
Abstract: - Large LanguageModels (LLMs), such as GPT-4, represent a significant advancement in contemporary
Artificial Intelligence (AI), demonstrating remarkable natural language processing, customer service automation,
and knowledge representation capabilities. However, these advancements come with substantial energy costs.
The training and deployment of LLMs require extensive computational resources, leading to escalating energy
consumption and environmental impacts. This paper explores the driving factors behind the high energy
demands of LLMs through the lens of the Technology Environment Organization (TEO) framework, assesses
their ecological implications, and proposes sustainable strategies for mitigating these challenges. Specifically,
we explore algorithmic improvements, hardware innovations, renewable energy adoption, and decentralized
approaches to AI training and deployment. Our findings contribute to the literature on sustainable AI and provide
actionable insights for industry stakeholders and policymakers.
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1 Introduction
The evolution of Large Language Models (LLMs)
in recent years has been remarkable, characterized
by a substantial increase in complexity and the
number of parameters these models contain. Early
models, which utilized millions of variables, have
surpassed giants like GPT-4 and others, which feature
hundreds of billions of parameters. This exponential
growth has enabled LLMs to capture nuanced
linguistic patterns and contextual subtleties that were
previously unattainable [1],[2]. The sophistication
of these models has not only enhanced their ability
to generate coherent and contextually appropriate
text. Still, it has expanded its applicability across
diverse fields such as medicine, law, and the creative
industries.

The increasing complexity of these models brings
significant computational demands. Training and
deploying such large models require immense
computing power. Additionally, the energy
consumption in training these models raises
environmental concerns, leading to discussions
about the sustainability of current AI development
practices. The increasing resources required
for advanced research may create a wider gap
between those with access to technology and those
without, potentially hindering innovation in smaller
institutions. It is becoming increasingly important

for the AI community to balance the impressive
capabilities of advanced language models with
ethical considerations and sustainability.

Training LLMs requires vast computational
resources, leading to high energy consumption. This
process involves running intricate neural networks on
extensive datasets, which can take weeks or months
on powerful hardware such as GPUs and TPUs. The
significant energy usage results in a considerable
carbon footprint, raising critical environmental
concerns. Some studies estimate that training a
single large model can produce carbon dioxide
emissions equivalent to the lifetime emissions of
several cars. These substantial energy demands affect
the environment and increase the financial costs of
developing these models. This situation may restrict
access to well funded organizations only.

Hosting and querying LLMs consume energy
long after the initial training phase. Deploying
these models requires servers to operate continuously,
often in data centers that use significant amounts of
electricity for computation and cooling systems. As
adopting LLMs expands across various industries,
the cumulative energy required to handle real time
queries becomes increasingly essential. This ongoing
consumption underscores the need for more energy
efficient algorithms and hardware. This demonstrates
the need to invest in renewable energy sources
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and optimize existing infrastructure to mitigate the
environmental impact of LLMs’ widespread use [3].

This paper seeks to delve into the underlying
factors behind these energy requirements, assess
the implications of this energy consumption for
the environment, and propose strategic pathways to
mitigate these impacts through a multi level analysis.

The main objectives of this study are:

1. To identify and explore the reasons behind the
energy intensive nature of LLMs in accessible
terms.

2. To evaluate the environmental impact associated
with the training and deployment of LLMs.

3. To propose strategies for reducing the energy
consumption of LLMs, including advances in
algorithmic design, hardware, renewable energy
integration, and policy.

4. To critically assess regulatory bodies’ role in
fostering sustainable AI development.

5. To discuss the implications of these strategies for
research, practice, and education.

This study adds to the existing literature by
offering a comprehensive understanding of the
sustainability challenges linked to LLMs. We
utilize the Technology Environment Organization
(TEO) framework to examine the interactions
among technological advancements, environmental
effects, and organizational practices. Furthermore,
we present insights on the implications of these
challenges and propose potential solutions supported
by empirical evidence where relevant.

2 Literature Review and Theoretical
Background

2.1 Development and Evolution of LLMs
LLMs are the product of a rapid evolution in machine
learning and natural language processing research [4].
The increase in model size, aimed at achieving higher
accuracy and enhancing capabilities, has resulted in
the development of models with billions, and even
trillions, of parameters. This swift evolution has been
supported by advancements in hardware, improved
algorithmic techniques, and access to vast amounts
of data. For example, GPT-3 contains 175 billion
parameters, enabling it to generate coherent and
contextually relevant responses across a wide range
of topics [1].

Although these models possess impressive
capabilities, their training and inference require
substantial computational resources. This demand
has been rising with each new generation of LLMs.

As these models become more extensive, the energy
needed for their training and operation also increases,
leading to a significant carbon footprint. In particular,
GPT-4’s training process, which involved thousands
of GPUs running in parallel for several weeks,
highlights the intensive energy requirements inherent
in state of the art LLMs [3].

The evolution of LLMs can be contextualized
through several technological innovations, such
as the introduction of Transformer architectures
[4]. Transformers revolutionized natural language
processing by enabling parallel processing of input
sequences, thereby significantly improving the
efficiency and scalability of training. However,
this parallelism also contributes to the growing
energy demand, requiring specialized hardware to
support massive computational workloads. Table 1
compares various LLM architectures from an energy
requirement viewpoint.

Table 1. Comparison of LLMArchitectures and Their
                          Energy Requirements
Model Parameters

(B)
Training
Time (wks)

Energy
(MWh)

GPT-2 1.5 2 50
GPT-3 175 4 1,287
GPT-4 1,000+ 8 3,500+
BERT 0.34 1 7
T5 11 3 200

2.2 Technology Environment Organization
(TEO) Framework

The TEO framework offers a valuable perspective for
analyzing the energy consumption challenges related
to LLMs. This framework highlights the interplay
between technological capabilities, environmental
constraints, and organizational strategies. Using
this framework, we can better understand how
technological decisions (such as model architecture
and hardware) affect environmental outcomes and
how managerial practices (like adopting renewable
energy and ensuring regulatory compliance) can help
mitigate adverse effects.

From a technological standpoint, the rapid
advancements in deep learning architectures have
increased computational complexity [5]. From
an environmental perspective, there are concerns
about these technologies’ energy consumption
and greenhouse gas emissions. The organizational
perspective examines how companies and institutions
respond to these challenges. Organizations play a
vital role in promoting the sustainability of AI
by adopting energy efficient practices, investing
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in renewable energy, and influencing regulatory
policies [6].

The TEO framework helps to understand the
various levels of impact that the energy demands
of LLMs have. Technological factors such as
model size and hardware requirements influence
energy consumption. These technological choices
also affect environmental factors, including the
availability of renewable energy sources and carbon
emissions. Ultimately, organizational strategies like
forming partnerships with green energy providers and
creating sustainability metrics are crucial in reducing
LLMs’ environmental impact. Table 2 illustrates
TEO framework components from a sustainability
viewpoint.

Table 2. Summary of TEO Framework Components
        and Their Impact on LLM Sustainability
Component Tech. Factors Env. Factors Org. Factors

Technology Model Size,
Hardware

Energy
Consumption

Efficiency
Measures

Environment Energy Source Carbon
Emissions

Renewable
Integration

Organization Adoption
Policies

Regulatory
Compliance

Sustainability
Metrics

2.3 Environmental Implications of AI
Energy Consumption

The energy costs associated with LLMs translate into
significant environmental impacts. [7] estimated that
data centers, which house the hardware required to
train and deploy LLMs, account for roughly 1% of
global electricity usage. Most data centers continue
to depend on nonrenewable energy sources, resulting
in significant greenhouse gas emissions. For instance,
training a single LLM may produce up to 626,000
pounds of CO2, equivalent to the emissions of five
cars over their lifetime [8].

Several studies have addressed the environmental
impact of data centers, highlighting the need for
energy efficient practices and renewable energy
integration. [9] introduced the concept of the Power
Usage Effectiveness (PUE) metric, which measures
the energy efficiency of data centers. A lower
PUE indicates a more efficient use of energy, and
recent advances have aimed to reduce PUE through
improved cooling methods and hardware efficiency
[10], [11].   However, achieving lower PUE values
requires substantial investments in infrastructure
and innovation, which may not be feasible for all
organizations.

The environmental implications of AI energy
consumption extend beyond carbon emissions. The
extraction of raw materials for hardware, such

as lithium and cobalt, poses significant ecological
risks. These materials are essential for producing
GPUs and TPUs, which are critical for LLM
training. Mining these resources often leads to habitat
destruction, water contamination, and social conflicts
in regions where mining activities are concentrated
[12]. Thus, the environmental cost of AI extends
from energy consumption to the broader ecological
impact of hardware production. Table 3 summarizes
environmental impact factors associated with GPU
and TPU production.

Table 3. Comparison of Environmental Impact
            Factors for GPU and TPU Production
Factor GPUs TPUs Environmental

Impact

Raw
Materials

Cobalt,
Lithium

Cobalt,
Lithium

Habitat
Destruction,
Water
Contamination

Energy Use High Moderate Greenhouse
Gas Emissions

Recyclability Limited Limited Electronic
Waste
Concerns

2.4 Ethical Considerations and Social
Justice

The ethical implications of the growing energy
demands of LLMs are multifaceted. AI’s high energy
consumption contrasts sharply with the reality that
millions worldwide lack access to electricity [13].
The unequal distribution of resources raises questions
about the ethical implications of dedicating vast
amounts of energy to train AI models. In contrast,
basic energy needs remain unmet in many parts of the
world.

AI driven climate change exacerbates these
inequalities, disproportionately affecting vulnerable
populations, particularly in developing nations [14].
The rising frequency of extreme weather events,
partly caused by climate change, has a serious impact
on socioeconomically disadvantaged communities.
It is crucial to address environmental justice when
discussing deploying energy intensive AI models.
This means reducing AI’s energy consumption and
ensuring that AI’s benefits are shared fairly among all
communities.

Moreover, the ethical considerations surrounding
AI energy consumption are closely tied to issues of
transparency and accountability [15]. Organizations
that develop and deploy LLMs must be transparent
about their energy consumption and the measures
taken to mitigate environmental impacts. Ethical

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.46 Maikel Leon

E-ISSN: 2224-2678 446 Volume 23, 2024



AI development should prioritize sustainability
alongside performance, ensuring that technological
advancements do not come at an unsustainable cost
to the environment and society [16].

3 Factors Contributing to High
Energy Consumption of LLMs

3.1 Complexity and Scale of Model
Architecture

The fundamental reason behind the energy intensity
of LLMs lies in their architectural complexity.
LLMs like GPT-4 contain hundreds of billions
of parameters optimized through iterative training
on massive datasets [1]. Training an LLM is
an inherently computationally intensive process,
requiring thousands of GPUs running for weeks or
even months [17].

The architecture of LLMs, based on Transformer
models, is designed to capture complex relationships
within language data. Transformers use self attention
mechanisms to weigh the importance of different
parts of the input sequence, allowing them to generate
more contextually relevant output. However, this self
attention mechanism has a computational complexity
ofO(n2), where n is the length of the input sequence.
This quadratic complexity contributes significantly to
the high energy consumption of LLMs, particularly
for long input sequences [4].

Furthermore, the training process involves
multiple forward and backward passes through
the model to optimize the parameters [18]. Each
pass requires substantial computational power,
particularly for models with hundreds of billions
of parameters [19]. The sheer scale of these
models means that even minor improvements
in model architecture or training algorithms can
lead to significant energy savings. Research into
more efficient attention mechanisms, such as
linear attention, aims to reduce the computational
complexity of Transformers and, by extension, their
energy consumption.

3.2 Hardware Requirements
The training and deployment of LLMs depend on
specialized hardware, including Graphics Processing
Units (GPUs) and Tensor Processing Units (TPUs).
These hardware units are optimized for the parallel
processing required by deep learning algorithms but
are known to be power hungry [3], [17]. GPUs and
TPUs are designed to handle the massive amounts
of matrix multiplications involved in training
deep learning models, but the physical constraints
of semiconductor technology limit their energy
efficiency.

The performance of GPUs and TPUs is closely
linked to the number of processing cores and the
memory access speed. Increasing the number of cores
allows for greater parallelism, which is essential for
training large models, but it also increases the power
consumption of the hardware. Memory bandwidth
is another critical factor, as deep learning models
require frequent access to extensive data. High
memory bandwidth contributes to faster training
times but also increases energy usage due to the
need for rapid data transfer between memory and
processing units [17].

Recent developments in hardware design, such
as using low precision arithmetic and specialized
accelerators, aim to improve the energy efficiency
of AI hardware. For example, TPUs are designed
to perform matrix multiplications more efficiently
than general purpose GPUs, leading to lower energy
consumption for specific tasks [3]. However, the
benefits of these hardware improvements are often
offset by the increasing size and complexity of the
trained models.

3.3 Cooling and Infrastructure Needs
GPUs and TPUs generate considerable heat,
necessitating efficient cooling mechanisms. Cooling
systems, essential for maintaining optimal operating
temperatures, contribute substantially to the overall
energy demands of LLM deployments [11]. Data
centers, which house the hardware used for training
LLMs, require extensive cooling infrastructure to
prevent overheating and ensure reliable performance.

Traditional cooling methods, like air conditioning,
consume a lot of energy and increase the carbon
footprint of data centers. New cooling technologies,
such as liquid and immersion cooling, have been
developed to enhance energy efficiency. Liquid
cooling works by circulating a coolant around the
hardware components to absorb heat effectively. In
contrast, immersion cooling submerges the hardware
in a nonconductive liquid that dissipates heat more
effectively than air [10]. These cooling methods can
significantly reduce the energy required for cooling,
but they also require specialized infrastructure and
can be costly to implement.

The design and layout of data centers are crucial
for maximizing energy efficiency and effective
cooling. An efficient data center design optimizes
hardware arrangements to enhance airflow and
minimize hotspots, which can lower cooling needs.
Additionally, implementing energy management
systems to monitor and control power usage is vital
for improving the overall energy efficiency of data
centers [11].
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4 Environmental Impact Assessment
4.1 Greenhouse Gas Emissions
The energy consumption of AI models directly
correlates with greenhouse gas emissions. According
to [3], training GPT-3 generated emissions equivalent
to those produced by several cars over their lifetime.
Most of these emissions are attributable to the
electricity used to power the GPUs and TPUs during
training. In regions where electricity is generated
primarily from fossil fuels, the carbon footprint of AI
training is exceptionally high.

Reducing greenhouse gas emissions from AI
training requires a combination of energy efficiency
improvements and a transition to renewable energy
sources. [20] highlighted that renewable energy
powered data centers could drastically reduce these
emissions. Companies like Google and Microsoft
have made significant strides in this direction by
committing to 100% renewable energy for their data
centers. However, the availability of renewable
energy is often limited by regional infrastructure, and
not all data centers have access to reliable renewable
energy sources.

In addition to direct emissions from electricity
consumption, the production and disposal of
AI hardware also contribute to greenhouse gas
emissions. The manufacturing process for GPUs and
TPUs involves high energy processes and materials
with significant carbon footprints. Moreover, the
rapid pace of technological advancement in AI leads
to frequent hardware obsolescence, resulting in
electronic waste that must be managed responsibly to
minimize environmental impact [3].

4.2 Broader Ecological Impact
The broader ecological implications of LLMs involve
the strain on natural resources resulting from the
need for hardware components, such as rare earth
metals. The production of graphics processing
units (GPUs) and tensor processing units (TPUs)
requires materials like cobalt, lithium, and other
rare earth elements, which are often obtained
through environmentally harmful mining practices
[12]. These mining activities are associated with
significant environmental degradation, including
deforestation, soil erosion, and water contamination.

The extraction of rare earth metals typically
occurs in developing countries, where environmental
regulations may be weak or inadequately enforced.
This situation results in substantial ecological damage
and adverse social effects on local communities.
In many instances, mining operations have been
associated with human rights violations, including
child labor and unsafe working conditions [14]. The
ethical implications of using hardware that relies on

these materials are essential for the AI community,
particularly as the demand for GPUs and TPUs grows.

To address the broader ecological impact of LLMs,
we must shift towards more sustainable hardware
production practices. This includes developing new
materials less damaging to the environment and
enhancing recycling technologies to recover valuable
materials from outdated hardware. Companies that
produce AI hardware must also take responsibility
for their supply chains’ environmental and social
impacts, ensuring they source materials sustainably
and ethically [21].

5 The Role of Nuclear Energy in AI
Infrastructure

Recent developments in AI technology have
drastically increased energy demands. As a result,
major technology companies are exploring alternative
energy sources, including nuclear power, to address
these challenges. This section discusses the initiatives
led by companies such as Google and Microsoft in
leveraging atomic energy to power AI data centers.

5.1 AI’s Energy Demands
Artificial Intelligence systems, huge language
models, and image generation frameworks are
computationally intensive, consuming significantly
more power than traditional computing tasks. For
example:
• A single ChatGPT inquiry requires
approximately ten times the electricity of a
typical Google search.

• Image generation is even more energy intensive,
requiring over 60 times the power of text
generation.
Companies increasingly turn to unconventional

power sources to meet their vast energy needs.
Microsoft, for instance, recently struck a deal to
reopen part of the Three Mile Island nuclear facility,
emphasizing the need for consistent and abundant
energy sources to sustain AI growth.

5.2 Google’s Investments in Nuclear and
Renewable Energy

Google CEO Sundar Pichai recently highlighted
the company’s growing interest in nuclear power to
address the energy demands of its AI infrastructure.
Pichai also noted that Google is expanding
investments in renewable energy sources like
solar and thermal power. The aim is to achieve a
balanced mix of energy sources that can adequately
support AI’s expansive and energy hungry operations
while adhering to carbon neutrality commitments.
Table 4 shows various energy initiatives.
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Table 4. Energy Initiatives by Tech Companies for AI
                               Infrastructure
Company Energy Initiative Objective

Google Small Modular
Nuclear Reactors,
Solar Power

Address AI related
energy consumption

Microsoft Reopen Three Mile
Island Facility

Achieve carbon free
power for AI data
centers

5.3 Challenges and Opportunities
Despite efforts to move towards clean energy, the
increasing power demands of AI remain a significant
obstacle to reducing greenhouse gas emissions.
Google, for instance, has experienced a 48% increase
in emissions since 2019, a trend that it partially
attributes to AI investments [22]. To counteract this,
Big Tech companies are exploring nuclear energy
as a promising, low carbon option to supplement
renewable energy sources.

Microsoft’s deal to utilize nuclear power at the
ThreeMile Island site, now known as the Crane Clean
Energy Center, represents an example of repurposing
existing infrastructure to meet energy demands
sustainably [23]. The new project is expected to
generate substantial economic benefits, including job
creation and tax revenue, while ensuring a reliable
energy supply for Microsoft’s AI operations.

5.4 Considerations for Future Investments
While nuclear energy provides a reliable source
of low carbon energy, concerns are related to the
high costs of establishing new nuclear facilities
compared to renewable options like solar power.
Additionally, safety concerns from previous nuclear
incidents still influence public perception [24].
Nevertheless, the initiatives taken by tech giants
like Microsoft and Google underscore the urgency
to secure energy sources capable of consistently
supporting the increasing computational demands
of AI. Table 5 wraps up energy sources for AI
infrastructure.

• Nuclear energy provides reliability but comes at
a high cost.

• Renewables are cheaper but less consistent in
meeting 24/7 AI demands.

The rapid advancement of AI requires innovative
solutions to energy challenges, and nuclear power
is emerging as a viable option. While cost and
public perception challenges remain, Google and
Microsoft’s strategic investments in nuclear and
renewable energy sources demonstrate a proactive
approach to ensuring a sustainable future for AI [25].

Table 5. Comparison of Energy Sources for AI
                               Infrastructure
Energy Source Cost (per kW) Reliability

Nuclear High High
Solar Low Variable

6 The Exponential Cost of Electricity
in AI Computation

As AI models become increasingly complex, the cost
of electricity required to power these computations
has grown exponentially. This trend underscores
the mounting tension between the advancements
in AI technology and the rising energy demands
associated with them, mainly as AI models grow in
size and sophistication, necessitating more excellent
computational resources [6]. For instance, the energy
consumption of a single generative AI query is vastly
higher than that of a basic Google search. While
a typical Google search may consume a negligible
amount of electricity, a query to a large scale language
model like GPT-4 can require up to ten times as much
power, resulting in significantly elevated electricity
costs [26].

6.1 Key Drivers of Electricity Cost in AI
Computation

• Model Complexity: The exponential growth
in electricity consumption is primarily driven
by modern AI models’ increasing size and
complexity.

– In the early stages of AI development, the
high hardware cost, limited availability of
GPUs, and inefficiencies inherent in nascent
AI architectures presented considerable
barriers to widespread adoption [27].

– Although advancements in hardware (such
as GPUs and TPUs designed for parallel
processing) have enabled greater efficiency,
the sheer scale of contemporary AI models
has led to a corresponding rise in energy
demands [28].

• Training Requirements: Training state of the
art models, often comprising billions or even
trillions of parameters, necessitates an immense
amount of electricity, resulting in significant
financial and environmental consequences [29].

6.2 Comparison of Energy Requirements
The disparity in energy requirements between
traditional computing tasks and modern AI
computations is striking. Generating an image
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using a generative AI model consumes more than
sixty times the electricity needed to create text,
and both of these AI driven tasks require orders of
magnitude more energy than standard web searches
[30]. Table 6 compares energy requirements to be
considered. This surge in computational cost is
not solely a function of the increasing number of
parameters within AI models but is also influenced
by:

• Architectural Complexity: The underlying
architectural complexity of AI models [31].

• Training Iterations: The iterative nature of
training [32].

• Hyperparameter Tuning: Extensive
hyperparameter tuning is needed to achieve
optimal performance [33].

Table 6. Comparison of Energy Requirements for
                              Different Tasks
Task Type Relative Electricity

Consumption

Google Search Low
Generative AI Text Query 10x Google Search
Generative AI Image
Generation

60x Google Search

6.3 Cloud Based AI Services and Energy
Costs

• Accessibility vs. Energy Demand: Cloud
based AI services have significantly transformed
access to computational resources, allowing
organizations to rent computational power on
demand.

– Platforms such as Amazon Web Services
(AWS), Google Cloud, andMicrosoft Azure
have made AI computation more accessible
[34].

– However, these platforms have also
contributed to the rising demand for
electricity, particularly due to the massive
data centers that power them [35].

Table 7 summarizes the impact of cloud
platforms on electricity demand and the factors
to be highlighted.

The reliance on these energy intensive facilities
has thus amplified the overall electricity cost
associated with AI computation, especially as cloud
providers expand their infrastructure to accommodate
the escalating requirements of AI driven applications
[36].

Table 7. Impact of Cloud Platforms on Electricity
                                 Demand
Cloud Platform Impact on Electricity

Demand

Amazon Web Services Increased energy for
computations and cooling

Google Cloud Expanded infrastructure
demands

Microsoft Azure Energy intensive data center
operations

6.4 Specialized Hardware for Energy
Efficiency

• ASICs and Neuromorphic Processors: The
development of specialized hardware, including
application specific integrated circuits (ASICs)
and neuromorphic processors, represents an
important step toward mitigating the rising
energy costs of AI computation.

– These chips are explicitly designed
for machine learning tasks, optimizing
computational performance while reducing
power consumption [37].

• Ongoing Challenges: Despite these
advancements, the energy requirements for
training large scale AImodels remain substantial.

– As AI models grow in size and capability,
the resulting electricity costs present
a mounting challenge that necessitates
innovative approaches to energy efficiency
and sustainable computing [38].

6.5 Broader Implications and Sustainability
Challenges

• Energy Trade offs: This trend must be viewed
not only in terms of declining computational
costs but also within the context of escalating
energy demands accompanying AI progress.

– The exponential growth in electricity
consumption linked to modern AI models
highlights the necessity of developing
energy efficient solutions to ensure the long
term sustainability of AI technologies [39].

– Addressing this challenge will require a
comprehensive approach involving:

* Continued innovations in hardware
* Improvements in training algorithms

[40]
* A heightened focus on renewable

energy sources to power data centers
[41]
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Table 8 presents various factors related to
sustainable AI computing.

Table 8. Factors for Sustainable AI Computation
Factor Requirement for

Sustainability

Hardware Innovations More energy efficient
computational chips

Training Algorithm Updates Reducing computational
waste

Renewable Energy Sources Powering data centers
sustainably

The rising cost of electricity is emerging as a
critical factor in the economics of AI, and its influence
on the broader adoption of AI technologies cannot be
underestimated [42].

6.6 Future Directions
• Holistic Understanding of Costs: The broader
implications of this trend extend beyond cost
reductions in computation to encompass the
energy trade offs inherent in AI’s expansion.

– While the decreasing cost of computational
hardware has facilitated the widespread
adoption of AI across various sectors,
the corresponding rise in electricity
consumption poses financial and
environmental challenges [43].

• Industry Integration and Energy Needs: From
predictive analytics in finance to personalized
learning experiences in education, the practical
applications of AI have expanded substantially,
yet the energy required to support these
applications has surged at an alarming rate
[44].

– To sustain the future growth of AI, it is
crucial to:

* Develop and implement energy
efficient hardware [45]

* Optimize algorithms to minimize
computational waste [46]

* Prioritize the use of renewable energy
sources [47]

This trend, therefore, provides a framework for
understanding the advancements in AI computation
and the pressing need to address the exponential
energy costs that accompany these technological
developments.

7 Strategies for Energy Efficiency
7.1 Algorithmic Efficiency Improvements
One promising avenue for reducing the energy
demands of LLMs lies in techniques such as model
pruning, quantization, and sparse architectures, as
those have been shown to reduce the computational
complexity of LLMs without significantly
compromising their performance [48].

• Parameter Pruning: Pruning reduces the
number of active parameters in a model, thus
reducing the computation required [49]. Pruning
can be performed during or after training, and
it involves identifying and removing parameters
that contribute minimally to the model’s output.
By reducing the number of parameters, pruning
decreases the computational load and reduces the
memory requirements, leading to energy savings
during training and inference.

• Quantization: Quantization reduces the
precision of model parameters, which can
lead to significant savings in computational
resources and energy [50]. By representing
parameters with lower precision (e.g., 8-bit
integers instead of 32-bit floating point
numbers), quantization reduces the amount
of data that needs to be processed, thereby
decreasing energy consumption. Quantization
aware training techniques have been developed
to minimize the impact of reduced precision on
model accuracy, making quantization a viable
strategy for energy efficient AI.

• Efficient Transformers: Architectural
modifications, such as the Reformer model,
have been proposed to make transformers
more memory efficient, thereby reducing
energy consumption [51]. The Reformer model
uses locality sensitive hashing to reduce the
computational complexity of the self attention
mechanism, enabling the training of larger
models with less memory. Other approaches,
such  as  Linformer,  aim  to  approximate  the
self attention mechanism with linear complexity,
further reducing the energy requirements of
LLMs.

7.2 Advances in Energy Efficient Hardware
Recent advances in hardware have focused on
improving the energy efficiency of processors used
for AI training and inference. [17] introduced
TPUs as a more energy efficient alternative to GPUs
for deep learning tasks. TPUs are designed to
accelerate matrix multiplication, a core operation
in deep learning. By optimizing the hardware for
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this specific task, TPUs achieve higher per watt
performance than general purpose GPUs.

Neuromorphic computing, which seeks to emulate
the human brain’s efficiency, represents another
promising direction for reducing energy consumption
[52]. Neuromorphic chips are designed to mimic the
structure and function of biological neurons, enabling
highly efficient processing of neural network models.
These chips have the potential to dramatically
reduce the energy required for both training and
inference, particularly for models that require real
time processing, such as those used in robotics and
edge AI applications.

In addition to TPUs and neuromorphic chips,
research is being conducted to develop optical
computing technologies for AI. Optical computing
uses light rather than electrical signals to perform
computations. This approach has the potential
to significantly reduce energy consumption by
eliminating the resistive losses associated with
electronic circuits. While still in the experimental
stage, optical computing could provide a pathway to
ultra efficient AI hardware in the future.

7.3 Integration of Renewable Energy
Integrating renewable energy into data center
operations is essential for mitigating the
environmental impact of LLMs [20]. Tech giants like
Google, Amazon, and Microsoft have committed to
powering their data centers using renewable energy.
Still, more widespread adoption is needed to meet
the energy demands of AI at scale [3].

Data centers can integrate renewable energy
by establishing direct power purchase agreements
(PPAs) with renewable energy providers. PPAs
enable data centers to secure a stable supply of
renewable energy at a fixed cost, reducing their
reliance on fossil fuels and lowering their carbon
footprint. In addition to PPAs, data centers can invest
in on site renewable energy generation, such as solar
panels or wind turbines, to reduce environmental
impact.

However, integrating renewable energy into data
center operations presents several challenges. The
intermittent nature of renewable energy sources, such
as solar and wind, can result in fluctuations in power
availability. Data centers can incorporate energy
storage solutions like batteries to address this issue.
These systems can store excess energy generated
during periods of high renewable output and utilize
it when generation is low. Advances in energy
storage technology, including the development of
high capacity lithium-ion and solid state batteries,
are essential for enabling the reliable integration of
renewable energy into data center operations.

7.4 Distributed and Edge Computing
Edge computing and distributed learning approaches,
such as federated learning, are promising solutions for
reducing the LLMs’ energy requirements. [53]. By
processing data closer to where it is generated, edge
computing reduces the need for data transmission to
centralized servers, thereby decreasing energy usage
and latency [54].

Edge computing is particularly well suited for
applications that require real time processing, such
as autonomous vehicles and smart cities. By
performing computations locally, edge devices can
lower the energy consumption associated with data
transmission and reduce the burden on centralized
data centers. Federated learning, a type of distributed
learning, further enhances the energy efficiency of
artificial intelligence by allowing multiple devices
to collaboratively train a model without sharing raw
data. This method decreases the energy needed for
data transmission and addresses privacy concerns by
keeping data on local devices [53].

Combining computing and federated learning
offers a promising approach to reducing the LLMs’
energy consumption, mainly when data is generated
at the network’s edge. By utilizing the computational
power of edge devices, these strategies can help
distribute the energy demands associated with AI
training and inference, making AI more sustainable
and scalable [55].

8 Regulatory and Policy
Considerations

8.1 The Role of Governments
Government regulation plays a critical role in
ensuring the sustainability of AI technologies.
Carbon taxes can incentivize companies to reduce
their carbon footprints [56]. Governments could fund
more research into energy efficient AI and establish
industry standards to ensure that AI development
aligns with global sustainability goals [57].

Governments can offer tax incentives and
subsidies to encourage the use of single energy
technologies in data centers. These incentives can
motivate more data centers to move away from fossil
fuels by alleviating some of the financial burdens
associated with renewable energy investments.
Additionally, governments can establish regulations
that require data centers to adhere to specific energy
efficiency standards, such as achieving a minimum
Power Usage Effectiveness (PUE) value or utilizing
a certain percentage of renewable energy.

International collaboration is crucial for tackling
the global issue of AI energy consumption.
Governments can join forces to establish common
standards and best practices for energy efficiency in
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data centers and promote the sharing of renewable
energy technologies. By coordinating their efforts at
the international level, governments can help ensure
that the benefits of sustainable AI are distributed
fairly and that the environmental impact of AI is
minimized worldwide [58].

8.2 Industry Standards and Best Practices
Establishing industry standards for the energy
consumption of AI models could drive innovation
in energy efficient practices [58]. Industry
wide benchmarks could also serve as a tool for
accountability, ensuring that companies prioritize
sustainability in their AI development efforts [56].

Establishing metrics for measuring the energy
efficiency of AI models is essential for advancing
this field. Metrics such as energy consumed per
training step and carbon emissions per model offer a
consistent way to compare different models’ energy
consumption and identify areas for improvement. By
utilizing thesemetrics, companies can set clear targets
for energy efficiency and monitor their progress over
time.

To minimize environmental impact, companies
should establish best practices for energy efficient
AI development alongside using metrics. These
best practices may include utilizing energy efficient
hardware, integrating renewable energy sources,
and adopting algorithmic efficiency techniques such
as pruning and quantization. Industry consortia
and professional organizations can be crucial in
developing and disseminating these best practices and
providing training and resources to help companies
implement them [59].

9 Conclusion
LLMs have demonstrated remarkable potential
across industries but have substantial energy costs.
Addressing these models’ energy demands requires
a multifaceted approach involving advances in
algorithmic efficiency, energy efficient hardware,
renewable energy integration, and supportive
policy frameworks. By leveraging the TEO
framework, this study comprehensively analyzes
how technological advancements, environmental
factors, and organizational strategies can collectively
contribute to sustainable AI. The future of AI must
be both powerful and environmentally sustainable,
ensuring that technological advancements do not
come at the planet’s expense.

The findings of this study highlight the importance
of a collaborative effort involving technology
developers, policymakers, and industry stakeholders
to address the energy challenges associated with
LLMs. By focusing on energy efficiency and
sustainability, the AI community can ensure that the

benefits of LLMs are realized without causing undue
environmental harm.

10 Implications for Research,
Practice, and Education

10.1 Research Implications
This paper’s findings highlight several important
areas for future research. Researchers should
focus on developing new AI architectures that are
inherently more energy efficient. To fully understand
the environmental impact of AI development, the
lifecycle impact of AI hardware, from sourcing
raw materials to end of life disposal, must also
be explored. Additionally, there is a significant
opportunity to study the socio economic implications
of AI energy consumption, particularly in developing
countries, to address the ethical dimensions of
sustainable AI.

10.2 Implications for Practice
From a practical perspective, companies developing
LLMs must prioritize energy efficiency in
both hardware and software. This includes
adopting best practices for energy efficient AI
development, such as model pruning, quantization,
and integrating renewable energy into data center
operations. Industry stakeholders must also work
towards establishing standardized metrics for
measuring energy efficiency and holding themselves
accountable to these standards. Organizations should
also consider their operations’ broader ecological and
ethical implications, including sourcing rare earth
materials used in hardware production.

10.3 Educational Implications
Sustainability must be integrated into AI curricula
in terms of education. Students in AI and machine
learning programs should be taught about the
environmental impact of AI technologies and the
importance of developing energy efficient solutions.
This could involve incorporating case studies on the
energy consumption of LLMs and hands on projects
focused on designing and evaluating sustainable AI
models. By educating future AI practitioners on the
importance of sustainability, the next generation of
AI developers can be better equipped to address the
environmental challenges associated with AI.

11 Future Research Directions
Future research should focus on developing new
AI architectures that are inherently more energy
efficient. It will be crucial to explore the use
of renewable energy in data center operations and
the role of decentralized and edge AI in reducing
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energy consumption. Furthermore, developing
comprehensive policies and industry standards will
be vital in aligning AI development with global
sustainability objectives. Future studies could
also explore the socio economic implications of
AI energy consumption, particularly in developing
countries, to better understand the ethical dimensions
of sustainable AI.

Another critical area for future investigation is
research into the lifecycle impact of AI hardware,
including sourcing raw materials and disposing
of obsolete components. By understanding the
total environmental impact of AI, from production
to end of life, researchers can develop more
sustainable hardware solutions and inform policies
that promote responsible AI development. By
promoting awareness of AI’s environmental impact
and encouraging energy efficient practices among
users, the AI community can help reduce the
overall energy footprint of AI technologies [19].
Additionally, we will assess the impact of integrating
renewable energy sources into the AI training
infrastructure, calculating potential reductions in
carbon footprints and overall energy expenditures. By
leveraging empirical datasets and simulation models,
this future research aims to provide a robust, data
driven foundation to support our proposed strategies,
offering clear, quantifiable benefits that could serve
as valuable benchmarks for industry stakeholders and
policymakers looking to optimize AI systems for
sustainability. This will enhance our understanding of
these strategies’ practical implications and real world
applicability in reducing environmental impacts and
maintaining computational efficiency.

Future work will also include a detailed lifecycle
analysis of the components involved in constructing
AI systems, mainly focusing on the mining and
processing of rare earth metals. This analysis will
extend from the extraction of raw materials to the
manufacturing, usage, and eventual disposal stages of
AI hardware. By doing so, we aim to present a holistic
view of the environmental impacts associated with
each phase and identify key areas where interventions
could minimize adverse outcomes.

Furthermore, in response to the valuable feedback
on AI’s ethical and social justice implications, we
will deepen our examination of equity in resource
allocation and its repercussions for developing
countries [60]. This extended analysis will
explore how technological access and infrastructure
disparities can exacerbate social inequalities and
hinder sustainable development. By integrating
perspectives on international policies and cooperation
frameworks, we intend to propose strategies
that promote a more equitable distribution of AI
benefits and address the broader implications of AI

deployment in these regions.
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