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Abstract: Differential Game Theory has seen significant advancements in recent years, driven by numerous
scholars exploring theoretical and practical aspects of the field. In this paper, we summarize the principal findings
in pursuit-evasion games, focusing on Cop-Win and Robber-Win games on graphs. A dedicated section explores
the demonstration technique introduced by G. Ibragimov, showcasing how evasion or capture can be achieved in
a chase game by defining time intervals. The paper concludes by presenting key open problems in this area, with
a special emphasis on applying artificial intelligence to trajectory prediction.
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1 Introduction
Differential games are a class of mathematical
problems that model dynamic competitive or
cooperative situations between two or more agents.
They involve differential equations to describe the
temporal evolution of the agents’ strategies and
choices, considering either conflicting or shared
objectives. They find applications in economics,
biology, robotics, and optimal control. Differential
games are closely related to pursuit-evasion
games, a specific subset where one or more
agents (pursuers) aim to catch or track others
(evaders) over time. This dynamic can be likened
to the primal struggle between a lion chasing a
gazelle, as seen in documentaries. The essence
of these games lies in modeling such interactions
mathematically. The differential games generalize
finite extensive-form games, particularly those
characterized as pursuit-evasion scenarios. These
games, in fact, use differential equations to model
the dynamics of motion and strategy, capturing the
interplay between the pursuers’ efforts to minimize
the distance and the evaders’ attempts to maximize
it. Here, the evader’s goal is to avoid capture, while
the pursuer’s objective is to achieve it. Then a
pursuit-evasion game focuses on devising strategies

for one or more pursuers to intercept or capture one
or more evaders in motion. In a broader sense, such
games typically involve N players with opposing
objectives, where each player’s goal is in direct
conflict with the others. Every player aims to achieve
their objectives, operating under the assumption that
all participants act optimally to meet their goals.
These objectives are mathematically defined by
minimizing or maximizing a payoff function. In
these games, the players’ strategies are represented
by the control function ui, which is selected from
a predefined set of possible options Ui. The choice
of ui is determined by the player’s discretion,
influenced by their understanding of the strategies
employed by the other participants. Differential
games defined in continuous time are analyzed
using differential equations and share a strong
connection with optimal control theory. PE games
are often represented as endless differential games,
where differential equations provide a framework to
control and analyze a variety of real-world scenarios.
Pursuit-evasion games are widely studied in fields
like robotics, military strategy, and autonomous
systems. Examples include a guided missile
chasing an aircraft or a swarm of mobile robots
surveilling and attempting to apprehend a target.
Modeling player behaviors abstractly enables the
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formulation of strategies, defined as sequences of
spatial positions that achieve the game’s objectives.
In this paper, we aim to introduce a possible scenario
involving the application of AI to pursuit-evasion
games. There are examples of applying AI to chase
games such as [1] where authors used multi-agent
reinforcement learning to develop strategies in
two-player pursuit games with complex dynamics
and sensory limitations. The results of this research
were tested on real robots, demonstrating the
effectiveness of the learned strategies. In [2], the
authors established a model for attack and defense
scenarios, utilizing twin delayed deep deterministic
gradient algorithms to enhance decision-making in
pursuit-evasion contexts. In [3], the authors apply
generative machine learning models to optimize
policies in pursuit-evasion games, highlighting
the effectiveness of data-driven approaches in
sequential decision-making problems. In [4] the
authors addressed the coordination of agents in
pursuit-evasion scenarios on graphs, utilizing
pre-trained models to enhance decision-making
strategies. In pursuit-evasion games, in fact, the
analysis begins with defining the strategies adopted
by evaders and pursuers during the game’s evolution.
These strategies represent predetermined paths.
What would the scenario look like if the principles
of AI could be used to predict the positions occupied
by the players? What results can be achieved, and
under what assumptions can a model of such nature
be defined? Is it possible, starting from the models
introduced in [5],[6],[7],[8], to apply deep learning
principles to predict the opponent’s moves and avoid
them? Does the use of AI allow constants to be
defined precisely?

2 History and Historical Development
of PE Games

Pursuit-evasion problems date back to at least the
1700s when Bouguer considered scenarios involving
pirates chasing merchant ships. In the 20th century,
game theory emerged as a powerful mathematical
tool to formalize and solve these problems. For
example, the homicidal chauffeur problem features
a pursuer and evader moving at finite speeds in an
obstacle-free environment. Research in the 21st
century includes the study of whether a pursuer can
maintain the visibility of an evader in environments
with polygonal obstacles. While a complete answer
remains elusive, significant progress has been made,
revealing connections to related pursuit-evasion
problems. The field of differential games is generally
considered to have been founded in [9]. His
groundbreaking work established the theoretical
groundwork for the investigation of strategic

decision-making in differential equation-described
dynamic systems. This field includes a wide range
of tasks, including guarding problems, in which
pursuers defend objectives from invading evaders,
and search problems, in which the pursuer must find
the evader. Every variant adds distinct dynamics
that enhance the pursuit-evasion architecture as a
whole. In [10] the author examined, in Rn, a basic
motion differential game with numerous pursuers
and a single evader, in which each player has
the same dynamic possibilities. In particular, it
was demonstrated that evasion is achievable if the
evader’s starting state falls within the convex hull of
the pursuers’ initial states, and that pursuit is possible
otherwise. The technique of resolving functions
for linear chase problems with several pursuers was
created in [11]. In [12], the author developed the
approach of resolving functions in the case of integral
restrictions.

In [13] a linear differential game involving many
pursuers and one evader was studied for the first
time, where the control functions of players are
subject to integral constraints. In particular, they
focus on the possibility of escape or capture in terms
of the players’ energy. In particular, a differential
pursuit-evasion game, with K pursuers and M and
integral constraints, can be modeled through a series
of differential equations as in the following system:

ẋi = ui, xi(0) = xi0, i = 1, . . . ,K, (1)
ẏj = vj , yj(0) = yj0, j = 1, . . . ,M, (2)

with integral constraints:
∞∫
0

|ui(s)|2ds ≤ ρ2i , i = 1, . . . ,K, (3)

∞∫
0

|vj(s)|2ds ≤ σ2
j , j = 1, . . . ,M, (4)

where xi, yj , ui, vj ∈ Rn, n ≥ 2, and ρi, σj are given
positive numbers, xi0 ̸= yj0 for all i = 1, . . . ,K, and
j = 1, . . . ,M .

The formulation of the problem solved in [13],
withK pursuers and one evader, is the follows:

Theorem 1. For the game (1)-(4), if ρ21+ . . .+ρ2K >
σ2
1 , then pursuit can be completed.

In a similar way, in [14], it was shown that: if

ρ21 + . . .+ ρ2K ≤ σ2
1 (5)

then the evasion is possible from some initial
positions of players.

In general, an evasion game of K pursuers and
M = 1 evader was studied in [15] and it was proven
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that if (5) holds, then for any initial positions of
players evasion is possible.

In [15] the autors studied a pursuit game problem
ofK pursuers andM evaders described by equations
(1)-(4) in a closed convex subset of Rn. It was
established that if

ρ21 + . . .+ ρ2K > σ2
1 + . . .+ σ2

M , (6)

then pursuit can be completed.
In [8], the authors studied the game (1-(4) in Rn in

the case where

ρ21 + . . .+ ρ2K ≤ σ2
1 + . . .+ σ2

M . (7)

If this is the case, we show that evasion is possible
from any initial positions of players.

This brief excursus aims to focus on mathematical
problems and on some possible strategies aimed at
resolving conflicting problems. The evolution of
chase games has seen an ever-increasing activity from
many researchers scattered around the world.

The result of this work was a different vision
of classical problems through the use of theoretical
mathematics, which gives these issues the rigor of
an optimal solution. The impulse that technology
is providing in terms of machine learning processes
has revolutionized the way of tackling abstract
problems by simulating physical realities and
therefore declining and adapting abstract results to
the complexity of the real world.

We have reached the point where moving objects
can learn to deviate from their trajectory in the face
of obstacles, even unpredictable ones. This is the
case of ”driverless” driving, for example. A series of
problems regarding the evolution of pursuit-evasion
games in the age of AI therefore remain open. This
paper aims to raise awareness in the academic world
on these issues to create a new line of research
that combines various aspects of scientific research
in order to apply these results for military defense
actions, for the defense of cyber attacks, as we will
see in the case of PE games on the graphs.

3 The Ibragimov’s Demonstration
Technique

An excellent starting point for expanding
pursuit-evasion games is to know how an approach
to solving an escape or capture problem can become
a technique to adapt to different cases, such as
the simple, linear game. G. Ibragimov’s seminal
contributions [5] introduced a new demonstration
technique, particularly in two-dimensional
differential escape games involving multiple pursuers
and an evader.

It can be observed, in fact, that there are
similarities between the construction of evasion

strategies and the main results obtained by the same
author between 2012 and 2018. These similarities
are:

1. the definition of time intervals;

2. the construction of a strategy for the evader
which allows the evader(s) to use a manoeuvre
on against the i-th pursuer;

3. estimating the distances between the evader
and pursuers, and establishing that evasion is
possible.

The proof is divided into a reduction part, followed
by construction of the strategies and possibility of the
evasion, checking the admissibility, and estimating
distances between the evader and pursuers [7].

For the first time in [7] a two-dimensional
pursuit-evasion game is studied, with several pursuers
and an evader, with integral constraints on the control
functions of the players, assuming that if the total
resource of the pursuers does not exceed that of the
evader then the escape it is possible.

The game that was solved in [7] is the following:
we consider in R2, n pursuers Pi, i = 1, . . . , n, and
one evaderE, whose movements are described by the
following differential equations:

Pi : ẋi = ui, xi(0) = xi0, (8)
E : ẏ = v, y(0) = y0, (9)

where xi, xi0, ui, y, y0, v ∈ R2, ui is the control
parameter of the pursuer Pi and v is that of the evader
E.

In the same paper, the authors introduce the
definitions of admissible control of the pursuers
and the evader, the evader’s strategy through the
following definitions:

Definition 1. [7] A Borel measurable function ui(·),
ui : [0,∞) → R2 (respectively, v(·), v : [0,∞) →
R2) such that ∞∫

0

|ui(s)|2ds

1/2

≤ ρi,

[
 ∞∫

0

|v(s)|2ds

1/2

≤ σ


is called an admissible control of the pursuer Pi

(evaderE). Here ρi and σ are given positive numbers
called the resources of the pursuer Pi and evader E,
respectively.

Definition 2. [7] The strategy of the evader E is
a function V = V (y, x1, . . . , xk, u1, . . . , uk), V :
R2k+1 → R2, for which the system

ẋi = ui, xi(0) = xi0, i = 1, . . . ,K, (10)
ẏ = V (y, x1, . . . , xk, u1, . . . , uk), y(0) = y0, (11)
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has a unique absolutely continuous solution
(x1(t), . . . , xk(t), y(t)), for arbitrary admissible
controls ui(·) of the pursuers Pi. The strategy V is
called admissible if each control generated by V is
admissible.

Definition 3. [7] Evasion for evaderE from pursuers
Pi is possible if there exists a strategy V of the evader
E such that xi(t) ̸= y(t), t > 0 for any admissible
controls ui(·) of the pursuers Pi.

It is important to underline how these
introductions are the basis of the demonstrations
of the papers that followed it and which that are
remodulated these concepts following the steps of
the demonstration technique just exposed.

Following this scheme, the main result was
demonstrated in terms of the resources of the pursuers
and evaders.

Theorem 2. [7] If

σ ≥
(

k∑
i=1

ρ2i

)1/2

:= ρ

then evasion is possible in the game 8.

Using this result, in 2018 in [6] the game was
extended to a number of evaders greater than 1.

In fact, in [6] a simple differential game of evasion
of the movement of many pursuers and evaders has
been studied, where the control functions of the
players are subject to integral constraints. The game
under consideration in [6] is described through the
following different equations:

ẋi = ui, xi(0) = xi0, i = 1, . . . ,K, (12)
ẏj = vj , yJ(0) = yj0, j = 1, . . . ,M, (13)

where xi, xi0, ui, yj , yj , vj ∈ Rn, n ≥ 2, ui is the
control parameter of the pursuer Pi and vj is that of
the evader Ej .

Control systems with integral constraints on
control functions are as follows:

∞∫
0

|ui|2 ≤ ρ2i , i = 1, . . . ,K (14)

∞∫
0

|vj |2 ≤ σ2
j , j = 1, . . . ,M. (15)

The control resource is exhausted by consumption,
such as energy, finance, and food.

The main result of [6] is:

Theorem 3. [6] If ρ = (ρ21 + . . . + ρ2K)1/2 and σ =

(σ2
1 + . . . + σ2

M )1/2 and σ ≥ ρ, then for any initial
position of players, evasion is possible in the game
12.

4 The Cop-win and the Robber-win
Games

Let G be a finite, connected, and undirected graph.
Two players, the cop (C) and the robber (R), take
turns occupying vertices of G and moving along its
edges. The cop wins by reaching the same vertex
as the robber, thereby capturing them; otherwise,
the robber wins. This scenario represents a classic
pursuit-evasion game. In [16] the authors identified
the exact class of graphs, known as cop-win graphs,
where the cop is guaranteed to win.

The cop selects their initial vertex first, followed
by the robber. The game then progresses in
alternating turns, with the cop moving first. On a
turn, a player may either move to an adjacent vertex
or remain stationary. The game concludes with a
win for the cop if they manage to occupy the same
vertex as the robber. Conversely, the robber wins by
evading capture indefinitely. A graph is classified as a
cop-win graph if the cop can always guarantee a win,
regardless of the players’ starting positions. Graphs
that are not cop-win are referred to as robber-win
graphs.

Definition 4. A strategy for the cop is given by the
function sp : V 2×T even → V , where T even is the set
of all even numbers, whereas a strategy for the robber
is given by the function se : V 2 × T odd → V , where
T odd is the set of all odd numbers. Let Sp denote the
set of all possible strategies of the cop and Se denote
the set of all possible strategies of the robber.

It is clear that for each graph G one of the two
players wins. For instance, considered a winning
strategy for C, C should capture R at most after
n(n−1)+1moves, where we denote by n the number
of vertices in G.

In light of the above, it seems natural to ask what
the minimum number of cops can be that can be
added to the game so that the graph becomes cop-win
(see,[17]).

In [18] the authors introduced different notions of
cop-wins and thief-wins games based on decreasing
order of strength.

Definition 5. We say that graph G = (V,E) is

1. strongly cop-win iff ∃sp ∈ Sp such that
∀(vp0

, ve0 ∈)V 2 and ∀se ∈ Se, we have vpt
=

vet for some t.
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2. strongly robber-win iff ∃se ∈ Se such that
∀(vp0

, ve0) ∈ V 2 and ∀sp ∈ Sp, we have vpt
=

vet for all t.

3. is cop-win iff ∃sp ∈ Sp and ∃vp0
∈ V such that

∀ve0 ∈ V and ∀se ∈ Se,weha vpt
= vet for some

t.

4. is robber-win iff ∃se ∈ Se and ∃ve0 ∈ V , such
that ∀vp0

∈ V and ∀sp ∈ Sp, we have vpt
= vet ,

for all t.

5. is weakly cop-win iff ∃vp0
∈ V and ∃sp ∈ Sp

such that ∀se ∈ Se,we have vpt
= vet for some t

and for some ve0 ∈ V .

6. is weakly robber-win iff ∃ve0 ∈ V and ∃se ∈ Se,
such that ∀sp ∈ Sp,we have vpt

= vet for all t
and for some vp0

∈ V .

One of the most important theorems in this class
of games is the one in [16] which involves the notion
of dismantlable; meaning that graphs can be reduced
a single vertex through a sequence of retracts.

In the context of graphs, a vertex v is said to be
dominated by another vertex w if N [v] ⊆ N [w],
meaning v and w are adjacent, and every neighbor of
v is also a neighbor of w. We denote by N [v] the
closed neighborhood of a vertex v, i.e. the vertex v
and all vertices adjacent to it.

A vertex dominated by another is called an
irreducible vertex, as defined in [16]. A dismantling
order of a graph is an arrangement of its vertices
such that, during sequential removal of vertices in
this order, each removed vertex (except the final one)
is dominated at the time of removal. A graph is
considered dismantlable if and only if it admits such
an ordering.

A representation of a dismantlable graph
introduced in [18] is the following Figure 1.

Figure 1: Dismantlable graph

Theorem 4. [16] G is cop-win iff it is dismantlable.

This theory has numerous applications, including
artificial intelligence and robotics path planning.
For instance, in a competitive setting, a robot may
employ tactics based on cop-win graphs to intercept
a target or evade capture.Cop-win tactics can be
applied to AI-based surveillance systems to optimize
the movement and positioning of patrol agents (such
as security robots or drones) in order to monitor
regions and apprehend intruders. AI can employ
dismantlability features to discover the best patrol
routes and guarantee coverage by representing the
environment as a graph. An essential component
of game theory and multi-agent systems, adversarial
reasoning is shown by op-win games. These concepts
can be used by AI systems to model and forecast
adversary behavior in competitive situations, such as
financial trading or cybersecurity (e.g., by simulating
attacker-defender interactions).

5 Further Developments and Open
Problems

Numerous challenges remain in pursuit-evasion
games. For instance, studying capture and evasion
strategies using second-order differential equations
offers fertile ground for exploration. One promising
avenue involves applying artificial intelligence (AI)
to these games. AI could help predict player positions
by leveraging strategies defined through functions
that satisfy imposed constraints.

Graph theory plays a pivotal role here, modeling
and analyzing relationships in environments such as
social networks or cybersecurity. For example, a
graph-based chase game could model a cyberattack,
where a virus (robber) and antivirus (cop) compete.
Using AI, one could predict attack patterns and
mitigate risks.

In the realm of social media, pursuit-evasion
games could optimize user engagement by modeling
interactions and data exchange online. These
possibilities highlight the potential of integrating AI
with pursuit-evasion frameworks.

In this framework, we are going to develop
in a next paper new modeling—starting from the
techniques and mathematical tools that have been
presented by this note—which combines three
selected machine learning techniques: genetic
algorithms, k-nearest neighbor learners, and
reinforcement learning.

Here is a sketch of our approach and the essential
line of research that it will be developed:

5.1 κ-nearest Neighbor Learner
Our idea is to use a 1-nearest neighbor algorithm.
The essential principle is that the agent maintains
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a database of past circumstances, or ”cases.” The
database entry that most closely resembles the
current circumstance is obtained whenever the agent
is required to make a decision, and the action
recommended by this case is carried out. The
same range, bearing, and heading criteria that were
applied to the genetic algorithm learner are utilized
to determine each state. The total of the normalized
feature (F ) distances (measured by a norm) is
the similarity metric, denoted by Similiarity(., .) as
below:

Similarity(Fi, Fj) =
3∑

k=1

|Fik − Fjk|
max||x||k

The agent would perform random acts while
learning. Every circumstance that arose during this
exploration stage was documented. It is regarded
as a potential case candidate to be added to the
database if the game was successful, meaning the
evader was either caught or not caught. The majority
of case-based reasoning systems have issues with
case-based maintenance. The database’s size is
constrained by memory and processing limitations. If
it hasn’t already been absorbed by an existing case
in the database, a new case will be added following
a learning session. If adding this case exceeds the
case base’s maximum size for a particular action, a
randomly selected case.

5.2 Genetic Algorithms and Reinforcement
Learning. The “Learner” Case

We are also implementing a standard “L” learner.
Usually learners used the standard L learning update
rule shortly presented below. However, since the
main aim of the Pursuer and Evader are opposite,
different “reward” algorithms can be used for the two
potential players.

Update: R(x) = R(x) + ρ · (R(i) + δ(L(y) −
R(x)))

Reward Evader: x · t iff E is caught at time t

Reward Pursuer: R(E) = x·(T−t) iffP catches
E at time t

6 Conclusion
In this article we have retraced some fundamental
steps of differential game theory with a specific
focus on pursuit-evasion games. The elements under
consideration represent a very robust mathematical
framework for addressing this class of games, which
has many real-world applications. From robotics
to military defense, from cyber attacks to the use
of driverless cars, in fact, We can observe how the

theory of differential games defines the essential
mathematical framework for their description.

For this reason we would like to introduce into
this research some ideas that lead to the application
of AI to better manage this class of problems. This
newmodel involves the combination of three selected
machine learning techniques: genetic algorithms,
k nearest neighbor learners, and reinforcement
learning. The intent is to arouse a new fervor in
the world of research in this sector to define an
implementation of this classic and current theme.
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