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1   Introduction 
The diffusion problem for systems of differential 
equations is one of the main problems in the 
qualitative theory of differential systems 
corresponding to several physical phenomena. The 
diffusion and reaction process is of great importance 
because it explains the behavior of a range of 
chemical systems where the diffusion of material 
competes with the production of that material by 
some form of chemical reaction. The most common 
is the change in space and time of the concentration 
of one or more chemical substances: local chemical 
reactions in which the substances transform into 
each other, and diffusion causes the substances to 
spread out over a surface in space. However, the 
system can also describe dynamical processes of 
non-chemical nature. Examples are biology, 
geology, physics (neutron diffusion theory), and 
ecology. Mathematically, reaction-diffusion systems 
take the form of semi-linear parabolic partial 
differential equations. The known standard model 
can be represented by an equation that includes a 
divergence operator, [1]. 
𝜕𝑢

𝜕𝑡 = 𝑑𝑖𝑣(𝐷(𝑢, ∇𝑢)∇𝑢) + 𝑓(𝑥, 𝑡, 𝑢, ∇𝑢), 𝑢(𝑥, 0) =

𝑢0(𝑥). (1) 
 

The function 𝑢(𝑥, 𝑡) represents the mass 
concentration in chemical reaction processes or 
temperature in heat conduction at a specific position 
𝑥 in the diffusion medium and time 𝑡. The function 
𝐷 is known as the diffusion coefficient or the 
thermal diffusivity. The term 𝑑𝑖𝑣(𝐷(𝑢, ∇𝑢)∇𝑢) 
represents the rate of change due to diffusion while 
𝑓(𝑥, 𝑡, 𝑢, ∇𝑢) represents the rate of change due to 
reaction. The diffusion problem is the challenge of 
spreading and adopting new ideas, innovations, or 
research findings into practical applications in 
various fields, including applied science. In applied 
science, the diffusion problem is crucial because it 
determines how effectively research findings can be 
translated into real-world solutions, products, or 
services that benefit society. 

For example, in materials science, researchers 
may develop new materials with unique properties. 
However, the diffusion problem arises when trying 
to scale up the production process, ensure 
consistency, and integrate these materials into 
existing manufacturing systems. Similarly, in 
environmental science, the diffusion problem occurs 
when trying to implement sustainable practices or 
technologies in different regions or communities, 
where local factors such as infrastructure, policy, or 
cultural norms can hinder adoption. The reaction-
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diffusion equation with variable exponent is a 
mathematical model with special diffusion process 
𝐷(𝑢, ∇𝑢) = |∇𝑢|𝑚(.)−2. The variable exponent in 
the equation introduces nonlinearity, which can lead 
to interesting pattern formation and behavior in the 
system. This type of equation has been studied in 
various fields and used to model a variety of 
physical phenomena, including chemical reactions, 
heat transfer, population dynamics, biological 
sciences etc., [2]. A large part of this research 
centered around electrorheological fluids, [3], [4], 
[5], porous media [6], and image processing [7], [8] 
and typical defects considered are involve 𝑝(𝑥)-
Laplacian operators in which the exponent 𝑝 
depends on the spatial variable, It has been shown 
that spatial defects can hinder traveling waves in 
nonlinear wave equations [9], [10], [11] in which, 
the function spaces with spatially dependent 
exponents are required along with new 
mathematical techniques. In this paper, we establish 
the global existence and finite-time blow-up, lower 
and upper bounds of blow-up time, at three different 
initial energy levels for a non-autonomous 𝑚(. )-
Laplacian parabolic equation. 

𝑢𝑡 − 𝑑𝑖𝑣(|∇𝑢|
𝑚(𝑥)−2∇𝑢)  

= |𝑢|𝑝(𝑥)−2𝑢, (𝑥, 𝑡) ∈ Ω × (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω,
𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇).

 

(2) 
 

The nonlinear operator Δ𝑚(.)𝑢 is called 𝑚(. )-
Laplace operator, where 𝑚(𝑥) is a measurable 
function, and Ω is a bounded Lipschitz domain of 
ℝ𝑛 with sufficiently smooth boundary 𝜕Ω. The 
operator is defined as: 

Δ𝑚(.)𝑢 = −𝑑𝑖𝑣(|∇𝑢|
𝑚(𝑥)−2∇𝑢)

= −∇. (|∇𝑢|𝑚(𝑥)−2∇𝑢), 
where 

2 ≤ 𝑚(𝑥) < 𝑝(𝑥) < ∞,       (3) 
 

Furthermore, it should be noted that 𝑝(. ) also 
fulfills the condition (H) in the following manner: 
The given exponent measurable function 𝑝(. ) 
satisfying  

{
 
 

 
 
2 < 𝑝1,2 < ∞, 𝑛 ≤ 𝑚2,

𝑚2 < 𝑝1 ≤ 𝑝(𝑥)

≤ 𝑝2 <
𝑛𝑚(𝑥)

𝑒𝑠𝑠sup
𝑥∈Ω

(𝑛 −𝑚(. ))
, 𝑛 > 𝑚2,

 

where 
𝑝2 = 𝑒𝑠𝑠sup

𝑥∈Ω
𝑝(𝑥), 𝑝1 = 𝑒𝑠𝑠inf

𝑥∈Ω
𝑝(𝑥). (4) 

 

We also assume that 𝑝, and 𝑚 satisfies log-Hölder 
continuity condition: 

|𝑝(𝑥) − 𝑝(𝑦)| + |𝑚(𝑥) − 𝑚(𝑦)| ≤
𝑀(|𝑥 − 𝑦|), 𝑥, 𝑦 ∈ Ω,                                         (5) 
where 𝑀(𝑟) satisfies: 

limsup
𝑟→0+

𝑀(𝑟)ln (
1

𝑟
) = 𝑐 < ∞. 

A significant amount of effort has been 
dedicated to studying problem (1) in the case of 
constant and variable exponent nonlinearities. Let’s 
begin with some classical results. The model of non-
Newtonian elastic filtration type with the equation 
𝑢𝑡 = 𝑑𝑖𝑣(|∇𝑢|

𝑚−2∇𝑢), where 𝑚 is a constant > 2, 
has been discussed in various studies, including [12] 
and [13]. This model is used to describe non-
stationary flow in a porous medium [14] of fluids 
that exhibit a power dependence of the tangential 
stress on the velocity of the displacement under 
elastic conditions. If there are heat sources or sinks 
in the medium whose power relies on temperature, 
then we need to consider the special case, of 
equation (1), written as 
𝑢𝑡 = 𝑑𝑖𝑣(|∇𝑢|

𝑚−2∇𝑢) + 𝑓(𝑥, 𝑡, 𝑢, ∇𝑢), 
where 𝑚 is constant > 2.  
 

It appears that this parabolic equation was first 
introduced in reference, [15]. It was called the 𝑛-
diffusion equation and is a generalized form of 
diffusion. This equation is related to the unsteady 
vertical heat transfer from horizontal surfaces by 
turbulent free convection and the unsteady turbulent 
flow of a liquid with a free surface over a plane. If, 
in addition, 𝑓𝑢′(𝑥, 𝑡, 𝑢, ∇𝑢) < 0 for 𝑢 > 0, then we 
refer to equation (1) as the nonlinear heat equation 
with absorption. If 𝑓𝑢′(𝑥, 𝑡, 𝑢, ∇𝑢) > 0 for at least 
some interval (0, 𝑢)𝑡=0, we refer to equation (1) as 
the nonlinear heat equation with sources, [16]. For 
the Cauchy problem with nonlinear inhomogeneous 
source term: 
𝑢𝑡 = 𝑑𝑖𝑣(|∇𝑢|

𝑚(𝑥)−2∇𝑢) + |𝑢|𝑝(𝑥)−2𝑢 + 𝑓(𝑡),

𝑚(𝑥) ≥ 𝑚1 > 2, 
   (6) 

 
In their discussion, the authors in [17] 

considered the nonlinear heat equation (6). They 
showed that for certain conditions on 𝑚 and 𝑝, any 
solution with nontrivial initial datum blows up in 
finite time when 𝑓 = 0. They also provided 
numerical examples to illustrate their result in two 
dimensions. For the following pseudo-parabolic 
equation with 𝑝(𝑥)-Laplacian and viscoelastic 
terms: 

𝑢𝑡 − Δu − ∫
𝑡

0

𝑔(𝑡 − 𝑠)Δ𝑝(𝑥)𝑢(x, s)𝑑𝑠 
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= |𝑢|𝑞(𝑥)−2𝑢, x ∈  Ω, t ≥  0, 
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0, 
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω. 
 

In a bounded domain Ω ⊂  ℝ𝑛  (n ≥  1) with a 
smooth boundary, where 𝑢0 ≥ 0, with 𝑢0 ∈ 
𝑊0
1,𝑝(.)(Ω), and the parameters 𝑝(. ), and 𝑞(. ) 

satisfy some conditions, the authors in [18] proved 
that this equation blows up in finite time in two 
cases. Subject to certain conditions on p(.), q(.), g, 
and the initial given data, they have established a 
new criterion for blow-up and provided lower and 
upper bounds on the solutions if blow-up occurs. 

A pseudo-parabolic equation with nonlinearities 
of variable exponent type as in (2) was considered 
in [19]. By using a technique called differential 
inequality, the researchers were able to find an 
upper bound for the blow-up time (i.e. when the 
solution becomes unbounded or undefined), under 
certain conditions involving variable exponents 
𝑝(. ),   𝑚(. ), and the initial data. They also 
determined a lower bound for blow-up time based 
on some other conditions. The author in [20] 
considered the same problem as in (2). They 
established an upper bound for blow-up time for 
certain solutions with positive initial energy, in case 
the solutions blow-up. Noticing that, the case where 
the initial energy is positive, namely J(𝑢0) > 0, has 
not been discussed yet and remains an intriguing 
unsolved matter. Therefore, in this paper, our 
objective is to address a particular problem by 
utilizing the variational method, known as the 
potential well method. As a result, we will divide 
the scenario where J(𝑢0) > 0 into two cases based 
on the value of J(𝑢0): 0 < 𝐽(𝑢0) < 𝑑 and J(𝑢0) >
0. Here, 𝑑 refers to the depth of the potential well, 
which is also known as the mountain pass level and 
will be explained later in the paper. 

 
 

2   Preliminaries and Main Result 
To begin, we will review some basic results that will 
be required in the following sections. The results are 
often reported without supporting evidence, but we 
have included references to the relevant 
publications. In addition, some of our notation 
conventions are introduced. First, we denote ∥. ∥𝑞 to 
the usual 𝐿𝑞(Ω) norm for 1 ≤ 𝑞 ≤ ∞, and ∥ ∇. ∥𝑘 
the Dirichlet norm in 𝑊0

1,𝑘(Ω). Furthermore, from 
now on, C represents different positive constants 
varying on the known numbers and may be different 
at each advent. 
 

The results listed below can be found in [21]. 
 
Let 𝑝: Ω → 1,∞] be a measurable function. 𝐿𝑝(.)(Ω) 
denotes the set of the real measurable functions 𝑢 on 
Ω such that: 

∫
Ω

|𝜆𝑢(𝑥)|𝑝(𝑥)d𝑥 < ∞ for some 𝜆 > 0. 

 
The variable-exponent space 𝐿𝑝(.)(Ω) equipped with 
the Luxemburg-type norm: 

‖𝑢‖𝑝(.) = inf {𝜆 > 0, ∫
Ω

|
𝑢(𝑥)

𝜆
|

𝑝(𝑥)

d𝑥 ≤ 1}, 

is a Banach space. Throughout the paper, we use 
‖. ‖𝑞 to indicate the 𝐿𝑞-norm for 1 ≤ 𝑞 ≤ +∞. 
 
Next, we will define the variable-exponent Sobolev 
space 𝑊1,𝑝(.)(Ω) in the following manner: 

𝑊1,𝑝(.)(Ω) = {
𝑢 ∈ 𝐿𝑝(.)(Ω):

∇𝑢 exists and |∇𝑢| ∈ 𝐿𝑝(.)(Ω)
}. 

 
This space is a Banach space, which is defined by 
its norm: 

‖𝑢‖
𝑊0
1,𝑝(.)

(Ω)
= ‖𝑢‖𝑝(.),Ω + ‖∇𝑢‖𝑝(.),Ω. 

 
In addition, we have established that 𝑊0

1,𝑝(.)
(Ω) 

is the closure of 𝐶0∞(Ω) in 𝑊1,𝑝(.)(Ω). It is known 
that for the elements of 𝑊0

1,𝑝(.)
(Ω) the Poincaré 

inequality holds: 
‖𝑢‖𝑝(.),Ω ≤ 𝐶(𝑛, Ω)‖∇𝑢‖𝑝(.),Ω, 

(7) 
and an equivalent norm of 𝑊0

1,𝑝(.)
(Ω) can be 

defined by: 
‖𝑢‖

𝑊0
1,𝑝(.)

(Ω)
= ‖∇𝑢‖𝑝(.),Ω. 

 
Next, we introduce some functionals and sets as 
follows: 

J(𝑢) = ∫
Ω

1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 − ∫

Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥. 

I(𝑢) = ∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 − ∫
Ω

|𝑢|𝑝(𝑥)d𝑥,

𝑊 = {𝑢 ∈ 𝑊0
1,𝑚(.)(Ω)|I(𝑢) > 0, 𝐽(𝑢) < 𝑑} ∪ {0},

𝑉 = {𝑢 ∈ 𝑊0
1,𝑚(.)(Ω)|I(𝑢) < 0, 𝐽(𝑢) < 𝑑} ,

 

and the depth of potential well 𝑑 is defined by: 
𝑑 = inf

𝑢∈𝒩
J(𝑢), 

where the Nehari manifold is defined by: 

𝒩 = {
𝑢 ∈ 𝑊0

1,𝑚(.)(Ω)|

I(𝑢) = 0,∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 ≠ 0
}, 
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and 𝒩 separates two unbounded sets: 
𝒩+ = {𝑢 ∈ 𝑊0

1,𝑚(Ω)|I(𝑢) > 0} ∪ {0}, 
and 

𝒩− = {𝑢 ∈ 𝑊0
1,𝑚(.)(Ω)|I(𝑢) < 0}. 

A weak solution of problem (2) can be defined as 
follows. We denote:  

𝑊̃:= {

𝑢: 𝑢 ∈ 𝐿𝑚1 (0, 𝑇;𝑊0
1,𝑚(𝑥)

(Ω))

∩ 𝐿∞(0, 𝑇; 𝐿2(Ω)) ∩ 𝐿𝑝(𝑥)(Ω × (0, 𝑇))

with ∇𝑢 ∈ 𝐿𝑚(𝑥)(Ω × (0, 𝑇))}.

 

 

Definition 1 (Weak solution) A solution to the 

problem (2) is a function 𝑢 = 𝑢(𝑥, 𝑡) ∈ 𝑊̃ such that 

∫
𝑡

0

∫
Ω

(−𝑢
d𝜑

d𝑡
+ |∇𝑢|𝑚(𝑥)−2∇𝑢∇𝜑

− |𝑢|𝑝(𝑥)−2𝑢𝜑)d𝑥d𝜏 

= −∫
Ω

𝑢𝜑d𝑥|
0

𝑡

, 𝑡 ∈ (0, 𝑇),                               (8) 

holds for any 𝑡 ≤ 𝑇 and all 𝜑 ∈ 𝑊̃ with d𝜑
d𝑡
∈ 𝑊̃∗, 

where 𝑊̃∗ is the dual space of 𝑊̃. 
    𝑢(𝑥, 0) = 𝑢0(𝑥) in 𝑊0

1,𝑚(.)
(Ω). 

    for 0 ≤ 𝑡 < 𝑇 
∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏 + J(𝑢) ≤ J(𝑢0).            (9) 
 

Before stating our main result, we first give the 
following theorem of existence and uniqueness, as 
well as the regularity, It should be noted by using 
the Faedo-Galerkin arguments combined with the 
fixed point Theorem, we can easily establish the 
well-posedness of the solution to the problem (2). 
Theorem 2 (Local solution) Let 𝑢0 ∈ 𝑊0

1,𝑚(.)(𝛺)\
{0} and 𝑝(. ) satisfy (H). Then there exist a 𝑇𝑚𝑎𝑥 >
0 and a unique weak solution 𝑢 of (2) satisfying 𝑢 ∈

𝐶 (0, 𝑇;𝑊0
1,𝑚(.)(𝛺)), and the energy inequality 

∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 + J(𝑢(𝑡)) ≤ J(𝑢0), 0 ≤ 𝑡 ≤ 𝑇max, 

where 𝑇max is the maximum existence time of 
solution 𝑢(𝑡).  
 
Moreover, 
    If 𝑇max < ∞, then 

lim
𝑡→𝑇

∥ 𝑢 ∥𝑞= ∞forall𝑞 > 1𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑞

>
𝑛(𝑝1 −𝑚2)

𝑚2
. 

   
If 𝑇max = ∞, then 𝑢(𝑡) is a global solution of 
problem (2).  

Here, we have the following qualitative analysis 
about J(𝑢) and I(𝑢). We then have the following 
lemma. 
 
Lemma 3 For 𝑝(. ) satisfy (3), (H) and 𝑢 ∈
𝐻0
1(𝛺)\{0}. Let 𝐹: [0, +∞) → ℝ the Euler 

functional defined by 

𝐹(𝜆) = ∫
Ω

𝜆𝑚(𝑥)

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 − ∫

Ω

𝜆𝑝(𝑥)

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥, 

then, 𝐹 keeps the following properties: 
    lim𝜆→0+𝐹(𝜆) = 0 and lim𝜆→+∞𝐹(𝜆) =

−∞. 
 

There is at least one solution to the equation 
𝐹′(𝜆) = 0 on the interval [𝜆1, 𝜆2], where  

  

𝜆1 = min {𝜌(𝑢)
−1

𝑚1−𝑝1 , 𝜌(𝑢)
−1

𝑚2−𝑝2}, 
  

𝜆2 = max {𝜌(𝑢)
−1

𝑚1−𝑝1 , 𝜌(𝑢)
−1

𝑚2−𝑝2} , 
 (10) 

and  

𝜌(𝑢):=
∫Ω |∇𝑢(𝑥)|

 𝑚(𝑥)d𝑥

∫Ω |𝑢(𝑥)|
𝑝(𝑥)d𝑥

. 

 
There exists a 𝜆∗ = 𝜆∗(𝑢) > 0 such that 𝐹(𝜆) 

gets its maximum at 𝜆 = 𝜆∗. Furthermore, we have 
that 0 < 𝜆∗ < 1, 𝜆∗ = 1 and 𝜆∗ > 1 provided I(𝑢) <
0, I(𝑢) = 0 and I(𝑢) > 0, respectively.  
Proof. Since  
𝑝(𝑥) ∈ 𝐶+(Ω̅) = {𝑝 ∈ 𝐶(Ω̅): inf

𝑥∈Ω̅
𝑝(𝑥) > 2}, the 

assertion (i) is shown by the following:  
  

𝐹(𝜆) ≤ max{𝜆𝑚1 , 𝜆𝑚2}∫
Ω

1

𝑚(𝑥)
|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

 
−min{𝜆𝑝1 , 𝜆𝑝2} ∫Ω

1

𝑝(𝑥)
|𝑢(𝑥)|𝑝(𝑥)d𝑥, 

and  

𝐹(𝜆) ≥ min{𝜆𝑚1 , 𝜆𝑚2}∫
Ω

1

𝑚(𝑥)
|∇𝑢(𝑥)|2dx 

 
−max{𝜆𝑝1 , 𝜆𝑝2} ∫Ω

1

𝑝(𝑥)
|𝑢(𝑥)|𝑝(𝑥)d𝑥. 

For (ii).  
 
We have  

𝐹′(𝜆) = ∫
Ω

𝜆𝑚(𝑥)−1|∇𝑢(𝑥)|𝑚(𝑥)d𝑥

− ∫
Ω

𝜆𝑝(𝑥)−1|𝑢(𝑥)|𝑝(𝑥)d𝑥 
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= ∫Ω 𝜆
𝑚(𝑥)−1[|∇𝑢(𝑥)|𝑚(𝑥) −

𝜆𝑝(𝑥)−𝑚(𝑥)|𝑢(𝑥)|𝑝(𝑥)]d𝑥,  
which implies that 𝐹′(𝜆) lies in the following two 
inequalities 

𝐹′(𝜆) ≥ min{𝜆𝑚1−1, 𝜆𝑚2−1}∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

−max{𝜆𝑝1−1, 𝜆𝑝2−1}∫
Ω

|𝑢(𝑥)|𝑝(𝑥)d𝑥, 

and 
  

𝐹′(𝜆) ≤ max{𝜆𝑚1−1, 𝜆𝑚2−1}∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

−min{𝜆𝑝1−1, 𝜆𝑝2−1}∫
Ω

|𝑢(𝑥)|𝑝(𝑥)d𝑥. 

 
Since 𝑝2 ≥ 𝑝1 > 𝑚2 ≥ 𝑚1 ≥ 2, we signify that 

𝐹′(𝜆) has at least one zero point 𝜆 satisfying (10). 
So we get (ii). The definition of 𝜆∗ and the relation 
I(𝜆𝑢) = 𝜆𝐹′(𝜆) and  

𝐹′(𝜆) ≤ (𝜆𝑚1−1 − 𝜆𝑝2−1)∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

+𝜆𝑝2−1I(𝑢), for  𝜆 ∈ (0,1), 
and  

𝐹′(𝜆) ≥ (𝜆𝑚1−1 − 𝜆𝑝2−1)∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

+𝜆𝑝2−1I(𝑢), for𝜆 ∈ (1,∞), 
lead to the last claim (iii). Completeness of the 
proof.  
 

In the following Lemma, we find a ball in the 
𝑊0
1,𝑚(.)

(Ω) space with a radius of 
∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)𝑑𝑥. This helps us understand the 
relationship between I(𝑢), ∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)𝑑𝑥, and 
the depth of the potential well 𝑑. 

 
Lemma 4 Let 𝑢 ∈ 𝑊0

1,𝑚(.)(𝛺) and assume that (3), 

(H) and 𝐽(𝑢) ≤ 𝑑 hold. 
 If 0 < ∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)d𝑥 < 𝑟, then I(𝑢) > 0 and 
∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 <
𝑚2𝑝1

𝑝1−𝑚2
𝑑. If 

∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 >
𝑚2𝑝1
𝑝1 −𝑚2

𝑑, 

then I(𝑢) < 0 and ∫Ω |∇𝑢(𝑥)|
𝑚(𝑥)d𝑥 > 𝑟. 

 
 If I(𝑢) = 0, then ∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)d𝑥 = 0 or 

𝑟 ≤ ∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 ≤
𝑝1𝑚2

𝑝1 −𝑚2
𝑑, 

where 𝑟 = min(( 1

𝐶∗
𝑝2)

𝑚1
𝑝2−𝑚1

, (
1

𝐶∗
𝑝2)

𝑚2
𝑝1−𝑚2

) and 𝐶∗ =

max(𝐵, 1), where 𝐵 is the best embedding constant 

from 𝑊0
1,𝑚(𝑥)

(Ω) to 𝐿𝑝(𝑥)(Ω), i.e.,1
𝐵
=

inf
𝑢∈𝑊0

1,𝑚(𝑥)
(Ω),𝑢≠0

(
‖∇𝑢‖

 𝑚(𝑥)

‖𝑢‖
 𝑝(𝑥)

).  

 

Proof. (i) From (H), (3) and 

0 < ∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 < 𝑟, 

we have 
 ∫Ω |𝑢|

𝑝(𝑥)d𝑥 

 ≤ max (‖𝑢‖𝑝(𝑥)
𝑝1 , ‖𝑢‖𝑝(𝑥)

𝑝2 ) 
 ≤

max

{
 
 
 

 
 
 
𝐶∗
𝑝2max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2
𝑚2 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2
𝑚1

} ,

𝐶∗
𝑝1max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1
𝑚2 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1
𝑚1

}

}
 
 
 

 
 
 

 

 ≤ 𝐶∗
𝑝2max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2
𝑚1 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1
𝑚2

} 

 =

𝐶∗
𝑝2max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2−𝑚1
𝑚1 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1−𝑚2
𝑚2

} 

×∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 

 <

𝐶∗
𝑝2max {𝑟

𝑝2−𝑚1
𝑚1 , 𝑟

𝑝1−𝑚2
𝑚2 } ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 

≤ ∫Ω |∇𝑢|
𝑚(𝑥)d𝑥,                     (11) 

 
which gives I(𝑢) > 0. According to (3), I(𝑢) > 0, 
and the definition of J(𝑢), we check that 

J(𝑢) = ∫Ω
1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 − ∫Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥

≥ (
1

𝑚2
−

1

𝑝1
) ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥

+
1

𝑝1
(∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 − ∫Ω |𝑢|
𝑝(𝑥)d𝑥)

= (
1

𝑚2
−

1

𝑝1
) ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 +
1

𝑝1
I(𝑢)

> (
1

𝑚2
−

1

𝑝1
) ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥,

(12) 
 
since J(𝑢) ≤ 𝑑 gives that 

(
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 < 𝑑, 

i.e. 

∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 <
𝑚2𝑝1
𝑝1 −𝑚2

𝑑. 
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(ii) By (12) and ∫Ω |∇𝑢|

𝑚(𝑥)𝑑𝑥 >
𝑚2𝑝1

𝑝1−𝑚2
𝑑, we have  

J(𝑢) ≥ (
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 

+
1

𝑝1
I(𝑢) > 𝑑 +

1

𝑝1
I(𝑢), 

then J(𝑢) ≤ 𝑑 gives  
I(𝑢) < 0, 

due to the Sobolev inequality this means 
∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 ≠ 0 . Then I(𝑢) < 0 gives 

𝐶∗
𝑝2max {𝑟

𝑝2−𝑚1
𝑚1 , 𝑟

𝑝1−𝑚2
𝑚2 }∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 

< ∫
Ω

|𝑢|𝑝(𝑥)d𝑥 

≤ 𝐶∗
𝑝2max

{
 
 

 
 
(∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥)

𝑝2−𝑚1
𝑚1

,

(∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥)

𝑝1−𝑚2
𝑚2

}
 
 

 
 

 

×∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥, 

which gives ∫Ω |∇𝑢|
𝑚(𝑥)d𝑥 > 𝑟. 

 
(iii) As I(𝑢) = ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 −

∫Ω |𝑢|
𝑝(𝑥)d𝑥 = 0. If ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 ≠ 0, then by 

∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 = ∫
Ω

|𝑢|𝑝(𝑥)d𝑥 

 ≤

𝐶∗
𝑝2max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2−𝑚1
𝑚1 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1−𝑚2
𝑚2

}∫Ω |∇𝑢|
𝑚(𝑥)d𝑥, 

we get ∫Ω |∇𝑢|
𝑚(𝑥)d𝑥 ≥ 𝑟. By (12) and I(𝑢) = 0, 

we infer 

J(𝑢) ≥ (
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥, 

combining J(𝑢) ≤ 𝑑 yields 

𝑟 ≤ ∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 ≤
𝑝1𝑚2

𝑝1 −𝑚2
𝑑. 

 
In this lemma, we provide the expression of 𝑑 in 

terms of 𝑟, prove the non-increasing nature of J(𝑢), 
and establish a relationship between J(𝑢), I(𝑢), and 
𝑑. 

 
Lemma 5  If 𝑟 is defined as in Lemma 4, then we 
can conclude that  

𝑑 ≥
𝑝1−𝑚2

𝑝1𝑚2
𝑟.                          (13) 

 
The functional energy J(u) is nonincreasing. 
 

Let 𝑢 ∈ 𝑊0
1,𝑚(.)

(Ω) with I(𝑢) < 0. We have  
I(u) < 𝑝1(J(u) − 𝑑).                       (14) 

 
 Proof. (i) Let 𝑢 ∈ 𝒩, according to Lemma 4, (iii), 
we know that ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 ≥ 𝑟. From the 
definition of 𝑑 it follows that for each 𝑘 = 1,2,… 
there exists a 𝑢𝑘 ∈ 𝒩 such that  

𝑑 ≤ 𝐽(𝑢𝑘) < 𝑑 +
1

𝑘
, 𝑘 = 1,2, …      (15) 

 
From Lemma 4 and 

J(𝑢𝑘) ≥ (
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢𝑘|
𝑚(𝑥)d𝑥 

+
1

𝑝1
I(𝑢𝑘) ≥ (

1

𝑚2
−

1

𝑝1
) ∫Ω |∇𝑢𝑘|

𝑚(𝑥)d𝑥,  
we get  

𝑟 ≤ ∫
Ω

|∇𝑢𝑘|
𝑚(𝑥)d𝑥 ≤

𝑝1𝑚2

𝑝1 −𝑚2
(𝑑 +

1

𝑘
), 

𝑘 = 1,2,….                         (16) 
 
From (16) and Sobolev embeding Lemma it follows 
that there exists a 𝑢 ∈ 𝒩 and a subsequence {𝑢𝜈} of 
{𝑢𝑘} such that as 𝜈 → ∞, 𝑢𝜈 → 𝑢 in 𝐻01(Ω) weakly, 
𝑢𝜈 → 𝑢 in 𝐿

2𝑛

𝑛−2(Ω) strongly. Hence we have:  

|∫
Ω

1

𝑝(𝑥)
|𝑢𝜈|

𝑝(𝑥)d𝑥 − ∫
Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥| 

≤ (
1

𝑝1
−

1

𝑝2
) |∫Ω |𝑢𝜈|

𝑝(𝑥)d𝑥 − ∫Ω |𝑢|
𝑝(𝑥)d𝑥|.  

 
Using the fact that, for any 𝑥 ∈ Ω fixed, we have:  

|𝑢𝜈|
𝑝(.) − |𝑢|𝑝(.) = 𝑝(𝑥)𝜁𝑝(𝑥)−1𝑣, 

with 𝑣 = 𝑢𝜈 − 𝑢, and 𝜁 = 𝑠𝑢𝜈 + (1 − 𝑠)𝑢, 𝑠 ∈
(0,1). Young’s inequality implies  

I = |∫
Ω

(|𝑢𝜈|
𝑝(.) − |𝑢|𝑝(.))d𝑥|

≤ 𝑐∫
Ω

|𝑝(𝑥)𝜁𝑝(𝑥)−1|
2
|𝑣|2d𝑥

≤ 𝑐∫
Ω

|𝑠𝑢𝜈 + (1 − 𝑠)𝑢|
2(𝑝(𝑥)−1)|𝑣|2d𝑥

≤ 𝑐 (∫
Ω

|𝑣|
2𝑛

𝑛−2d𝑥)

𝑛−2

𝑛

[(∫
Ω

|
𝑠𝑢𝜈

+(1 − 𝑠)𝑢|
𝑛(𝑝2−1)

)

2

𝑛

d𝑥

+(∫
Ω

|𝑠𝑢𝜈 + (1 − 𝑠)𝑢|
𝑛(𝑝1−1))

2

𝑛

d𝑥]

≤ 𝑐‖∇(𝑢𝜈 − 𝑢)‖2
2 (‖∇𝑢𝜈‖2

2(𝑝2−1) + ‖∇𝑢‖2
2(𝑝1−1)) .

 

so we get  

lim
𝜈→∞

∫
Ω

|𝑢𝜈|
𝑝(𝑥)d𝑥 = ∫

Ω

|𝑢|𝑝(𝑥)d𝑥. 

 
Thus from (15) we obtain: 
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∫
Ω

1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 

≤ liminf
𝜈→∞

∫
Ω

1

𝑚(𝑥)
|∇𝑢𝜈|

𝑚(𝑥)d𝑥 

≤ liminf
𝜈→∞

(𝑑 +
1

𝜈
+∫

Ω

1

𝑝(𝑥)
|𝑢𝜈|

𝑝(𝑥)d𝑥) 

= lim
𝜈→∞

(𝑑 +
1

𝜈
+ ∫

Ω

1

𝑝(𝑥)
|𝑢𝜈|

𝑝(𝑥)d𝑥) 

 = 𝑑 + ∫Ω
1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥, 

which gives 𝐽(𝑢) ≤ 𝑑. On the other hand, we have 
𝐽(𝑢) ≥ 𝑑. Hence we get 𝐽(𝑢) = 𝑑, which in turn 
give 𝑑 ≥ 𝑝1−𝑚2

𝑚2𝑝1
𝑟. 

(ii) Let 𝜈 = 𝑢𝑡 in (8), we obtain:  

∫
Ω

|𝑢𝑡|
2d𝑥 +

d

d𝑡
∫
Ω

1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 

=
d

d𝑡
∫
Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥, 

which means that  
  

d

d𝑡
(∫

Ω

1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥 − ∫

Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥) 

 = −∫Ω |𝑢𝑡|
2d𝑟, 

or  

J′(𝑡) =
d

d𝑡
J(𝑢) = −∫

Ω

|𝑢𝑡|
2d𝑥 ≤ 0. 

(iii) Lemma 3, (iii) and I(u) < 0 implies existence of 
𝜆∗ ∈ (0,1) such that I(𝜆∗𝑢) = 0. Let  

ℎ(𝜆): = 𝑝1J(𝜆𝑢) − I(𝜆𝑢),    𝜆 > 0. 
 
From Lemma 4, by the definition J(𝑢), I(𝑢), (3) and 
(ii), we obtain:  

ℎ′(𝜆) = 𝑝1
dJ(𝜆𝑢)

d𝜆
−
dI(𝜆𝑢)

d𝜆
 

≥ 𝑝1

(

 
∫
Ω

𝜆𝑚(𝑥)−1|∇𝑢(𝑥)|𝑚(𝑥)d𝑥

−∫
Ω

𝜆𝑝(𝑥)−1|𝑢(𝑥)|𝑝(𝑥)d𝑥
)

  

−𝑚2 ∫Ω 𝜆
𝑚(𝑥)−1|∇𝑢(𝑥)|𝑚(𝑥)d𝑥  

+𝑝1 ∫Ω 𝜆
𝑝(𝑥)−1|𝑢(𝑥)|𝑝(𝑥)d𝑥  

= (𝑝1 −𝑚2)∫
Ω

𝜆𝑚(𝑥)−1|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

> (𝑝1 −𝑚2)min(𝜆
𝑚1−1, 𝜆𝑚2−1)𝑟 > 0.  

 
Thus, ℎ(𝜆) is strictly increasing for 𝜆 > 0. 

Therefore, ℎ(1) > ℎ(𝜆∗) for 𝜆∗ ∈ (0,1). Using the 
definition of 𝑑 and the fact that I(𝜆∗𝑢) = 0, we 
obtain:  

𝑝1J(𝑢) − I(𝑢) > 𝑝1J(𝜆
∗𝑢) − I(𝜆∗𝑢) 

= 𝑝1J(𝜆
∗𝑢) ≥ 𝑝1𝑑, 

so (14).  

3 Global Existence, Asymptotic 

Behavior, and Blow-up in Finite 

Time with 𝐉(𝒖𝟎) < 𝒅 
In this section, we find that the solution to Problem 
(2) yields an explosion in finite time and evaluate 
the upper and lower bounds of the explosion time 
when J(𝑢0) < 𝑑. The global existence and 
asymptotic behavior of the solution to problem (8) 
with J(𝑢0) < 𝑑 and I(𝑢0) > 0 can similarly 
obtaining it using reference [20]. The proof has been 
ignored, and we only mention it to illustrate the 
routine results. 
 
Theorem 6 [22], Theorem 4. Eq.14]Assuming that 

J(𝑢0) < 𝑑 and 𝐼(𝑢0) > 0, let 𝑝(. ) satisfy (H) and 

𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺). Then problem (2) admits a global 

weak solution 𝑢(𝑡) ∈ 𝐿∞ (0,∞;𝑊0
1,𝑚(.)

(𝛺)). 

Furthermore, 𝑢𝑡 ∈ 𝐿
2(0,∞; 𝐿2(𝛺)) and 𝑢(𝑡) ∈ 𝑊 

for 0 ≤ 𝑡 < ∞. Additionally, there exists a constant 

𝜅 > 0 such that  

∥ 𝑢 ∥2
2≤ (‖𝑢0‖2

2−𝑚1 + (𝑚1 − 2)𝜅𝑡)
−2

𝑚1−2. 
 In the following Lemma, we needed to give the 
invariant set 𝑉 as follows: 
 
Lemma 7 (Invariant set for 𝐉(𝒖𝟎) < 𝒅.) Assuming 

(H) holds for 𝑝(. ), and 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺), let 𝑇𝑚𝑎𝑥 

be the maximal existence time. Then, for 𝐽(𝑢0) < 𝑑, 

the weak solution 𝑢 of problem (2) is belongs to 𝑉 

for 0 ≤ 𝑡 < 𝑇𝑚𝑎𝑥, as long as 𝐼(𝑢0) < 0.  
 

Proof. We know that 𝑢0 ∈ 𝑉 because J(𝑢0) < 𝑑 and 
I(𝑢0) < 0. Our goal is to prove that 𝑢(𝑡) ∈ 𝑉 for 
0 < 𝑡 < 𝑇max. Let’s assume the contrary and 
suppose that there exists t0 ∈ (0, 𝑇max) such that 
J(𝑢(t0)) = 𝑑 or I(𝑢(t0)) = 0 and 
∫Ω |∇𝑢(𝑥, t0)|

𝑚(𝑥)d𝑥 ≠ 0. Since J(𝑢) and I(𝑢) are 
continuous in 𝑡, we can assume that 𝑡0 is the first 
time such that J(𝑢(t0)) = 𝑑 or I(𝑢(t0)) = 0 and 
∫Ω |∇𝑢(𝑥, t0)|

𝑚(𝑥)d𝑥 ≠ 0. By Definition 1 (iii) and 
the fact that J(𝑢0) < 𝑑, we have 
∫
𝑡

0
‖𝑢𝑟‖2

2d𝜏 + J(𝑢) ≤ J(𝑢0) < 𝑑,      
0 ≤ 𝑡 < 𝑇max.                                  (17) 

 
Therefore, J(𝑢(t0)) ≠ 𝑑. If I(𝑢(t0)) = 0 and 

∫Ω |∇𝑢(𝑥, t0)|
𝑚(𝑥)d𝑥 ≠ 0, then by the definition of 

𝑑, we have J(𝑢(t0)) ≥ 𝑑, which contradicts (17). 
Thus, we have proven that 𝑢(𝑡) ∈ 𝑉 for 0 < 𝑡 <
𝑇max. The proof has been achieved.  
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In the following Theorem 8, we establish the 
blow-up in finite time of solution and provide a 
enough condition by introducing a elementary 
auxiliary function. 

 
Theorem 8 (Blow-up for 𝐉(𝒖𝟎) < 𝒅) Assuming 

that 𝑝(. ) satisfies (H) and 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺), if 

𝐽(𝑢0) < 𝑑 and 𝐼(𝑢0) < 0, then the weak solution 

𝑢(𝑡) of problem (2) blows up in a finite time.  
 

Proof. As per Theorem 2, problem (2) has a unique 
local weak solution 𝑢 ∈ 𝐶 (0, 𝑇;𝑊0

1,𝑚(.)
(Ω)), where 

𝑇max denotes the maximum existence time of 𝑢(𝑡). 
We can prove that the existence of time is finite. To 
do this, we assume the time of existence 𝑇max =
+∞ and proceed by contradiction. We then define  

M(𝑡): = ∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏,    𝑡 ∈ 0,+∞), 

(18) 
then  M′(𝑡) =∥ 𝑢 ∥2

2. 
 
If we substitute 𝜈 = 𝑢s in equation (8), we get: 

M′′(t) = 2(𝑢, 𝑢𝑠) 
= 2(|𝑢|𝑝(𝑥)−2𝑢, 𝑢) − 2(|∇𝑢|𝑚(𝑥)−2∇𝑢, ∇𝑢)  

= −2(∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 − ∫
Ω

|𝑢|𝑝(𝑥)d𝑥) = −2𝐼(𝑢). 

 (19) 
 

By combining (9) and (12), we get:  

J(𝑢0) ≥ J(𝑢) + ∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

≥
𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥

 

+
1

𝑝1
I(𝑢) + ∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏, 

which implies   
1

𝑝1
I(𝑢) ≤ J(𝑢0) −

𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

  −∫𝑡0 ‖𝑢𝜏‖2
2d𝜏, 

i.e.,   

I(𝑢) ≤ 𝑝1J(𝑢0) −
𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

  −𝑝1 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏.              (20) 
 

By substituting (20) into (19), we can derive:  
M′′(𝑡) ≥ −2𝑝1J(𝑢0)

+ 2
𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥 

 +2𝑝1 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏.                    (21) (3.5) 
 

From  

∫
𝑡

0

(𝑢𝜏, 𝑢)d𝜏 =
1

2
∥ 𝑢 ∥2

2−
1

2
‖𝑢0‖2

2, 

we derive  

(∫
𝑡

0

(𝑢𝜏, 𝑢)d𝜏)

2

= (
1

2
∥ 𝑢 ∥2

2−
1

2
‖𝑢0‖2

2)
2

=
1

4
(∥ 𝑢 ∥2

4− 2 ∥ 𝑢 ∥2
2 ‖𝑢0‖2

2 + ‖𝑢0‖2
4)

=
1

4
((M′(𝑡))2 − 2‖𝑢0‖2

2M′(𝑡) + ‖𝑢0‖2
4),

 

then  

(M′(𝑡))2 = 4(∫
𝑡

0

(𝑢𝜏, 𝑢)d𝜏)

2

+ 2‖𝑢0‖2
2M′(𝑡)

− ‖𝑢0‖2
4. 

(22) 
 

Therefore, by combining (21) and (22) we deduce:  
M(𝑡)M′′(𝑡) −

𝑝1

2
(M′(𝑡))2

≥ M(𝑡) (
2
𝑝1−𝑚2

𝑚2
∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)d𝑥

−2𝑝1J(𝑢0) + 2𝑝1 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏
)

−
𝑝1

2
(

4 (∫
𝑡

0
(𝑢𝜏, 𝑢)d𝜏)

2

+2‖𝑢0‖2
2M′(𝑡) − ‖𝑢0‖2

4
)

= −2𝑝1J(𝑢0)M(𝑡)

+2
𝑝1−𝑚2

𝑚2
M(𝑡) ∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)d𝑥

+2𝑝1(
∫
𝑡

0
∥ 𝑢 ∥2

2 d𝜏 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏

−(∫
𝑡

0
(𝑢𝜏, 𝑢)d𝜏)

2 )

−𝑝1‖𝑢0‖2
2M′(𝑡) +

𝑝1

2
‖𝑢0‖2

4

> −2𝑝1J(𝑢0)M(𝑡)

+2
𝑝1−𝑚2

𝑚2
M(𝑡) ∫Ω |∇𝑢(𝑥)|

𝑚(𝑥)d𝑥

+2𝑝1(
∫
𝑡

0
∥ 𝑢 ∥2

2 d𝜏 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏

−(∫
𝑡

0
(𝑢𝜏, 𝑢)d𝜏)

2 )

−𝑝1‖𝑢0‖2
2M′(𝑡).

 (23) 

 
Using the Cauchy-Schwarz inequality, we have:  

(∫
𝑡

0

(𝑢𝜏, 𝑢)d𝜏)

2

≤ ∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏, 

(24) 
which drives together (23) 

M(𝑡)M′′(𝑡) −
𝑝1
2
(M′(𝑡))2

> 2
𝑝1 −𝑚2

𝑚2
M(𝑡)∫

Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥

−2𝑝1J(𝑢0)M(𝑡) − 𝑝1‖𝑢0‖2
2M′(𝑡).

   

(25) 
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Recalling the embedding inequality from 
𝑊0
1,𝑚(.)

(Ω) to 𝑊0
1,2(Ω) for 2 ≤ 𝑚(𝑥), as follows; 

∫Ω |∇𝑢(𝑥)|
𝑚(𝑥)d𝑥 ≥

min(𝐶1
𝑚1‖∇𝑢‖2

𝑚1 , 𝐶1
𝑚2‖∇𝑢‖2

𝑚2),                        (26) 
and the Poinearé inequality  

𝐶2‖𝑢‖2 ≤ ‖∇𝑢‖2.                         (27) 
 
Let  

𝐶3 = min(𝐶1𝐶2, 1),                   (28) 
 

based on the (3), (26) and (27), it can be deduced 
that:  
𝑝1 −𝑚2

𝑚2
M(𝑡)∫

Ω

|∇𝑢(𝑥)|𝑚(𝑥)d𝑥

≥
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(‖𝑢‖2

𝑚1 , ‖𝑢‖2
𝑚2)M(𝑡)

=
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)‖𝑢‖2
2M(𝑡),

 

hence (3.9) becomes:  
M(𝑡)M′′(𝑡) −

𝑝1
2
(M′(𝑡))2

    >
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M(𝑡)M′(𝑡)

−2𝑝1J(𝑢0)M(𝑡) − 𝑝1‖𝑢0‖2
2M′(𝑡).

 

(29) 
 
Now, we distinguish the following two issues for 
the level, i.e. J(𝑢0) ≤ 0 and 0 < 𝐽(𝑢0) < 𝑑. 

(i) If J(𝑢0) ≤ 0, from (29) we derive 
M(𝑡)M′′(𝑡) −

𝑝1

2
(M′(𝑡))2

>
𝐶3
𝑚2(𝑝1−𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M(𝑡)M′(𝑡)

−𝑝1‖𝑢0‖2
2M′(𝑡).

(

(30) 
 
By combining (8), (12) and J(𝑢0) ≤ 0, we arrive at:  

 0 ≥ J(𝑢0) > 𝐽(𝑢) 
  

≥ (
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 +
1

𝑝1
I(𝑢), 

which means I(u) < 0. Using this and (19), we 
deduce that M′′(𝑡) > 0 for t ≥ 0, this implies that 
M′(𝑡) =∥ u ∥2

2 is increasing with 𝑡 ∈ (0,∞). Since 
M′(0) =∥ 𝑢0 ∥2

2> 0 and M′′(𝑡) > 0, we conclude 
that M′(𝑡) > M′(0) > 0 for 𝑡 > 0. This means 
M(𝑡) is increasing over [0,∞), which leads to 
M(𝑡) > 𝑀(0) = 0. Therefore, we can conclude that  

M(𝑡) − M(0) = ∫
𝑡

0

M′(𝜏)d𝜏 

> ∫
𝑡

0

M′(0)d𝜏 = M′(0)𝑡, 

that is  
M(𝑡) > M′(0)𝑡,    𝑡 > 0. 

 
Hence, choosing sufficiently large 𝑡, for M′(𝑡) >
M′(0) > 0, we find:  

 
𝐶3
𝑚2(𝑝1−𝑚2)

𝑚2
min(‖𝑢‖2

𝑚1−2, ‖𝑢‖2
𝑚2−2)M(𝑡) 

 >
𝐶3
𝑚2(𝑝1−𝑚2)

𝑚2
min(‖𝑢0‖2

𝑚1−2, ‖𝑢0‖2
𝑚2−2)M(𝑡) 

 > 𝑝1‖𝑢0‖2
2, 

 
which (30) take the form:  

M(𝑡)M′′(𝑡) −
𝑝1

2
(M′(𝑡))2  

> M′(𝑡) (

𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M(𝑡)

−𝑝1‖𝑢0‖2
2

)

> 0. 
(ii) If 0 < 𝐽(𝑢0) < 𝑑, then Lemma 7 implies 𝑢(𝑡) ∈
𝑉 for 𝑡 ≥ 0. By (14), (9) and 0 < 𝐽(𝑢0) < 𝑑, (19) 
becomes  

M′′(𝑡) = −2I(u)
> 2𝑝1(𝑑 − J(u))

≥ 2𝑝1 (𝑑 − J(𝑢0) + ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏)

> 2𝑝1(𝑑 − J(𝑢0))

=: C > 0.

    (31) 

 
Therefore, (31) and M′(0) = ‖𝑢0‖2

2 > 0 gives:  

M′(𝑡) − M′(0) = ∫
𝑡

0

M′′(𝜏)d𝜏 > 𝐶𝑡,    0 < 𝑡 < ∞, 

that is  
M′(t) > 𝐶𝑡 + M′(0) > 𝐶𝑡.        (32) 

 
By the same manner, since M′′(𝑡) > 0, M(0) = 0 
and (32), for 𝑡 ∈ (0,∞) we conclude:  

 M(𝑡) −M(0) = ∫
𝑡

0
M′(𝜏)d𝜏 

 > ∫
𝑡

0
C𝜏d𝜏 =

1

2
C𝑡2, 

i.e.,  
M(𝑡) >

1

2
C𝑡2 +M(0) =

1

2
C𝑡2.         (33) 

Thus, the fact M′(𝑡) > M′(0) > 0, (32) and (33), 
for sufficiently large 𝑡, gives: 

𝐶3
𝑚2(𝑝1−𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M(𝑡)

>
𝐶3
𝑚2(𝑝1−𝑚2)

𝑚2
min(

‖𝑢0‖2
𝑚1−2,

‖𝑢0‖2
𝑚2−2

)M(𝑡)

> 𝑝1‖𝑢0‖2
2,

 (34) 
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and 
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M′(𝑡)

>
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢0‖2
𝑚1−2,

‖𝑢0‖2
𝑚2−2

)M′(𝑡)

> 2𝑝1J(𝑢0).

 

(35) 
 

Therefore, using (34) and (35), (29), for sufficiently 
large 𝑡, becomes 
M(𝑡)M′′(𝑡) −

𝑝1
2
(M′(𝑡))2

≥ (

𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢0‖2
𝑚1−2,

‖𝑢0‖2
𝑚2−2

)M(𝑡)

−𝑝1‖𝑢0‖2
2

)M′(𝑡)

+(

𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢0‖2
𝑚1−2,

‖𝑢0‖2
𝑚2−2

)M′(𝑡)

−2𝑝1J(𝑢0)

)

× M(𝑡) > 0 
                                   (36) 

 
Because of M(𝑡), M′(𝑡) and M′′(𝑡) are all positive 
for sufficiently large t∗, then (36) leading to:  

M′′(𝑡)

M′(𝑡)
>
p1M

′(𝑡)

2M(𝑡)
,    𝑡 ∈ 𝑡∗, ∞). 

 
Integrating above inequality on (𝑡∗, 𝑡), we get:  

∫
𝑡

𝑡∗

dM′(𝜏)

M′(𝜏)
>
𝑝1
2
∫
𝑡

𝑡∗

dM(𝜏)

M(𝜏)
, 

 
which give:  

M′(𝑡)

(M(𝑡))
𝑝1
2

>
M′(𝑡∗)

(M(𝑡∗))
𝑝1
2

. 

 
Integrating once more on (𝑡∗, 𝑡) gives:  

 M(𝑡)−
𝑝1−2

2 (t) 
  

< 𝑀(𝑡∗)
−
𝑝1−1

2 (1 −
(𝑝1 − 2)M

′(𝑡∗)

2M(𝑡∗)
(𝑡 − 𝑡∗)), 

i.e.,  

M(𝑡) > 𝑀(𝑡∗) (1 −
(𝑝1−2)M

′(𝑡∗)

2M(𝑡∗)
(𝑡 − 𝑡∗))

−
2

𝑝1−2. (37) 
 
Observe that, for the time 𝑡̅  

0 < 𝑡̅ ≤ 𝑡∗ +
2M(𝑡∗)

(𝑝1 − 2)M
′(𝑡∗)

, 

we have  
lim
𝑡→𝑡̅
M(𝑡) = +∞, 

this contradicts the assumption 𝑇max = +∞.  

To estimate the upper bound of the blow-up time, 
we need to consider the following lemmas 
 
Lemma 9 Suppose that a positive, twice-

differentiable function 𝜑(𝑡) satisfies the inequality  
𝜑′′(𝑡)𝜑(𝑡) − (1 + 𝜃)(𝜑′(𝑡))2 ≥ 0, 𝑡 > 0, 

where 𝜃 > 0 is some constant. If 𝜑(0) > 0 and 
𝜑′(0) > 0, then there exists 0 < t1 ≤

𝜑(0)

𝜃𝜑′(0)
 such 

that 𝜑(𝑡) tends to infinity as 𝑡 → 𝑡1.  
A different auxiliary function is used to prove the 
blow- up in finite time given by Theorem 8. 
Moreover, we evaluate the upper bound of the blow-
up time. 

Noticing that Theorems 8 and 10 present two 
different proofs of the similar conclusion to the 
finite time blow-up results. 

 
Theorem 10 Assuming 𝑝(. ) satisfy (H) and 𝑢0 ∈

𝑊0
1,𝑚(𝛺) such that 𝐽(𝑢0) < 𝑑 and 𝐼(𝑢0) < 0. Then 

the weak solution 𝑢(𝑡) of problem (2) blows up in 

finite time. The upper bound of the blow-up time 

estimated as follows.  

0 < 𝑇 ≤
4‖𝑢0‖2

2

(𝑝1 − 2)
2𝛽
, 

where 0 < 𝛽 ≤ 𝑝1(𝑑−J(𝐮0))

𝑝1−1
 is a constant.  

 

Proof. We will prove that the existence of time is 
finite by contradiction. Suppose 𝑇max = +∞. For a 
suitable 𝑇0 > 0, we define the positive function  

F(𝑡): =
1

2
∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏 +

1

2
(𝑇0 − 𝑡)‖𝑢0‖2

2 

+
1

2
𝛽(𝑡 + 𝑡0)

2    for𝑡 ∈ [0, 𝑇0], 𝑡0 > 0,          (38) 
where 𝑡0, and 𝑇0 are positive constants to be 
determined later. Using the definition of J(𝑢), I(𝑢) 
and (12), we get:  

J(𝑢) ≥ (
1

𝑚2
−
1

𝑝1
)∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 +
1

𝑝1
I(𝑢) 

≥
1

𝑝1
I(𝑢) +

𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥, 

that is  

I(𝑢) ≤ 𝑝1J(𝑢) −
𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥. 

(39) 
 
For 𝜈 = 𝑢 in (8), we obtain  

(𝑢, 𝑢𝑡) = −I(𝑢)                                 (40) 
 
From (38)-(40) and (9), we have for any 𝑡 ∈ 0, 𝑇) 
that  

F′(𝑡) =
1

2
‖𝑢‖2

2 −
1

2
‖𝑢0‖2

2 + 𝛽(𝑡 + 𝑡0) 
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= ∫
𝑡

0
(𝑢, 𝑢𝜏)d𝜏 + 𝛽(𝑡 + 𝑡0),          (41) 

and  
F′′(𝑡) = (𝑢, 𝑢𝑡) + 𝛽

≥ −𝑝1J(u) +
𝑝1−𝑚2

𝑚2
∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 + 𝛽

≥
𝑝1−𝑚2

𝑚2
∫Ω |∇𝑢|

𝑚(𝑥)d𝑥

−𝑝1 (J(𝑢0) − ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏) + 𝛽

=
𝑝1−𝑚2

𝑚2
∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 − 𝑝1J(𝑢0)

+𝑝1 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏 + 𝛽.

 

(42) 
 
Therefore, by (38) and (41), it comes:  

FF′′ − 𝛼(F′)2 = FF′′ − 𝛼(
∫
𝑡

0

(𝑢, 𝑢𝑟)d𝜏

+𝛽(𝑡 + 𝑡0)

)

2

= FF′′ − 𝛼 (∫
𝑡

0

(𝑢, 𝑢𝑟)d𝜏 + 𝛽(𝑡 + 𝑡0))

2

+𝛼(
∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏

+𝛽(𝑡 + 𝑡0)
2

)(∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽)

−𝛼(2F − (𝑇 − 𝑡)‖𝑢0‖2
2) (∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽) .

 

(43) 
 

Using the Young’s inequality from (24), we obtain 
for any 𝑡 ∈ 0, 𝑇) that:  

(∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏 + 𝛽(𝑡 + 𝑡0)

2)(∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽)

−(∫
𝑡

0

(𝑢, 𝑢𝜏)d𝜏 + 𝛽(𝑡 + 𝑡0))

2

=

(

 
 
∫
𝑡

0

‖𝑢‖2
2d𝜏∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏

−(∫
𝑡

0

(𝑢𝜏, 𝑢)d𝜏)

2

)

 
 

  +

(

 
 
𝛽∫

𝑡

0

‖𝑢‖2
2d𝜏 + 𝛽(𝑡 + 𝑡0)

2∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

−2𝛽(𝑡 + 𝑡0)∫
𝑡

0

(𝑢, 𝑢𝜏)d𝜏
)

 
 

≥ 2𝛽(𝑡 + 𝑡0) (∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏)

1

2

(∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏)

1

2

−2𝛽(𝑡 + 𝑡0)∫
𝑡

0

(𝑢, 𝑢𝜏)d𝜏 = 0.

 

(44) 
Then by (44) and (42), (43) yields  

FF′′ − 𝛼(F′)2

≥ FF′′ − 𝛼 (
2F

−(𝑇 − 𝑡)‖𝑢0‖2
2)(∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽)

≥ F(F′′ − 2𝛼 (∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽))

≥ F

(

 
 
 
 

𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 − 𝑝1J(𝑢0)

+𝑝1∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 𝛽

−2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 − 2𝛼𝛽

)

 
 
 
 

≥ F

(

 
 

𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 − 𝑝1J(𝑢0)𝜏

+(𝑝1 − 2𝛼)∫
𝑡

0

‖𝑢𝜏‖2
2d − (2𝛼 − 1)𝛽

)

 
 
.

 

(45) 
 

Let 𝛼:= 𝑝1

2
. (42) give  

FF′′ −
𝑝1
2
(F′)2 ≥ F(

𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥

−𝑝1J(𝑢0) − (𝑝1 − 1)𝛽

) ,

𝑡 ∈ [0, 𝑇]. 
 

According to Lemma 4 and (13), using property 
(ii), we can deduce that: 

𝑝1 −𝑚2

𝑚2
∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 

>
𝑝1 −𝑚2

𝑚2
𝑟 = 𝑝1𝑑. 

 
If we assume that 0 < 𝛽 ≤ 𝑝1(𝑑−J(𝑢0))

𝑝1−1
, we can find 

that:  

FF′′ −
𝑃1
2
(F′)2 

> 𝐹(𝑝1(𝑑 − J(𝑢0)) − (𝑝1 − 1)𝛽) ≥ 0. 
 (46) 

 
Now, using Lemma 9 to confirm that:  

lim
𝑡→𝑡̅
F(𝑡) = +∞, 

then 𝑇 cannot be infinite, meaning there is no weak 
solution at all times, and  

 0 < 𝑇 ≤
2F(0)

(𝑝1−2)F
′(0)

 
  

=
𝑇‖𝑢0‖2

2 + 𝛽𝑡0
2

(𝑝1 − 2)𝛽𝑡0
. 

(47) 
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Let’s choose appropriate values for 𝑡0 and 𝑇0. 
We can set 𝑡0 to any number that depends only on 
𝑝1, 𝛽 and 𝑢0 

𝑡0 >
‖𝑢0‖2

2

(𝑝1 − 2)𝛽
. 

 
If 𝑡0 is fixed, then 𝑇0 can be chosen as 

𝑇0 =
𝑇‖𝑢0‖2

2 + 𝛽𝑡0
2

(𝑝1 − 2)𝛽𝑡0
, 

so that  

𝑇0 =
𝛽𝑡0

2

(𝑝1 − 2)𝛽𝑡0 − ‖𝑢0‖2
2. 

 
The lifespan of the solution 𝑢(𝑥, 𝑡) is bounded by a 
certain number as:   

𝑇0 = inf
𝑡≥𝑡0

𝛽𝑡2

((𝑝1 − 2)𝛽𝑡 − ‖𝑢0‖2
2)

 

=
4‖𝑢0‖2

2

(𝑝1 − 2)
2𝛽
. 

 (48) 
due to the arbitrariness of 𝑇0 < 𝑇 it follows that 

𝑇 ≤
4‖𝑢0‖2

2

(𝑝1 − 2)
2𝛽
. 

 
We shall estimate the lower bound of the blow-

up time. To achieve this, we will use the necessary 
conditions mentioned in Theorem 8, Theorem 10 
and Theorem 11. 

 
Theorem 11 (Lower bound of blow-up time) Let 

𝑚1 < 𝑝2 < 𝑚1 +
2𝑚1

𝑛
. Assume that 𝐽(𝑢0) < 𝑑 and 

𝐼(𝑢0) < 0. The lower bound of the blow-up time 

estimated as follows 

𝑡̅ > 𝑚𝑎𝑥 (
∥ 𝑢0 ∥2

2−𝜂𝑝2

(𝜂𝑝2 − 2)𝛿
,
∥ 𝑢0 ∥2

2−𝜂𝑝1

(𝜂𝑝1 − 2)𝛿
) > 0. 

where 𝛿 = 2max(𝛾𝑝2 , 𝛾𝑝1), 

𝛾 = min((2c𝑔𝑐2

𝜃

𝑚1)

𝑚1
(𝑚1−𝑝1𝜃)

, (2c𝑔𝑐2

𝜃

𝑚1)

𝑚1
(𝑚1−𝑝2𝜃)

), 

𝑐2 = (1 + 𝐶∗

𝑝2𝑚1
𝑚1−𝑝2

𝑚1−𝑚2
𝑚2 ),  and c𝑔 is the constant of 

Gagiiardo-Nirenbery’s inequality 
‖𝑢‖𝑝2 ≤ c𝑔‖∇𝑢‖𝑚1

𝜃 ‖𝑢‖2
1−𝜃, 

𝜃 =
(𝑝2 − 2)𝑛𝑚1

𝑝2(𝑚1𝑛 + 2𝑚1 − 2𝑛)
∈ (0,1) 

  

and  1 < 𝜂 ∈ {
(1 − 𝜃)𝑚1

𝑚1 − 𝑝2𝜃
,
(1 − 𝜃)𝑚1

𝑚1 − 𝑝1𝜃
}. 

Proof. Recall from Theorem 8 that 𝑢 solution to 
problem (2) blows up in finite time in the sense 
lim𝑡→𝑡̅ ∫

𝑡

0
∥ u ∥2

2 d𝜏 = +∞, i.e.  
lim
𝑡→𝑡̅

∥ 𝑢 ∥2
2= +∞.                           (49) 

 
By Lemma 7 we have I(𝑢) < 0, then, by using (11) 
leads to. 

∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 < ∫
Ω

|𝑢|𝑝(𝑥)d𝑥 

 ≤ max (‖𝑢‖𝑝(𝑥)
𝑝1 , ‖𝑢‖𝑝(𝑥)

𝑝2 ) 

 ≤ 𝐶∗
𝑝2max{

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝2
𝑚1 ,

(∫Ω |∇𝑢|
𝑚(𝑥)d𝑥)

𝑝1
𝑚2

}, 

which give that 
 

∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 

≥ max {(𝐶∗
𝑝2)

𝑚1
𝑚1−𝑝2 , (𝐶∗

𝑝2)
𝑚2

𝑚2−𝑝1} = 𝐶∗

𝑝2𝑚1
𝑚1−𝑝2 , 

(50) 
where 𝐶∗ is the same defined in Lemma4. 
In other hand we have  

 ∫Ω |∇𝑢|
𝑚(𝑥)d𝑥 ≥ ∫Ω−

|∇𝑢|𝑚2d𝑥 +

∫Ω+
|∇𝑢|𝑚1d𝑥 

≥ (∫Ω−
|∇𝑢|𝑚1d𝑥)

𝑚2
𝑚1  

+∫
Ω+

|∇𝑢|𝑚1d𝑥, 

where  
Ω− = {𝑥 ∈ Ω: |∇𝑢(𝑥, 𝑡)| < 1}, 
Ω+ = {𝑥 ∈ Ω: |∇𝑢(𝑥, 𝑡)| ≥ 1}. 

 
This implies that: 

(∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥)

𝑚1
𝑚2

≥ ∫
Ω−

|∇𝑢|𝑚1d𝑥 

and∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 ≥ ∫
Ω+

|∇𝑢|𝑚1d𝑥, 

and, hence 

(∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥)

𝑚1
𝑚2

+∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 

≥ ∫
Ω−

|∇𝑢|𝑚1d𝑥 + ∫
Ω+

|∇𝑢|𝑚1d𝑥 =∥ ∇𝑢 ∥𝑚1

𝑚1 . 

 (51) 
Using (50), then (51) leads to: 

(1 + 𝐶∗

𝑝2𝑚1
𝑚1−𝑝2

𝑚1−𝑚2
𝑚2 )∫

Ω

|∇𝑢|𝑚(𝑥)d𝑥 ≥∥ ∇𝑢 ∥𝑚1

𝑚1 , 

Thus 
𝑐2 ∫Ω |∇𝑢|

𝑚(𝑥)d𝑥 ≥∥ ∇𝑢 ∥𝑚1

𝑚1 ,  
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Then joining Gagliardo-Niremberg’s inequality, we 
obtain: 

∥ 𝑢 ∥𝑝2≤ c𝑔‖∇𝑢‖𝑚1
𝜃 ‖𝑢‖2

1−𝜃 

≤ c𝑔𝑐2

𝜃

𝑚1 (max(∥ 𝑢 ∥𝑝1
𝑝1 , ∥ 𝑢 ∥𝑝2

𝑝2))

𝜃

𝑚1 ‖𝑢‖2
1−𝜃, 

 
 
which comes:  

∥ 𝑢 ∥𝑝2< 𝛾 ∥ 𝑢 ∥2
𝜂
,                     (52) 

 
where 

𝛾 = min((2c𝑔𝑐2

𝜃

𝑚1)

𝑚1
(𝑚1−𝑝1𝜃)

, (2c𝑔𝑐2

𝜃

𝑚1)

𝑚1
(𝑚1−𝑝2𝜃)

), 

1 < 𝜂 ∈ {
(1 − 𝜃)𝑚1

𝑚1 − 𝑝2𝜃
,
(1 − 𝜃)𝑚1

𝑚1 − 𝑝1𝜃
}, 

𝜃 =
(𝑝2−2)𝑛𝑚1

𝑝2(𝑚1𝑛+2𝑚1−2𝑛)
∈ (0,1)  

 
and 

𝑝2𝜃 < 𝑚1 
 

due to 𝑚1 < 𝑝2 < 𝑚1 +
2𝑚1

𝑛
. 

 
 
Substituting (52) into (19), yields: 

d

d𝑡
∥ 𝑢 ∥2

2≤ −2I(𝑢)

= 2∫
Ω

|𝑢|𝑝(𝑥)d𝑥

− 2∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 

< 2∫
Ω

|𝑢|𝑝(𝑥)d𝑥 ≤ 2max(‖𝑢‖𝑝2
𝑝1 , ‖𝑢‖𝑝2

𝑝2) 

< 2𝑚𝑎𝑥(𝛾𝑝2 , 𝛾𝑝1)max(∥ 𝑢 ∥2
𝜂𝑝2 , ∥ 𝑢 ∥2

𝜂𝑝1) 

= 𝛿max ((∥ 𝑢 ∥2
2)

𝜂𝑝2
2 , (∥ 𝑢 ∥2

2)
𝜂𝑝1
2 ), 

where 𝛿 = 2max(𝛾𝑝2 , 𝛾𝑝1). 
 
After solving the differential inequality mentioned, 
we have obtained: 

{
∥ 𝑢 ∥2

2−𝜂𝑝2 −∥ 𝑢0 ∥2
2−𝜂𝑝2> (2 − 𝜂𝑝2)𝛿𝑡;

∥ 𝑢 ∥2
2−𝜂𝑝1 −∥ 𝑢0 ∥2

2−𝜂𝑝1> (2 − 𝜂𝑝1)𝛿𝑡
 

i.e. 

{
∥ 𝑢 ∥2

2−𝜂𝑝2+ (𝜂𝑝2 − 2)𝛿𝑡 >∥ 𝑢0 ∥2
2−𝜂𝑝2;

∥ 𝑢 ∥2
2−𝜂𝑝1+ (𝜂𝑝1 − 2)𝛿𝑡 >∥ 𝑢0 ∥2

2−𝜂𝑝1 .
 

Since (49) and 𝑝2𝜂 ≥ 𝑝2𝜂 > 2, letting 𝑡 → 𝑡̅, we 
have  

𝑡̅ > 𝑚𝑎𝑥 (
∥ 𝑢0 ∥2

2−𝜂𝑝2

(𝜂𝑝2 − 2)𝛿
,
∥ 𝑢0 ∥2

2−𝜂𝑝1

(𝜂𝑝1 − 2)𝛿
) > 0. 

 

4 Global Existence, Asymptotic 

Behavior and Blow-up in Finite 

Time with 𝐉(𝒖𝟎) = 𝒅 
Here we are only reviewing the theories of global 
existence, asymptotic behavior and blow-up in finite 
time to extend the results in the subcritical initial 
energy J(𝑢0) < 𝑑   to the critical initial energy 
J(𝑢0) = 𝑑. The proof is omitted because it can be 
obtained from previous papers referenced in this 
work with minor modifications. 
 
Theorem 12 (Global existence for 𝐉(𝒖𝟎) < 𝒅) Let 

𝑝(. ) satisfy condition (H) and let 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺). 
Suppose that 𝐽(𝑢0) = 𝑑 and 𝐼(𝑢0) ≥ 0. Then the 

problem (2) admits a global weak solution 𝑢(𝑡) ∈ 

𝐿∞ (0,∞;𝑊0
1,𝑚(.)

(𝛺)) with 𝑢𝑡 ∈ 𝐿
2(0,∞; 𝐿2(𝛺)).  

 

Theorem 13 (Asymptotic behavior of solution for 

𝐉(𝒖𝟎) = 𝒅) Let 𝑝(. ) satisfy (H), 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺). 
Assume that 𝐽(𝑢0) = 𝑑 and 𝐼(𝑢0) > 0. Then for the 

global weak solution 𝑢(𝑥, 𝑡) of problem (2), there 

exists a constant 𝜅 > 0 such that  

∥ 𝑢 ∥2≤ (‖𝑢0‖2
2−𝑚1 + (𝑚1 − 2)𝜅𝑡)

1

2−𝑚1 . 
 

Theorem 14 (Blow-up for 𝐉(𝒖𝟎) = 𝒅) Assuming 

that 𝑝(. ) satisfies (H) and 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺), if 

𝐽(𝑢0) = 𝑑 and 𝐼(𝑢0) < 0, then the weak solution 

for problem (2) blows up in a finite time.  
 

Proof. Firstly, using (18)-(29) and J(𝑢0) = 𝑑, we 
obtain: 
M(𝑡)M′′(𝑡) −

𝑝1
2
(M′(𝑡))2

≥ (

𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M(𝑡)

−𝑝1‖𝑢0‖2
2

)M′(𝑡)

    +(

𝐶3
𝑚2(𝑝1 −𝑚2)

𝑚2
min(

‖𝑢‖2
𝑚1−2,

‖𝑢‖2
𝑚2−2

)M′(𝑡)

−2𝑝1𝑑

)M(𝑡).

 

 
From J(𝑢0) = 𝑑 > 0, I(𝑢0) < 0, since both J(𝑢) 

and I(𝑢) are continuous in 𝑡, this implies that there 
exists a 𝑡1 > 0 small enough such that J(𝑢(𝑡1)) > 0 
and I(𝑢) < 0 for 𝑡 ∈ [0, 𝑡1). By combining this with 
equation (40), we can obtain (𝑢, 𝑢𝑡) = −I(𝑢) > 0 
for 𝑡 ∈ [0, 𝑡1], which means that 𝑢𝑡 ≠ 0. Using 
equation (9), we can further conclude that: 

0 < 𝐽(𝑢(𝑡1)) ≤ 𝑑 −∫
𝑡1

0

‖𝑢𝜏‖2
2d𝜏 = 𝑑1 < 𝑑. 
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By putting 𝑡 = 𝑡1 as a new initial time, we have 𝑢 ∈
𝑉 for 0 < 𝑡 < ∞. The rest proof is analogous to 
Theorem 8.  
 
Theorem 15 Assuming 𝑚1 < 𝑝2 < 𝑚1 +

2𝑚1

𝑛
 and 

𝐽(𝑢0) = 𝑑, with 𝐼(𝑢0) < 0, we have a lower bound 

estimate for the blow-up time of the solution to 

problem (2) 

𝑡̅ > 𝑚𝑎𝑥 (
∥ 𝑢0 ∥2

2−𝜂𝑝2

(𝜂𝑝2 − 2)𝛿
,
∥ 𝑢0 ∥2

2−𝜂𝑝1

(𝜂𝑝1 − 2)𝛿
) > 0. 

where c𝑔, 𝜂, 𝛿 and 𝜃 as in in Theorem 11.  
 

Proof. According to Theorem 14, the solution of 
problem (2) blows up in finite time 𝑇 > 0 and 
I(𝑢) < 0 for 0 < 𝑡 < 𝑇. The continuing proof is 
similar to Theorem 11.  
 
 
5 Blow-up and Blow-up Time with 

High (sup-critical) Initial Energy 

𝐉(𝒖𝟎) > 0 
In this section, we will prove that the solution to 
problem (2) has a finite time blow-up. To estimate 
the upper bound of the blow-up time for the high 
initial energy, we will employ the concave function 
method. To prove the main results, we require the 
use of the following lemma. 

 
Lemma 16 Assuming that 𝑢0 belongs to 𝑊0

1,𝑚(.)
(𝛺) 

and satisfies  
J(𝑢0) < 𝐴𝑚𝑖𝑛(‖𝑢0‖2

𝑚1 , ‖𝑢0‖2
𝑚2),    (53) 

where A = 𝐶3
𝑚2(𝑝1−𝑚2)

𝑝1𝑚2
, and 𝐶3 are defined in (28).  

Then 
𝑢 ∈ 𝒩− = {𝑢 ∈ 𝑊0

1,𝑚(.)(Ω)|I(𝑢) < 0} 
 

Proof. Let 𝑢(𝑡) be the weak solution of problem (2). 
Using the definition of J(𝑢), (12), (26) and (27), we 
deduce: 

J(𝑢0) ≥
1

𝑝1
I(𝑢0) +

𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢0|
𝑚(𝑥)d𝑥 

 ≥
1

𝑝1
I(𝑢0) +

𝐶3
𝑚2(𝑝1−𝑚2)

𝑝1𝑚2
min(

‖𝑢0‖2
𝑚1 ,

‖𝑢0‖2
𝑚2
) 

 =
1

𝑝1
I(𝑢0) + Amin(

‖𝑢0‖2
𝑚1 ,

‖𝑢0‖2
𝑚2
). 

 
Due to (52), I(𝑢0) < 0. We then prove that 

𝑢(𝑡) ∈ 𝒩− for all 𝑡 ∈ 0, 𝑇). By contradiction, and 

using the continuity of I(𝑢) in 𝑡, we assume that 
there exists an 𝑠 ∈ (0, 𝑇) such that 𝑢(𝑡) ∈ 𝒩− for 
0 ≤ 𝑡 < 𝑠 and 𝑢(𝑠) ∈ 𝒩, then (40) means:  

d

d𝑡
∥ 𝑢(𝑡) ∥2

2= −2I(𝑢) > 0 for 𝑡 ∈ 0, 𝑠), 
 
which give:  

‖𝑢0‖2
2 <∥ 𝑢(𝑠) ∥2

2.                           (54) 
 
By Lemma 5 (𝑖𝑖), we see that:  

J(𝑢(𝑠)) < 𝐽(𝑢0).                              (55) 
 
From the definition of J(𝑢), 𝑢(𝑠) ∈ 𝒩, (26), (27) 
and (53), we stem:  

J(𝑢(𝑠)) ≥
1

𝑝1
I(𝑢(𝑠)) +

𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢(𝑠)|𝑚(𝑥)d𝑥

=
𝑝1 −𝑚2

𝑝1𝑚2
∫
Ω

|∇𝑢(𝑠)|𝑚(𝑥)d𝑥

≥
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑝1𝑚2
min(‖𝑢(𝑠)‖2

𝑚1 , ‖𝑢(𝑠)‖2
𝑚2)

= Amin(‖𝑢(𝑠)‖2
𝑚1 , ‖𝑢(𝑠)‖2

𝑚2),

 

then additional joining (52) and (53), we obtain  
Amin(‖𝑢(𝑠)‖2

𝑚1 , ‖𝑢(𝑠)‖2
𝑚2) 

 ≤ J(𝑢(𝑠)) < 𝐽(𝑢0) <
𝐴𝑚𝑖𝑛(‖𝑢0‖2

𝑚1 , ‖𝑢0‖2
𝑚2), 

this contradicts (53).  
 

Next, we prove the finite time blow-up of the 
solution under J(𝑢0) > 0. We estimate the upper 
and lower bounds of the blow-up time under the 
support of Lemma 9 and Theorem 11. 

 
Theorem 17 Assuming 𝑢0 ∈ 𝑊0

1,𝑚(.)
(𝛺), and 

𝐽(𝑢0) > 0, let 𝑝(. ) satisfy (H) and (52) hold. Then, 

the solution 𝑢(𝑥, 𝑡) of problem (2) blows up in finite 

time. An upper bound estimate of the blow-up time 

is provided.  
0 < 𝑡∗ ≤

𝑐

(𝛼 − 1)𝜀−1‖𝑢0‖2
4, 

where 1 < 𝛼 < Amin(‖𝑢0‖2
𝑚1 ,‖𝑢0‖2

𝑚2)

J(𝑢0)
, 

 𝜀 <
2(Amin(‖𝑢0‖2

𝑚1 ,‖𝑢0‖2
𝑚2)−𝛼J(𝑢0))

𝛼‖𝑢0‖2
2 , and 𝑐 >

1

4
𝜀−2‖𝑢0‖2

4.  
 

Proof. We first assume that 𝑢 exists in the classical 
sense on Ω × 0,∞) i.e.,  𝑇max = +∞ (The interval 
of existence of 𝑢 is unbounded, or 𝑢 is defined in 
the whole interval (0, +∞)), and then with the 
condition (52) show that this leads to a 
contradiction. We show an 𝜑(𝑡) of the following 
form;  
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𝜑(𝑡):= ∫
𝑡

0

∥ 𝑢 ∥2
2 d𝜏, for  0 < 𝑡 < ∞, 

then we have  
𝜑′(𝑡) =∥ 𝑢 ∥2

2 for all 𝑡 ∈ 0,∞). 
 
From (40) and the definition of J(𝑢), I(𝑢), we have:  

𝜑′′(𝑡) =
d

d𝑡
∥ 𝑢 ∥2

2= −2I(𝑢)

= −2(∫
Ω

|∇𝑢|𝑚(𝑥)d𝑥 − ∫
Ω

|𝑢|𝑝(𝑥)d𝑥)

≥ −2𝑚2

(

 
 
∫
Ω

1

𝑚(𝑥)
|∇𝑢|𝑚(𝑥)d𝑥

−∫
Ω

1

𝑝(𝑥)
|𝑢|𝑝(𝑥)d𝑥

)

 
 

+2
𝑝1 −𝑚2

𝑝1
∫
Ω

|𝑢|𝑝(𝑥)d𝑥

= −2𝑚2J(𝑢) + 2
𝑝1 −𝑚2

𝑝1
∫
Ω

|𝑢|𝑝(𝑥)d𝑥.

 

(56) 
we distinguish two cases: 
 

Case 1 J(𝑢) ≥ 0 for all 𝑡 > 0. Through (52) we can 
choose 𝛼 as such  

1 < 𝛼 <
Amin(‖𝑢0‖2

𝑚1 ,‖𝑢0‖2
𝑚2)

J(𝑢0)
.          (57) 

 
Injecting (9) into (54), we get:  
𝜑′′(𝑡) = 2𝑚2(𝛼 − 1)J(𝑢) − 2𝑚2𝛼J(𝑢)

+2
𝑝1 −𝑚2

𝑝1
∫
Ω

|𝑢|𝑝(𝑥)d𝑥

> −2𝑚2𝛼J(𝑢) + 2
𝑝1 −𝑚2

𝑝1
∫
Ω

|𝑢|𝑝(𝑥)d𝑥

≥ −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

+2
𝑝1 −𝑚2

𝑝1
∫
Ω

|𝑢|𝑝(𝑥)d𝑥.                                  (58)

 

  
Using Lemma 16, (i.e., I(𝑢) < 0) and (40), we 
derive:  

𝜑′′(𝑡) =
d

d𝑡
∥ 𝑢 ∥2

2> 0.                     (59) 
making us (26), (27) and (58), (57) becomes: 

𝜑′′(𝑡) > −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 

  +2 𝑝1−𝑚2

𝑝1
∫Ω |∇𝑢|

𝑝(𝑥)d𝑥 

≥ −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 

+2
𝐶3
𝑚2(𝑝1 −𝑚2)

𝑝1
min(

‖𝑢‖2
𝑚1 ,

‖𝑢‖2
𝑚2
) 

> −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏 

 

+2
𝐶3
𝑚2(𝑝1−𝑚2)

𝑝1
min(

‖𝑢0‖2
𝑚1−2,

‖𝑢0‖2
𝑚2−2

)‖𝑢‖2
2 

= −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼 ∫
𝑡

0
‖𝑢𝜏‖2

2d𝜏   
+2𝐵𝑚2‖𝑢‖2

2, 
(60) 

where 
𝐵 = Amin(‖𝑢0‖2

𝑚1−2, ‖𝑢0‖2
𝑚2−2). 

 
Which gives: 

d

d𝑡
∥ 𝑢 ∥2

2− 2𝐵𝑚2‖𝑢‖2
2 > −2𝑚2𝛼J(𝑢0). 

 
Which by solving it, gives: 

∥ 𝑢 ∥2
2> ‖𝑢0‖2

2𝑒2𝐵𝑚2𝑡 +
𝛼

𝐵
J(𝑢0)(1 − 𝑒

2𝐵𝑚2𝑡). 
(61) 

Substituting (60) into (59) yields 

𝜑′′(𝑡) > −2𝑚2𝛼J(𝑢0) + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

+2𝐵𝑚2‖𝑢0‖2
2𝑒2𝐵𝑚2𝑡

+2𝑚2𝛼J(𝑢0)(1 − 𝑒
2𝐵𝑚2𝑡)

= 2𝑚2𝑒
2𝐵𝑚2𝑡 (𝐵‖𝑢0‖2

2 − 𝛼J(𝑢0))

+2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏.

 

(62) 
 

From (56) we can take 𝜀 > 0 such that: 

0 < 𝜀 < 2
𝐵‖𝑢0‖2

2 − 𝛼J(𝑢0)

𝛼‖𝑢0‖2
2 , 

 
which combining (61) leads to: 

𝜑′′(𝑡) > 𝜀𝛼𝑚2𝑒
2𝐵𝑚2𝑡‖𝑢0‖2

2 + 2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏. 

           (63) 
 
Let 𝜙 be an auxiliary function defined as: 

𝜙(𝑡):= 𝜑2(𝑡) + 𝜀−1‖𝑢0‖2
2𝜑(𝑡) + 𝛾, 

and 𝛾 > 0 large enough (if needed), so that 
4𝜀2𝛾 > (𝜑′(0))2.                 (64) 

then  
𝜙′(𝑡) = (2𝜑(𝑡) + 𝜀−1‖𝑢0‖2

2)𝜑′(𝑡), 
(65) 

and  
𝜙′′(𝑡) = (2𝜑(𝑡) + 𝜀−1‖𝑢0‖2

2)𝜑′′(𝑡) + 2(𝜑′(𝑡))
2
. 

(66) 
From (64) we obtain:  
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(𝜙′(𝑡))2 = (2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)2(𝜑′(𝑡))

2

= (
4𝑦2(𝑡) + 4𝜀−1‖𝑢0‖2

2𝜑(𝑡)

+𝜀−2‖𝑢0‖2
4 ) (𝜑′(𝑡))

2
.

 

 
Let 𝛿:= 4𝛾 − 𝜀−2(𝜑′(0))2 > 0, then  

(𝜙′(𝑡))2 = (
4𝜑2(𝑡) + 4𝜀−1‖𝑢0‖2

2𝜑(𝑡)

+4𝛾 − 𝛿
) (𝜑′(𝑡))

2

= (4𝜙(𝑡) − 𝛿)(𝜑′(𝑡))
2
,

 

(67) 
i.e.,  

4𝜙(𝑡)(𝜑′(𝑡))
2
= (𝜙′(𝑡))2 + 𝛿(𝜑′(𝑡))

2
. 

(68) 
Noting that 

  

∫
𝑡

0

(𝑢𝑡(. , 𝑠), 𝑢)d𝑠 =
1

2
∫
𝑡

0

(
d

d𝑠
‖𝑢‖2

2)d𝑠 

=
1

2
‖𝑢(𝑡)‖2

2 −
1

2
‖𝑢0‖2

2. 
Therefore,  

  

‖𝑢(𝑡)‖2
2 = ‖𝑢0‖2

2 + 2∫
𝑡

0

∫
Ω

𝑢𝑡(. , 𝑠)𝑢(𝑠)d𝑥d𝑠. 

 
Using Holder and Young’s inequalities gives:  
(𝜑′(𝑡))

2
=∥ 𝑢 ∥2

4

= (‖𝑢0‖2
2 + 2∫

𝑡

0

(𝑢, 𝑢𝜏)d𝜏)

2

≤ (‖𝑢0‖2
2 + 2(∫

𝑡

0

∥ 𝑢 ∥2
2 d𝜏)

1

2

(∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏)

1

2

)

2

= ‖𝑢0‖2
4 + 4‖𝑢0‖2

2(𝜑(𝑡))
1

2 (∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏)

1

2

+4𝜑(𝑡)∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

≤ ‖𝑢0‖2
4 + 4𝜑(𝑡)∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏 + 2𝜀‖𝑢0‖2

2𝜑(𝑡)

+2𝜀−1‖𝑢0‖2
2∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏.

 

(69) 
From (65) and (67), we get:  

  

2𝜙(𝑡)𝜙′′(𝑡) = 2(
(

2𝜑(𝑡)

+𝜀−1‖𝑢0‖2
2)𝜑

′′(𝑡)

+2(𝜑′(𝑡))
2

)𝜙(𝑡)

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)𝜙(𝑡)

+4(𝜑′(𝑡))
2
𝜙(𝑡)

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)𝜙(𝑡)

+(𝜙′(𝑡))2 + 𝛿(𝜑′(𝑡))
2
.

 

(70) 
 
Now, from (69), 66) and the value of 𝛿, we obtain: 
2𝜙(𝑡)𝜙′′(𝑡) − (1 + 𝛼)(𝜙′(𝑡))2

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)(𝑡)𝜙(𝑡)

+(𝜙′(𝑡))2 + 𝛿(𝜑′(𝑡))
2
− (1 + 𝛼)(𝜙′(𝑡))2

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)𝜙(𝑡)

−𝛼(𝜙′(𝑡))2 + 𝛿(𝜑′(𝑡))
2

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)𝜙(𝑡)

−𝛼(4𝜙(𝑡) − 𝛿)(𝜑′(𝑡))
2
+ 𝛿(𝜑′(𝑡))

2

= 2(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)𝜑′′(𝑡)𝜙(𝑡)

−4𝛼𝜙(𝑡)(𝜑′(𝑡))
2
+ 𝛿(1 + 𝛼)(𝜑′(𝑡))

2

> 2𝜙(𝑡) (
2𝜑(𝑡)

+𝜀−1‖𝑢0‖2
2)𝜑

′′(𝑡) − 4𝛼𝜙(𝑡)(𝜑′(𝑡))
2

= 2𝜙(𝑡) (
(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2

2)𝜑′′(𝑡)

−2𝛼(𝜑′(𝑡))
2 ) .

 

 
Recalling 62), (68), (3), and the fact that 𝑒2𝑚𝐵𝑡 > 1, 
it results:  
(2𝜑(𝑡) + 𝜀−1‖𝑢0‖2

2)𝜑′′(𝑡) − 2𝛼(𝜑′(𝑡))
2

> (2𝜑(𝑡) + 𝜀−1‖𝑢0‖2
2)(

𝑚2𝜀𝛼‖𝑢0‖2
2e2𝑚2𝐵𝑡

+2𝑚2𝛼∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

)

−2𝛼(𝜑′(𝑡))
2

> 𝑚2𝛼(2𝜑(𝑡) + 𝜀
−1‖𝑢0‖2

2)

× (𝜀‖𝑢0‖2
2 + 2∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏) − 2𝛼(𝜑′(𝑡))

2

 = 𝑚2𝛼

(

 
 
 

2𝜀‖𝑢0‖2
2𝜑(𝑡) + ‖𝑢0‖2

4

+4𝜑(𝑡)∫
𝑡

0

‖𝑢𝜏‖2
2d𝜏

+2𝜀−1‖𝑢0‖2
2∫

𝑡

0

‖𝑢𝜏‖2
2d𝜏

)

 
 
 

−2𝛼(𝜑′(𝑡))
2

   ≥ (𝑚2𝛼 − 2𝛼)(𝜑
′(𝑡))

2
≥ 0,
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that is   

𝜙(𝑡)𝜙′′(𝑡) −
1 + 𝛼

2
(𝜙′(𝑡))2 > 0, 

 
Now, in this case we show that 𝑇 cannot be 

infinite, and therefore there is no weak solution all 
the time. 
From Lemma 9, it follows that there exists a 0 <
𝑡1 < +∞ such that 𝜙(𝑡) → ∞   as 𝑡 → 𝑡1, where  

0 < 𝑡1 ≤
2𝜙(0)

(𝛼 − 1)𝜙′(0)
=

𝛾

(𝛼 − 1)𝜀−1‖𝑢0‖2
4. 

 
Since 𝜑(𝑡) is continuous with respect to 𝜙(𝑡), 

we conclude that there exists a 𝑇1 ≤ 𝑡1 such that 
lim
𝑡→𝑇1

‖𝑢(𝑠)‖2
2𝑑𝑠 = +∞ ⇒ lim

𝑡→𝑇1
sup‖𝑢(𝑡)‖2

2 = +∞. 

Hence, 𝑢(𝑥, 𝑡) discontinuing at some finite time 
𝑇1. Now, by considering the continuity of 𝜙 with 
respect to 𝑦, we can conclude that 𝜑(𝑡) tends to 
infinity at some finite time, that is to means, 𝑢(𝑥, 𝑡) 
not exist for all time, i.e. 𝑢(𝑥, 𝑡) blows up at a time 
𝑇1, which will lead to the nonexistence result stated 
in the theorem, then 𝜙 blows up at time 𝑇1 in 𝐿2(Ω)-
norm, which contradicts. Hence, for the data satisfy 
(52) any solution possesses finite explosion time. 

 
Case 2 Assume that there exists 𝑡0 > 0 such that 
𝐽(𝑢(𝑡0)) < 0, (𝑢(𝑡0) ≠ 0). Noting that 𝐽(0) > 0 
and considering the continuity of 𝐽(𝑡), we know that 
there exists 𝑡1 ∈ (0, 𝑡0) such that 𝐽(𝑡1) = 0. In 
addition, we apply the monotonicity of 𝐽(𝑡) to 
obtain 𝐽(𝑡) ≥ 0, 0 < 𝑡 ≤ 𝑡1. In a similar way as in 
Case 1, we can prove that the solution to problem 
(2) break down before the time 𝑡0. 
 

Combining Case 1 and Case 2, we conclude the 
blow-up of solution in finite time. Since J(𝑢0) <
𝐴𝑚𝑖𝑛(‖𝑢0‖2

𝑚1 , ‖𝑢0‖2
𝑚2) indicates I(𝑢) < 0, we can 

get the same lower bound of blow-up time as 
J(𝑢0) ≤ 𝑑. This ends the proof.  

 
Theorem 18 Under the assumptions 

𝑚1 < 𝑝2 < 𝑚1 +
2𝑚1

𝑛
, 

𝑑 < 𝐽(𝑢0) < 𝐴𝑚𝑖𝑛(‖𝑢0‖2
𝑚1 , ‖𝑢0‖2

𝑚2). The lower 

bounded of blow-up time of solution for problem (2) 

estimate by 
 

𝑡̅ > 𝑚𝑎𝑥 (
∥ 𝑢0 ∥2

2−𝜂𝑝2

(𝜂𝑝2 − 2)𝛿
,
∥ 𝑢0 ∥2

2−𝜂𝑝1

(𝜂𝑝1 − 2)𝛿
) > 0. 

where c𝑔, 𝜂, 𝛿 and 𝜃 are defined as in Theorem 11.  
Proof. From Lemma 16, we see that I(𝑢) < 0. Then, 
the rest proof is analogous to Theorem 11.  
 

Remark 19 Conditions assumed in Theorem 17 are 

compatible. To show this, we fix 𝑢0 ∈ 𝑊0
1,𝑚(.)

(𝛺) 
large enough so that 𝐽(𝑢0) > 0 and 𝐽(𝑢0) <

𝐴𝑚𝑖𝑛(‖𝑢0‖2
𝑚1 , ‖𝑢0‖2

𝑚2), where 𝐴 =
𝐶3
𝑚2(𝑝1−𝑚2)

𝑝1𝑚2
, 

and 𝐶3 are defined by (28). Let 𝑢0 = 𝜆𝜙, with 

‖𝑢0‖2 ≤ 1, it is permissible because if it is not, we 

can take ‖
𝑢0

|𝑢0|
‖
2
 instead of ‖𝑢0‖2, and 𝜆 > 0 is 

some positive constant which will be defined later, 

𝜙 is non-zero function in 𝑊0
1,𝑝(.)

(𝛺) that will be 

defined later. First, for 𝜙 ∈ 𝑊0
1,𝑝(.)

(𝛺) we have  
‖𝑢0‖2

𝑚2 = 𝜆𝑚2 ∥ 𝜙 ∥2
𝑚2> 0.         (71) 

 
For this fixed 𝜙 and 𝑚2 < 𝑝1, we pick 𝜆𝑝1−𝑚2 <
𝑝1𝐶3

𝑚2

𝑚2

∥𝜙∥2
𝑚2

∥𝜙∥𝑝1
𝑝1 , using (11) to ensure that:  

  

J(𝑢0) = ∫
Ω

1

𝑚(𝑥)
|∇𝑢0|

𝑚(𝑥)d𝑥 − ∫
Ω

1

𝑝(𝑥)
|𝑢0|

𝑝(𝑥)d𝑥

≥
𝐶3
𝑚2

𝑚2

‖𝑢0‖2
𝑚2 −

1

𝑝1
‖𝑢0‖𝑝1

𝑝1

= 𝐶3
𝑚2
𝜆𝑚2

𝑚2
∥ 𝜙 ∥2

𝑚2−
𝜆𝑝1

𝑝1
∥ 𝜙 ∥𝑝1

𝑝1

= 𝜆𝑚2 (
𝐶3
𝑚2

𝑚2
∥ 𝜙 ∥2

𝑚2−
𝜆𝑝1−𝑚2

𝑝1
∥ 𝜙 ∥𝑝1

𝑝1) > 0.

 

(72) 
 
Next, we verify the condition (52). By comparing 
(35) and (36), we only need to verify:  

∥ 𝜙 ∥2
𝑚2>

𝐶3
𝑚2

𝑚2
∥ 𝜙 ∥2

𝑚2−
𝜆𝑝1−𝑚2

𝑝1
∥ 𝜙 ∥𝑝1

𝑝1

A
. 

 
A simple calculation shows that we need: 

𝜆𝑝2−𝑚2 >
𝐶3
𝑚2𝑝1 ∥ 𝜙 ∥2

𝑚2

𝑚2 ∥ 𝜙 ∥𝑝1
𝑝1

−
A𝑝1 ∥ 𝜙 ∥2

𝑚2

∥ 𝜙 ∥𝑝1
𝑝1

, 

also 

𝜆𝑝2−𝑚2 ∈ ]
𝐶3
𝑚2𝑝1 ∥ 𝜙 ∥2

𝑚2

𝑚2 ∥ 𝜙 ∥𝑝1
𝑝1

−
A𝑝1 ∥ 𝜙 ∥2

𝑚2

∥ 𝜙 ∥𝑝1
𝑝1

,
𝐶3
𝑚2𝑝1 ∥ 𝜙 ∥2

𝑚2

𝑚2 ∥ 𝜙 ∥𝑝1
𝑝1

[ 

if 𝐶3
𝑚2𝑝1∥𝜙∥2

𝑚2

𝑚2∥𝜙∥𝑝1
𝑝1 −

A𝑝1∥𝜙∥2
𝑚2

∥𝜙∥𝑝1
𝑝1 > 0, 

𝜆𝑝2−𝑚2 ∈ ]0,
𝐶3
𝑚2𝑝1 ∥ 𝜙 ∥2

𝑚2

𝑚2 ∥ 𝜙 ∥𝑝1
𝑝1

[ 

if 𝐶3
𝑚2𝑝1∥𝜙∥2

𝑚2

𝑚2∥𝜙∥𝑝1
𝑝1 −

A𝑝1∥𝜙∥2
𝑚2

∥𝜙∥𝑝1
𝑝1 < 0. 
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Hence, there exists an initial value 𝑢0 = 𝜆𝜙 to 
satisfy J(𝑢0) > 0, then the last condition in 
Theorem 17 follows.  

 
 

6   Conclusion 
The findings related to diffusion problems play a 
crucial role in engineering applications by offering 
valuable insights into the behavior of materials, 
systems, and processes in real-world situations. 
These insights are essential across various 
engineering fields, including materials science, 
chemical engineering, and biomedical engineering, 
as they help engineers design, optimize, and predict 
the behavior of complex systems. 

By applying the results from diffusion 
problems, engineers can create more efficient, 
sustainable, and innovative solutions to real-world 
challenges, ultimately enhancing the quality of life 
and promoting economic growth. 

Blow-up phenomena refer to the rapid growth or 
explosion of a solution to a differential equation 
within a finite time. In the context of reaction-
diffusion equations, blow-up can occur when the 
strength of the reaction term surpasses that of the 
diffusion term, leading to unbounded growth in the 
solution. Analyzing reaction-diffusion equations 
that involve a non-autonomous m(.)-Laplacian and 
variable exponent nonlinearities can complicate the 
analysis due to these nonlinearities. This complexity 
may result in challenging mathematical issues and 
could potentially lead to blow-up phenomena in 
certain cases. To determine blow-up outcomes for a 
specific reaction-diffusion equation, a thorough 
analysis of the equation's properties and behavior is 
generally required. This may involve techniques 
such as energy methods, maximum principles, or 
numerical simulations. 

In this paper, we consider a reaction-diffusion 
equation with variable exponent sources. We 
examine three initial energy levels: sub-critical, 
critical, and supercritical. For the sub-critical initial 
energy, we present the blow-up result and estimate 
both the lower and upper bounds of the blow-up 
time. In the case of critical initial energy, we 
demonstrate the global existence, asymptotic 
behavior, finite-time blow-up, and the lower bound 
of the blow-up time. Finally, for the supercritical 
initial energy, we establish the occurrence of finite-
time blow-up and estimate the lower and upper 
bounds of the blow-up time. 
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