the practical application of solutions 

of differential equations, namely, the adoption of 

design decisions in engineering. It shows how the 

equations of curves, particularly parabolas, are 

expressed through physical processes. The 

conclusion that a differential equation with solutions 

is stable is proved through the Routh-Hurwitz 

criterion. The importance of using hodographs as 

one of the graph-analytical methods to identify the 

details of the process under study is shown.  

Based on the study's results, hodographs are a 

handy tool for graph-analytical analysis. They 

provide an understanding of a structure's dynamic 

properties and resistance to different loads. Using 

hodographs has made it possible to identify 

behavioral features of beams that may not always be 

obvious from other analysis methods. Therefore, 

this method is of great practical importance for 

designing and optimizing building structures. 

The differential equations for beam deflection under 

concentrated and distributed loading are stable 

second-order equations. Their graphs are a 

simplified representation of the beam, illustrating 

the distribution of deformations along the length of 

the beam and allowing the analysis of the physical 

process under study in various conditions. This 

study is much more extensive and informative than 

similar ones, [14]. The paper presents an accurate 

analytical solution for the static deflection analysis 

of fully connected composite Timoshenko beams 

under uniformly distributed and finite loads. It is 

also worth mentioning the research work [15], 

where the authors considered the deflection of a 

cantilever beam. The graph-analytical methods used 

in this paper have an advantage over modeling 

based on decomposing functions to the Taylor-

Fourier series, as in [16], or over the methods 

presented in [17]. The approach to analyzing 

solutions of differential equations would be helpful 

for further research, [18]. 

 

 

6  Conclusions 
This study used second-order differential equations 

to thoroughly analyze the effects of various loads on 

building structures, particularly beams. The study's 

main goal was to improve the understanding of 

physical processes occurring in structures by 

mathematical modeling of deformations and 

graphical and analytical analysis of the obtained 

solutions. 

The Rausch-Hurwitz criterion, used to check the 

stability of the equations, showed that the systems 

remain stable under different loading conditions. 

This confirms the mathematical models' correctness 

and suitability for practical use in construction. 

The graphs of solutions to the deformation 

equations of beams under concentrated and 
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distributed loads demonstrated characteristic 

deformation profiles. In particular, the maximum 

strain occurs at the point of moment application for 

concentrated loads and has a parabolic shape for 

distributed loads. 

It is appropriate to use hodographs to analyse 

equation solutions for their dynamic properties. In 

particular, different forms of hodographs (from 

parabolas to ellipses) illustrate the peculiarities of 

systems' behaviour under various loads.  

It is shown that a beam's load response depends 

on the loading frequency, which is an essential 

aspect in assessing the stability and reliability of 

structures under different operating conditions. 

These methods could be applied in future 

research to analyse more complex structures such as 

frames or arches. 

An important area for further research is the 

improvement of numerical methods, such as the 

finite element method (FEM), to obtain more 

accurate solutions to differential equations. 

In addition, future research should aim to 

develop structural optimisation methods that 

minimise deformation and increase the stability and 

reliability of structures under different types of 

loading. 
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APPENDIX 

 
Table 2. Amplitude, phase, and frequency values for the beam deflection equation with concentrated load

Point number f, rad/s p, rad A1, m A2, m A3, m A4, m A5, m 

1 1 -1,5708 0,001199 6,00E-07 0,000145 1,76E-06 1,49925 

10 1,873817 -1,5708 0,00064 3,20E-07 7,73E-05 9,41E-07 0,800105 

20 3,764936 -1,5708 0,000318 1,59E-07 3,85E-05 4,68E-07 0,398214 

30 7,564633 -1,5708 0,000159 7,93E-08 1,92E-05 2,33E-07 0,198192 

40 15,19911 -1,5708 7,89E-05 3,94E-08 9,54E-06 1,16E-07 0,098641 

50 30,53856 -1,5708 3,93E-05 1,96E-08 4,75E-06 5,78E-08 0,049094 

60 61,35907 -1,5708 1,95E-05 9,77E-09 2,36E-06 2,87E-08 0,024434 

70 123,2847 -1,5708 9,73E-06 4,86E-09 1,18E-06 1,43E-08 0,012161 

80 247,7076 -1,5708 4,84E-06 2,42E-09 5,85E-07 7,12E-09 0,006052 

90 497,7024 -1,5708 2,41E-06 1,20E-09 2,91E-07 3,54E-09 0,003012 

100 1000 -1,5708 1,20E-06 6,00E-10 1,45E-07 1,76E-09 0,001499 

 

 
Table 3. Amplitude, phase, and frequency values for the beam deflection equation with a distributed load 

Point number f, rad/s p, rad A1, m A2, m A3, m A4, m A5, m 

1 0 0 0,00015 3,00E-05 0,181159 2,20E-05 0,749625 

10 0,909091 0 0,00015 3,00E-05 0,181343 2,20E-05 0,752775 

20 1,919192 0 0,00015 3,00E-05 0,18198 2,20E-05 0,763872 

30 2,929293 0 0,00015 3,00E-05 0,183082 2,20E-05 0,783675 

40 3,939394 0 0,00015 3,00E-05 0,184666 2,20E-05 0,813554 

50 4,949495 0 0,00015 3,00E-05 0,186758 2,20E-05 0,855779 

60 5,959596 0 0,00015 3,00E-05 0,189391 2,20E-05 0,913999 

70 6,969697 0 0,00015 3,00E-05 0,192609 2,20E-05 0,994157 

80 7,979798 0 0,00015 3,00E-05 0,196468 2,20E-05 1,106345 

90 8,989899 0 0,00015 3,00E-05 0,201042 2,20E-05 1,268886 

100 10 0 0,00015 3,00E-05 0,206419 2,20E-05 1,518544 
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