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measurement noise covariance is applied to the model of Unmanned Aerial Vehicle (UAV) dynamics. 
Algorithms are examined for two types of measurement fault scenarios; constant bias at measurements 
(additive sensor faults) and measurement noise increments (multiplicative sensor faults). The simulation results 
show that the proposed RKF can accurately estimate UAV dynamics in real-time in the presence of various 
types of sensor faults. Estimation accuracies of the proposed RKF and conventional KF are investigated and 
compared. 
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1  Introduction 
The Kalman Filter can be used to estimate the states 
of an Unmanned Aerial Vehicle (UAV). That is the 
preferred method because it is crucial to exactly 
know the characteristics, such as velocity, altitude, 
attitude, etc. Successful aircraft control can be 
attained when these UAV states are attained without 
any issues. However, that procedure is contingent 
on how accurate the measurements are. The filter 
produces erroneous findings and diverges over time 
if the measurements are unreliable due to any type 
of sensor fault. Due to the significance of obtaining 
fault tolerance in the design of a UAV flight control 
system, filters should be constructed robustly to 
overcome such issues. 

The Kalman filter method of state estimation is 
extremely sensitive to defects in the measurement 
system. Changes in the measurement channels 
significantly degrade the performance of the 
estimating systems if the measurement system's 
state of operation differs from the models used in 

the filter's synthesis. The possible errors can be 
recovered with adaptive Kalman filters. 

A variety of alternative strategies can be used to 
make the Kalman filter flexible and hence 
insensitive to a priori measurements or system 
uncertainties. Multiple-model adaptive estimation 
(MMAE) [1], [2], innovation-based adaptive 
estimation (IAE) [3], [4], [5], and residual-based 
adaptive estimation (RAE) [5], [6] are all essential 
techniques to addressing the adaptive Kalman 
filtering problem. Changes in the innovation or 
residual sequences cause rapid adjustments to the 
measurement and/or process noise covariance 
matrices. 

The MMAE approach can only be utilized in 
specific situations because it calls for a number of 
parallel Kalman filters, and the faults should be 
known. IAE and RAE methods must use the 
innovation vectors or residual vectors of m epochs 
in the moving window to estimate the covariance 
matrices. The number, kind, and distribution of the 
measurements for all epochs inside a window must 
be consistent for IAE and RAE estimators. If not, 
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neither the innovation nor the residual vectors can 
be used to estimate the covariance matrices of the 
measurement noises. 

Another idea is to multiply the noise covariance 
matrix by a time-dependent variable to scale it. This 
algorithm is called adaptive fading Kalman filter 
(AFKF). One approach to creating such an 
algorithm is to multiply the process or measurement 
noise covariance matrices by a single adaptive 
factor [5], [7], [8]. The AFKF technique can be used 
if there is a fault in the measurement system, and the 
filter's insensitivity to present measurement faults 
can be ensured by multiplying the measurement 
noise scale factor by the measurement noise 
covariance matrix. As a result, by applying an 
adjustment to the filter gain, the filter's accurate 
estimating behavior will be protected from being 
affected by inaccurate measurements. 

An adaptation method based on the multiple 
fading factor is provided in [5], and [9]. The 
variation in the impacts of measurement noise 
covariance change on estimating the performance of 
each estimated state is the primary reason for 
adopting several fading factors. It is critical to 
carefully evaluate how modifying the measurement 
noise covariance would affect each state, 
particularly for complicated multivariable systems, 
and to employ a matrix with many fading factors 
rather than a single factor (so that the adaptation is 
weighted differently for each state). 

The measurement covariance matrix can be 
modified with the help of the fuzzy inference 
system, [10]. The results showed that the proposed 
adaptive fuzzy extended Kalman filter is robust 
against disturbances and outliers. Although adaptive 
Kalman filter algorithms based on fuzzy logic work 
well in some situations, they are knowledge-based 
systems that function with linguistic variables and 
cannot be widely applied to critical systems like 
aircraft flight control systems since they are human 
experience-based. 

Because the noise estimator cannot be expressed 
in a recursive form and each previous state vector 
must be smoothed by the most recent measurements 
at each point in time, the algorithm in the studies 
mentioned cannot be used to directly estimate the 
measurement noise covariance in practical 
operations. 

In this study, a residual-based robust Kalman 
filter with a recursive measurement noise covariance 
estimator is proposed and applied for the state 
estimation process of a UAV platform. The results 
of the proposed robust and conventional Kalman 
filter algorithms are compared for different types of 

measurement faults and recommendations about 
their utilization are given. 

The article is presented as follows. The UAV's 
flight dynamics model is presented first. The 
optimal Kalman filter for estimating UAV state is 
then described in the following section. After that, a 
novel recursive measurement noise covariance 
estimation method for Kalman filter tuning is 
proposed. Based on the introduced residual-based 
recursive measurement noise covariance estimation 
approach the robust Kalman filter (RKF) against 
sensor faults is derived. The proposed RKF with 
recursive measurement noise covariance estimation 
algorithm is applied for the model of UAV 
dynamics and the performance of the proposed filter 
is tested via simulations for the state estimation 
process of a UAV platform. The conclusion and the 
results are briefly summarized in the final section. 
 
 
2  Preliminaries  
Consider the linear dynamic system represented by 
the state equation:  

( 1) ( ) ( ) ( )x j Ax j Bu j Gw j                       (1)                                                       
 
and measurement equation: 

( ) ( ) ( ) ( )z j H j x j V j  ,                          (2)                                                                     
 
where ( )x j is the system state; A is the system 
transition matrix; B is the control distribution 
matrix; ( )u j  is the control input; ( )w j  is the random 
system noise; G is the system noise transition 
matrix; ( )z j  is the measurement vector; ( )H j  is the 
measurement matrix; ( )V j  is a random measurement 
noise.  
 

Assume that ( )w j and ( )V j are Gaussian white 
noise random vectors with zero mean and 
covariances: 

( ) ( ) ( ) ( );

( ) ( ) ( ) ( ).

T

T

E w j w k Q j jk

E V j V k R j jk





   

   

                  (3)                                           

 
where ( )δ jk  is the Kronecker delta symbol. Note 
that { }( )w j  and { }( )V j  are assumed mutually 
uncorrelated. 
 

The state vector (1) can be estimated via the 
optimal linear Kalman filter (LKF), [11]. Equations 
for the estimation value and gain matrix of the LKF 
respectively are: 
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ˆ ˆ( / ) ( / 1) ( ) ( )x j j x j j K j j                       (4) 
                                                          

1( ) ( / 1) ( )TK j P j j H j P

                        (5)  
                                                                           

 
where ˆ ˆ( / 1) ( 1/ 1) ( 1)x j j Ax j j Bu j       is the 
extrapolation value, ( )j  and ( )P j  are the 
innovation and innovation covariance respectively.  
 
The expressions for the ( )j  and ( )P j  are: 

ˆ( ) ( ) ( ) ( / 1)j z j H j x j j                        (6) 
 

( ) ( ) ( / 1) ( ) ( )P j H j P j j H j R j                  (7)  
                                                                       

Here ( / 1)P j j   is the covariance matrix of the 
extrapolation error.  
 
The residual of Kalman filter is defined as: 

ˆ( ) ( ) ( ) ( / )j z j H j x j j                     (8)  
                                         

The residual covariance is [6] 
( ) ( ) ( ) ( / ) ( )P j R j H j P j j H j               (9)       

 
The residual sequence (8) will be white 

Gaussian noise with zero-mean and covariance (9) if 
the system is functioning normally [3], i.e. 

 ( ) ~ 0, ( )j N P j .  On the other hand, when there are 
abnormal changes occurring in the system or 
measurement channels, it can be assumed that  

 ( ) ~ ( ), ( ) ,
ff j N j P j  where either ( ) 0j   or 

( ) ( )
f

P j P j    or both. Note that faults that only 

result in ( ) 0j   are generally called additive or 
bias type faults. They can be denoted as 

( ) ( ) ( )f j j f j     and satisfy 

 ( ) ~ ( ), ( )f j N j P j  , where  ( ) ( )E f j j . Those 
faults that lead to changes in innovation covariance 

( )P j  are called multiplicative or noise increment 
type faults, which can be denoted as 

( ) ( ) ( )f j F j j   with  ( ) ~ 0, ( ) ( ) ( )T

f j N F j P j F j . 
 
 

3  The Influence of Sensor Faults on 

Kalman Fılter Residual 
The statistical properties of the Kalman filter 
residual will alter as a result of measurement bias 
and sensor noise increase type sensor faults. This 

section examines the impact of these types of sensor 
faults on the Kalman filter's residual sequence.     
   
3.1  Influence of Sensor Biases on the 

 Kalman Filter Residual 
Theorem 1: In the event that measurements are 
processed using LKF (4)–(7) and a measurement 
bias arises at an iteration step j  , then at all j   
steps the residual bias will be equal to the difference 
between the measurement bias and the estimated 
observation bias.     
Proof: At the first step following the bias occurring 
at iteration j  , the extrapolation value can be 
expressed as 

ˆ ˆ( 1/ ) ( / ) ( ) ( )
ˆ ˆ( / ) ( / ) ( ) ( )
ˆ ˆ( 1/ ) ( 1/ )

b bx j j Ax j j Bu j Gw j

Ax j j A x j j Bu j Gw j

x j j x j j

    

   

    

   (10)             

 
where  ˆ ˆ( 1/ ) ( / )x j j A x j j    is the extrapolation 
value bias.  
 
Residual of Kalman filter is: 

ˆ( 1) ( 1) ( 1) ( 1) ( 1/ 1)
ˆ( 1) ( 1) ( 1/ 1) ( 1)

ˆ( 1) ( 1/ 1) ( 1) ( 1)

b z b

z

j z j b j H j x j j

z j H j x j j b j

H j x j j j j



 

        

        

       

     

(11) 
                            

where                                                        
ˆ( 1) ( 1) ( 1) ( 1/ 1)zj b j H j x j j              (12)         

is the residual bias. 
 

The residual bias is equal to the difference 
between the measurement bias and estimated 
observation bias, as may be observed from 
expression (12), as shown. For all j  steps, this 
situation applies. As a result, Theorem 1 is proven. 
Consequently, measurement bias type sensor faults 
will cause a bias in the residual of the Kalman filter. 

 
3.2 Influence of Measurement Noise 

 Increment to the Residual 
Let the measurements are processed by the LKF (4)-
(7) and a measurement noise increment occurs at the 
iteration step j  . Measurement noise increment 
can be simulated by multiplying the measurement 
noise vector with the diagonal matrix ( )F j , which 
diagonal elements meet the following condition: 

( ) 1ii j  ,  ( 1,i n )  for j   . Here n is the 
dimension of the measurement vector. As it is clear, 
for the noise increment type sensor fault in the i th 
measurement channel, the appropriate diagonal 
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element of ( )F j will be larger than 1, i.e. ( ) 1ii j   for 
j   and rest of the measurement channels 

become 1. Consequently, the diagonal elements of
( )F j  can be presented in the following form: 

 
1:  no measurement fault
>1: measurement faultii


 


 

 
The measurement model in this case can be written 
in the form: 

( ) ( ) ( ) ( ) ( )z j H j x j F j V j  ,                    (13)                                                             
 
where 

 

 

   11 22

1 1 . . . 1 ,     for  j

( ) . . .  if  1, ,

 where  1 for  j
nn

ii

diag F j i n



  

 




  


 

   

(14)                         
 

Theorem 2:  In the event that measurements are 
processed using LKF (4)–(7) and a measurement 
noise increment occurs at an iteration j  , then at 
all j   steps the measurement noise increment 
leads to increment in the residual covariance (7). 
Proof.  The innovation covariance at the iteration 
steps j   can be expressed as 

( ) ( ) ( ) ( ) ( ) ( / ) ( )
ni

T TP j F j R j F j H j P j j H j        (15)                                                                                   
 
The residual covariance increment is: 

( ) ( ) ( ) ( ) ( )
ni

TP j F j R j F j R j                 (16)                                                   
 

Since the matrices ( )F j and ( )R j  are assumed to 
be diagonal, the expression (16) can be rewritten in 
the following form: 

    2 2( ) ( ) ( ) ( ) ( ) ( )
ni

P j F j R j R j F j I R j        (17)                                       

 
where I  is the n n  identity matrix. Because ( )R j

and ( )F j  are positive definite diagonal matrices and 
( )F j has diagonal elements ( ) 1ii j  ,  ( 1,i s )  for 

 j  , then the matrix   2( ) ( )F j I R j is also 

positive definite. Since the innovation covariance 
increment is a positive definite matrix, the Theorem 
2 is valid, therefore, the noise increment type sensor 
fault leads to an increment of residual covariance 
(7).  
 
 

4 Resudual-Based Recursive 

Measurement Noise Covariance 

Estimator 
The statistical properties of the Kalman filter residual 
will change as a result of measurement bias and 
measurement noise increment. For the compensation 
of measurement bias or measurement noise 
increment, the real and theoretical values of the 
residual covariance matrices must be compared.  
In the absence of measurement fault in the 
estimation system, the real innovation covariance 

( )C j  is equal to the theoretical one, [6] 
( ) ( ) ( ) ( / ) ( )TC j R j H j P j j H j                  (18)                                                                     

 
The real covariance matrix of ( )j  is an average of 

( ) ( )Tk k  within a moving window M :   

1

1( ) ( ) ( )
j

T

k j M

C j k k
M

 
  

                         (19)                                                                      

 
Substituting Eq. (19) into (18) we have 

1

1 ( ) ( ) ( ) ( ) ( / ) ( )
j

T T

k j M

k k R j H j P j j H j
M

 
  

       (20) 

 
The real residual covariance matrix ( )C j can be 

estimated by ( ) ( )Tj j  at the current epoch in order 
to avoid the smoothness of the average of ( ) ( )Tj j   
within M epochs, which does not adequately reflect 
the uncertainty of the model errors at the current 
step 

( ) ( ) ( )TC j j j                            (21)                                                                           
 

Taking into account (18) and (21), the 
expressions for the measurement noise covariances 
for 1j   and  j  iterations can be written in the 
following form: 

( 1) ( 1) ( 1) ( 1) ( 1/ 1) ( 1)T TR j j j H j P j j H j            
(22)     

                                           
( ) ( ) ( ) ( ) ( / ) ( )T TR j j j H j P j j H j                      (23)     

                                                    
Therefore ( 1)R j   minus  ( )R j equals: 

( 1) ( ) ( 1) ( 1)
( ) ( ) ( 1) ( 1/ 1) ( 1)

( ) ( / ) ( )

T

T T

T

R j R j j j

j j H j P j j H j

H j P j j H j

 

 

     

    



 (24)                                        

 
The equation (24) can be written as: 
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( 1) ( ) ( 1) ( 1)
( ) ( ) ( 1) ( 1/ 1) ( 1)

( ) ( / ) ( )

T

T T

T

R j R j j j

j j H j P j j H j

H j P j j H j

 

 

     

    



 (25)                            

 
If measurements are linear, than ( 1) ( )H j H j  and 
the expression (25) can be written in simple form as: 

 

( 1) ( ) ( 1) ( 1) ( ) ( )
( / ) ( 1/ 1)

T T

T

R j R j j j j j

H P j j P j j H

        

   
     (26)                                               

 
The resulting expression (26) makes it possible 

to recursively estimate the measurement noise 
covariance for the Kalman filter tuning. Below the 
RKF with recursive estimation of measurement 
noise covariance is applied for the UAV dynamics 
model.  

If a measurement bias occurs at the iteration 
step j  , and the biased residual sequence is 
denoted by ( )b j , then the biased residual   is 
defined as: 

 ( ) ( )b j j                     j=1,2,... -1           (27)  
                  

 ( 1) ( 1) ( 1)b j j j        j=+1, +2,…       (28)  
                                                        

When j<, the mathematical expectation of the real 
residual covariance matrix (28) can be determined 
by the following equation:  
 ( ) ( ) ( ) ( ) ( / ) ( )TE C j P k R j H j P j j H j             (29) 

                    
In the case of j  , in the real residual 

covariance, a biased values 
( 1) ( 1) ( 1)b j j j       is used instead of an 

unbiased value ( 1)j  , where ( 1)j  is the residual 
bias  

             ( ) ( ) ( )T

b b bC j j j                                 (30)  
                                      

Remark. Note that the expected value of the residual 
( )b j in this case is not zero, therefore the formula 

(30) is not a real covariance. This is the square of 
the residual. Bias type measurement fault may be 
converted to the square of residual and such types of 
faults can be compensated using covariance 
matching techniques. 
Statement. For iteration steps j  , measurement 
bias leads to an increase in the mathematical 
expectation of the square of residual. 
Proof.  It is proven in Theorem 1 that the 
measurement bias will cause  bias in the residual of 
the Kalman filter. 

The mathematical expectation of the square of 
innovation (30) for j  can be written as: 

     ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

TT

b b b

T T T T

E C j E j j E j j j j

E j j j j j j j j

     

       

     

     

                  (31) 
 

Taking into account  ( ) 0E j  , and the absence 
of correlation between the parameters ( )j  and ( )j , 
we have 

   ( ) ( ) ( ) ( )T

bE C j E C j E j j                (32)   
             

Expressions (11) and (32) prove the Statement 

1. Consequently, the measurement bias will increase 
the mathematical expectation of the square of 
residual. It can be seen from the Theorem 1 and the 
Statement above that the measurement bias is 
transferred to the residual bias and changes the 
mathematical expectation of the square of residual 
(21). As a result, the measurement bias is transferred 
to the mathematical expectation of the square of 
residual. Thus, the square of residual can be used to 
compensate of   measurement bias.  

Therefore, the measurement bias will increase 
the mathematical expectation of the square of 
residual (23). As a result, according to formulas (23) 
and (26), the measurement noise covariance matrix 
R  will increase, resulting in a smaller Kalman gain, 
which will reduce the influence of measurements on 
the state update process and increase the influence 
of the mathematical model of the system. As a 
result, the robustness of the filter against the 
measurement bias fault is ensured and the 
deterioration of the estimation procedure caused by 
the measurement bias fault is prevented. 

 
 

5   Results of Simulation 
The proposed innovation-based adaptive KF 
algorithm is applied to the UAV platform dynamics 
model. As the experimental platform, the ZAGI 
UAV was selected, and Kalman filter applications 
were carried out while taking into consideration its 
dynamics and characteristics, [12]. In order to 
estimate the UAV state vector 

      ( ) T

k
x k u w q h p r              

the proposed residual-based RKF with R-adaptation 
and conventional LKF (4)-(7) is used. Here, ,u ,v

w are the velocities along ,x y and z directions in 
the body frame, ,p ,q r are the angular rates 
around ,x y and z axes,  is the pitch angle,   is 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.45 Chingiz Hajiyev, Ulviye Hacizade

E-ISSN: 2224-2678 439 Volume 23, 2024



the roll angle,   is the sideslip angle, h is the 
height. 

Simulations are carried out in 1000 steps over a 
time frame of 100 seconds with a sampling time of 
0.1 seconds. Two different types of measurement 
fault scenarios—constant bias in measurements and 
measurement noise increment—are taken into 
consideration during simulations to test the 
proposed residual-based RKF with recursive 
estimate of measurement noise covariance. 

 
5.1   Constant Bias in Measurements 
A constant bias term is added to the measurements 
of the pitch angle gyro after the 30th second of 
the simulation 

( ) ( ) ( ) 0.5z j z j v j     , ( 300)j           (33)                                                          
 

The residual-based RKF with recursive R-
adaptation simulation results for the pitch angle in 
the presence of pitch angle gyro bias are presented 
in Figure 1. The findings of the RKF's state 
estimation are compared to the actual values in the 
first section of the figure. The estimation error based 
on the actual values of the UAV states is depicted in 
the second portion of the picture. The estimation 
error variance is shown in the final section. 

Figure 1 shows that the proposed residual-based 
RKF with recursive estimation of measurement 
noise covariance achieves estimation of the states 
accurately in the presence of bias at the pitch angle 
gyro. In this case, RKF gives sufficiently good 
estimation results  by totally eliminating the 
estimation error caused by the bias in the pitch angle 
gyro. 

 

 
Fig. 1:  Pitch angle estimation results using residual-
based RKF with recursive R-adaptation in the 
presence of bias at the pitch angle gyro 
 

 

Figure 2 displays the results of the conventional 
KF estimation for the pitch angle in the presence of 
pitch gyro bias. As can be seen, the conventional KF 
estimates shift after the 30th second of simulation 
(after the pitch angle gyroscope fails), and the 
estimation results are erroneous. 

 

 

 
Fig. 2:  Pitch angle estimation results using 
conventional KF in the presence of bias at the pitch 
angle gyro 
 
5.2  Measurement Noise Increment 
In the second measurement malfunction scenario, 
the measurement fault is defined as the pitch angle 
gyro measurement noise's standard deviation 
multiplied by a constant term after the 30th second:  

( ) ( ) ( ) 3z j z j v j     , ( 300)j  .       (34)                                                    
 

The proposed residual-based RKF with 
recursive R-adaptation estimation results for the 
pitch angle in the presence of measurement noise 
increment at the pitch angle gyro are presented in 
Figure 3. As seen from the graphs presented in 
Figure 3, the proposed residual-based RKF with 
recursive estimation of measurement noise 
covariance gives sufficiently good estimation results 
in the presence of measurement noise increment at 
the pitch angle gyro. 

Figure 4 displays the results of the conventional 
KF estimation for the pitch angle and roll rate in the 
presence of pitch gyro bias. As seen, the accuracy of 
conventional KF estimates deteriorates after the 
30th second of simulation (after the pitch angle 
gyroscope fails). 
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Fig. 3:  Pitch angle estimation results using residual-
based RKF with recursive R-adaptation in the 
presence of measurement noise increment at the 
pitch angle gyro  
 

 
Fig. 4: Pitch angle estimation results using 
conventional KF in the presence of measurement 
noise increment at the pitch angle gyro  
 
5.3  RMS Errors of the Innovation-based  

RKF  
RMS errors of the residual-based RKF with 
recursive estimation of measurement noise 
covariance and conventional KF estimates in the 
presence of pitch angle gyro bias are presented in 
Table 1. As can be seen from the results presented 
in Table 1, the proposed RKF is superior for both 
longitudinal and lateral parameters in the presence 
of pitch angle gyro bias. RMS errors of 
conventional KF are sufficiently greater than the 
RMS errors of the proposed robust filter. 
RMS errors of the proposed residual-based RKF and 
conventional KF estimates in the presence of 
measurement noise increment at the pitch angle 
gyro are presented in Table 2. 
 

Table 1. RMS errors of the proposed RKF and 
conventional KF estimates in the presence of pitch 

angle gyro bias 
Method RKF Conv.KF 

u  0.1134 0.5309 
w  0.0300 0.1738 
q  0.0156 0.0651 
  0.0208 0.1357 
h  0.8210 0.3068 
  0.0164 0.0286 
p  0.0124 0.0386 
r  0.0124 0.0285 
  0.0434 0.0475 

 

Table 2. RMS errors of the proposed RKF and 
conventional KF estimates in the presence of 

measurement noise increment at the pitch angle 
gyro 

Method RKF Conv.KF 
u  0.1505 0.1782 
w  0.0285 0.0847 
q  0.0222 0.0648 
  0.0158 0.0749 
h  1.4480 0.1523 
  0.0148 0.0289 
p  0.0091 0.0413 
r  0.0135 0.0284 
  0.0277 0.0497 

 
The presented in Table 2 results show that the 

residual-based RKF with recursive R-adaptation 
gives better results for both longitudinal and lateral 
parameters in the presence of measurement noise 
increment at the pitch angle gyro. The RMSE results 
of conventional KF are worse compared to the 
robust filter. 

In all investigated sensor fault sceneries, the 
proposed residual-based RKF gives better 
estimation results than the conventional KF. 
 
 
6  Conclusion 
This study proposes a novel recursive method for 
estimating measurement noise covariance for 
Kalman filter tuning. Based on the covariance 
difference approach to recursively estimate the 
measurement noise covariance, a residual-based 
robust Kalman filter against sensor faults is 
presented. The sensor fault compensation in this 
filter is accomplished with a simple change to the 
conventional KF. 

The proposed residual-based RKF with 
recursive estimation of measurement noise 
covariance is applied to the UAV dynamics model. 
Two alternative scenarios of measurement error are 
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evaluated on algorithms; constant bias at 
measurements (additive sensor faults) and 
measurement noise increments (multiplicative 
sensor faults). The simulation results show that the 
proposed residual-based RKF with recursive R-
adaptation can accurately estimate the UAV 
dynamics in real-time in the presence of various 
types of sensor faults.  

Estimation accuracies of the proposed residual-
based RKF and conventional KF are compared. In 
all investigated sensor fault sceneries, the results of 
the proposed RKF are superior.  The conventional 
KF gives the worst estimation results in the presence 
of sensor faults. 

The residual-based RKF with recursive 
estimation of measurement noise covariance can be 
recommended as the reliable UAV state estimator in 
the flight control system in the presence of sensor 
faults. 
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