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Abstract: - Decentralized stabilizing controller design for a system to achieve robust tracking of certain
reference signals despite certain disturbances and modeling uncertainties is an important problem, which is
known as the decentralized robust servomechanism problem. In this work, this problem is considered for
linear time-invariant descriptor-type discrete-time-delay systems. The necessary and sufficient conditions for
the solvability of this problem are presented. The structure of the controller which solves this problem, when
a solution exists, is also given.
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1 Introduction
Many practical systems involve time delays, [1].
Dynamics of such systems, known as time-delay
systems, [2], can be described by delay-differential
equations, [3]. However, there are also many
examples of time-delay systems (e.g., telerobotic
systems, [4]), whose dynamics can be described
only by delay-differential equations coupled by
delay-algebraic equations. Such systems are known
as descriptor-type time-delay systems, [5]. Time
delays in a system may be discrete or distributed,
[6]. Although distributed delay is more challenging,
discrete delays occur more naturally, [7].

An important problem in control engineering is
the so-called servomechanism problem, [8], which
is to design a controller for a plant such that the
controlled system is asymptotically stable and the
plant output asymptotically tracks a given reference
despite certain disturbances. Furthermore, since it is
not in general possible to exactly model any practical
system, [9], it is important that such tracking takes
place despite certain uncertainties in the plant model.
The problem of designing a controller for a plant
such that the controlled system is asymptotically
stable and the plant output asymptotically tracks

a given reference despite certain disturbances and
uncertainties in the plant model is called the robust
servomechanism problem, [10].

For many large-scale systems, it is not possible
or practical to collect all the measurements in a
centralized place, process them there and dispatch
the control signals to all the input ports, [11]. Such
systems require decentralized control, [12], where
each local control agent applies local controls, based
on local measurements. Large-scale systems are
especially prone to time-delays, [13], [14].
Decentralized controller design for such systems
has been considered in many works, such as [15],
[16], [17], [18], among others.

Robust servomechanism problem under a
decentralized control stucture was first considered
in [19]. A number of approaches to solve this
problem, which is commonly known as the
decentralized robust servomechanism problem, have
also been suggested, [20], [21].

Although, earlier consideration of robust
servomechanism and decentralized robust
servomechanism problems were restricted to
delay-free systems, recently they have also
been considered for time-delay systems, [22].
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The robust servomechanism problem for
centralized descriptor-type time-delay systems
was considered in [23]. Decenralized robust
servomechanism problem for non-descriptor-type
distributed-time-delay systems was then considered
in [24]. In the present work, we consider the
decentralized robust servomechanism problem
for linear time-invariant (LTI) descriptor-type
discrete-time-delay systems. We present the
necessary and sufficient conditions for the solvability
of this problem and also present the structure of
the controller which solves this problem when a
solution exists.

After explaining the notation in the next
paragraph, we formally state our problem in
the next section. We present some necessary
preliminaries in Section 3. Our main results are
given in Section 4. Finally, Section 5 includes some
concluding remarks.

Throughout, R and C denote the sets of real
and complex numbers, respectively. Rk denotes the
space of k-dimensional real vectors. Re(·) denotes
the real part of (·). Ik and I respectively denote the
k × k-dimensional identity matrix and an identity
matrix of appropriate dimensions. 0k, 0k×l, and
0, respectively denote the k × k-dimensional zero
matrix, k × l-dimensional zero matrix, and a zero
matrix of appropriate dimensions. det(·) and rank(·)
respectively denote the determinant and the rank of
(·). bdiag(· · ·) denotes a block diagonal matrix with
(· · ·) on the main diagonal. For a (vector) function
g, ġ denotes the derivative of g. ⊗ denotes the
Kronecker product. Finally, p denotes the
differentiation operator and dθ denotes the delay
operator by θ; i.e., for any positive integer k and
any at least k-times differentiable (vector) function
f ,

pkf(t) =
dk

dtk
f(t) (1)

and, for any (vector) function f and any
non-negative number θ,

dθf(t) = f(t− θ) . (2)

Furthermore, as a natural extension of (1),
p0f(t) = f(t), for any (vector) function f .

2 Problem Statement
We consider an LTI decentralized descriptor-type
time-delay system with µ discrete time-delays

and ν control agents. Such a system contains a
delay-differential part and a delay-algebraic part,
dynamics of which can be described respectively as

ξ̇1(t) =

µ∑
i=0

[
A11
i ξ1(t− θi) +A12

i ξ2(t− θi)

+B1
i ω(t− θi) +

∑ν
j=1C

1
ijυj(t− θi)

]
(3)

and

0 =

µ∑
i=0

[
A21
i ξ1(t− θi) +A22

i ξ2(t− θi)

+B2
i ω(t− θi) +

∑ν
j=1C

2
ijυj(t− θi)

]
, (4)

where ξ1(t) ∈ Rn1 and ξ2(t) ∈ Rn2 are the
state vectors for the delay-differential and
delay-algebraic parts, respectively, at time t.
Furthermore, ω(t) ∈ Rnω is the disturbance
input and υj(t) ∈ Rnυj is the control input
of the jth control agent (j = 1, . . . , ν) at
time t. Moreover, θi > 0, i = 1, . . . , µ,
are the time-delays and θ0 := 0 (i.e., i = 0
indicates the delay-free part of the system). All the
matrices shown in (3)–(4) are appropriately
dimensioned constant real matrices. To assure the
existence and uniqueness of solutions to (3)–(4),
it is assumed that det

(
A22

0

)
6= 0, [5]. Although

the system (3)–(4) in general has infinitely many
modes, it is known that it has only finitely many
modes with real part greater than λf , [3], where

λf := sup

{
Re(s) | det

(
µ∑
i=0

A22
i e
−sθi

)
= 0

}
.

(5)
Since it is not in general possible to robustly stabilize
an LTI time-delay system by a proper LTI controler
if it has infinitely many modes with non-negative
real part, [25], here we also assume that λf < 0.

The measurement ηj(t) ∈ Rnηj , which is given
by

ηj(t) =

µ∑
i=0

[
D1
ijξ1(t− θi) +D2

ijξ2(t− θi)

+Eijω(t− θi) +
∑ν

k=1Fijkυk(t− θi)
]
, (6)

is assumed to be available to the jth control agent
(j = 1, . . . , ν) at time t. Furthermore, the jth control
agent is suppose to regulate the output ψj(t) ∈ Rnψj ,
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which is given by

ψj(t) =

µ∑
i=0

[
G1
ijξ1(t− θi) +G2

ijξ2(t− θi)

+Hijω(t− θi) +
∑ν

k=1Kijkυk(t− θi)
]
. (7)

All the matrices shown in (6)–(7) are appropriately
dimensioned constant real matrices.

Here, the jth output, ψj(t), is required to
asymptotically track the jth reference, ρj(t) ∈
Rnψj , i.e., it is required that the jth tracking error,
εj(t) ∈ Rnψj , given by

εj(t) := ψj(t)− ρj(t) , (8)

satisfies

lim
t→∞

εj(t) = 0 , j = 1, . . . , ν . (9)

It is assumed that the jth reference, ρj(t),
is available to the jth control agent on-line, not
necessarily known in advance, but satisfies

Djρj(t) = 0 , j = 1, . . . , ν , (10)

where Dj is a linear delay-differential operator.
On the other hand, the disturbance, ω(t), is not

available to any one of the control agents, not
necessarily known in advance, but satisfies

Dωω(t) = 0 , (11)

where Dω is another linear delay-differential
operator.

Let D be the least common multiple of D1, . . .,
Dν , Dω, which is given by

D := pm +

m−1∑
k=0

µ∑
i=0

αkip
kdθi , (12)

where m is the differential degree of D and αki’s
are real constant coefficients. Operators p and dθ
are defined at the end of Section 1. We note that
when m = 1 (e.g., when all the references and
the disturbance include only step-like signals), (12)
reduces to D := p +

∑µ
i=0 α0idθi . Here, we used

the same time-delays both in the system definition
(3)–(4) & (6)–(7) and in the delay-differential
operator D. This, however, can be done without
loss of generality, since any time-delay present in
the system but not in D, can be included in D
by multiplying them by zero coefficients, and any
time-delay present in D but not in the system,

can be included in the system definition (3)–(4) &
(6)–(7) by multiplying them by zero matrices.

We can now formally state our problem.

Decenralized Robust Servomechanism Problem
(DRSP): Design ν decentralized LTI (possibly
time-delay) feedback controllers (each from ηj to
υj , j = 1, . . . , ν) for the system described by
(3)–(4) & (6)–(7), such that the closed-loop system is
asymptotically stable and, for all initial condtions of
the system (3)–(4), for all references ρj(t), satisfying
(10), for all disturbances ω(t) satisfying (11), and
for all non-destabilizing perturbations in the system
matrices in (3)–(4) & (6)–(7), (9) is satisfied.

Since DRSP is concerned with asymptotic
stability, in the remainder of this paper, by
“stable” we will mean asymptotically stable and by
“stabilization” we will mean asymptotic
stabilization.

3 Preliminaries

Defining ξ(t) :=

[
ξ1(t)
ξ2(t)

]
∈ Rnξ , where

nξ := n1 + n2, system (3)–(4) & (6)–(7) can be
compactly written as

Lξ̇(t) =

µ∑
i=0

[
Aiξ(t− θi) +Biω(t− θi)

+
∑ν

j=1Cijυj(t− θi)
]

(13)

ηj(t) =

µ∑
i=0

[
Dijξ(t− θi) + Eijω(t− θi)

+
∑ν

k=1Fijkυk(t− θi)
]

(14)

ψj(t) =

µ∑
i=0

[
Gijξ(t− θi) +Hijω(t− θi)

+
∑ν

k=1Kijkυk(t− θi)
]
, (15)

j = 1, . . . , ν, where L :=

[
In1

0
0 0n2

]
,

Ai :=

[
A11
i A12

i

A21
i A22

i

]
, Bi :=

[
B1
i

B2
i

]
,

Cij :=

[
C1
ij

C2
ij

]
, Dij :=

[
D1
ij D2

ij

]
, and

Gij :=
[
G1
ij G2

ij

]
. Any λ ∈ C, satisfying

det
(
λL−

∑µ
i=0Aie

−λθi
)

= 0 is said to be a
mode of the system (13) (equivalenly of the system
(3)–(4)). A mode with a nonnegative real part is
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said to be an unstable mode. Although system (13)
has in general infinitely many modes, there are only
finitely many modes λ with Re(λ) ≥ λf , given by
(5). By the assumption made in Section 2, we have
λf < 0. Hence, system (13) has only finitely many
unstable modes. A descriptor-type LTI time-delay
system of the form (13) is stable if and only if it
has no unstable modes and λf < 0, [26].

Consider the decentralized LTI static feedback
law for the system (13)–(14):

υj(t) = Jjηj(t) , j = 1, . . . , ν , (16)

where Jj , j = 1, . . . , ν, are appropriately
dimensioned constant real matrices satisfying
det (I − JF0) 6= 0, where J := bdiag(J1, . . . , Jν)
and

F0 :=

 F011 · · · F01ν
...

...
F0ν1 · · · F0νν

 .

This condition is required for the well-posedness of
the closed-loop system, [27].

A mode of (13) which remains a mode of
the closed-loop system under all controls of the
form (16) is known as a decentralized fixed
mode (DFM) of (13)–(14), [28]. A necessary and
sufficient condition for λ ∈ C to be a DFM of
(13)–(14) is that for some κ ∈ {0, . . . , ν} and
{k1, . . . , kκ} ⊂ {1, . . . , ν}, where k1, . . . , kκ are
distinct ({k1, . . . , kκ} = ∅ if κ = 0),

rank


Ā(λ)− λL C̄k1(λ) · · · C̄kκ(λ)
D̄kκ+1(λ) F̄kκ+1,k1(λ) · · · F̄kκ+1,kκ(λ)

...
...

...
D̄kν (λ) F̄kν ,k1(λ) · · · F̄kν ,kκ(λ)


< nξ , (17)

where {kκ+1, . . . , kν} := {1, . . . , ν} \ {k1, . . . , kκ},
Ā(s) :=

∑µ
i=0Aie

−sθi , C̄j(s) :=
∑µ

i=0Cije
−sθi ,

D̄j(s) :=
∑µ

i=0Dije
−sθi , and F̄jk(s) :=∑µ

i=0 Fijke
−sθi , [27]. Given that λf < 0, a

necessary and sufficient condition for the
existence of a (possibly dynamic) decentralized LTI
feedback controller which stabilizes (13)–(14) is that
(13)–(14) must not have any unstable DFMs, [27].
We note that, all the modes of the system (13),
which has real part greater than λf (hence all the
unstable modes, since λf < 0) can be found using
the spectral discretization method of [29]. Once
these modes have been found, the test (17) can be
used to determine all unstable DFMs, if any.

4 Main Results
In this section, the necessary and sufficient
conditions for the solvability of DRSP and (when
a solution exists) the structure of the controller
which solves this problem will be presented. For this
purpose, let us first define the fictitious system:

φ̇(t) =

µ∑
i=0

Miφ(t− θi) , (18)

where φ(t) ∈ Rm is the state vector at time t,

M0 :=


0 0 · · · 0 −α00

1 0 −α10

0 1 −α20
...

. . .
...

0 1 −αm−1,0

 ,

and, for i = 1, . . . , µ,

Mi :=


0 0 · · · 0 −α0i

0 0 · · · 0 −α1i

0 0 · · · 0 −α2i
...

...
...

...
0 0 · · · 0 −αm−1,i


(which reduce to Mi := −α0i, i = 0, . . . , µ, when
m = 1), where αki’s are the coefficients in (12).
Then, for some arbitrary matrices N1, . . ., Nν , Nω

(these matrices, as well as the initial condition of
(18) are arbitrary, since ρ1(t), . . ., ρν(t), and ω(t)
are unknown apart from the fact that they satisfy
(10) and (11)), ρ1(t), . . ., ρν(t), and ω(t) can be
expressed as

ρj(t) = Njφ(t) , j = 1, . . . , ν , (19)

and
ω(t) = Nωφ(t) . (20)

To avoid triviality, it is assumed that the system
(18) is totally unstable, i.e., limt→∞ φ(t) = 0 only
if φ(θ) = 0, for all θ ∈ [−θmax, 0], where θmax is
the maximum time-delay in (12). If this assumption
does not hold, then limt→∞ φ(t) = 0, for any initial
condition of (18), which in turn implies
limt→∞ ρj(t) = 0, j = 1, . . . , ν, and
limt→∞ ω(t) = 0. Thus, DRSP reduces to a
decentralized stabilization problem and any
decentralized controller which stabilizes (13)–(14)
(which exists if and only if (13)–(14) does not
have any unstable DFMs, [27]) also solves DRSP.
Note that, this assumption means that there exists
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at least one λ ∈ C with Re(λ) ≥ 0, such that
det
(
λI −

∑µ
i=0Mie

−λθi
)

= 0. In fact, typically,
(18) has some modes with zero real parts (i.e.,
det
(
λI −

∑µ
i=0Mie

−λθi
)

= 0, for some λ ∈ C
with Re(λ) = 0) so that the references and/or the
disturbance contain some undamped oscillations
and/or some polynomials (e.g., step, ramp, etc.).

Furthermore, again to avoid triviality, we also
assume that the system (18) with output

ρ1(t)
...

ρν(t)
ω(t)

 =


N1
...
Nν

Nω

φ(t) , (21)

is spectrally observable, [2]. If this assumption
does not hold, it means that the system (18) has
some dynamics which affect neither any one of the
references, nor the disturbance.

We note that both of the above two assumptions
are necessary only for the necessity part of our main
result (Theorem 1 below). Even if any one of these
two assumptions do not hold, the sufficiency part
of Theorem 1 continues to hold and the controller
described below (which is depicted in Fig. 1 for the
case ν = 2) still solves DRSP.

Next, we note that, in order to achieve
robust tracking under the above assumptions, i.e., in
order to achieve (9), for all uncertainties in the
matrices appearing in (6) and (7), by decenralized
feedback, the output ψj(t) must be included in the
measurement ηj(t), for each j = 1, . . . , ν, [19].
Therefore, here we also assume that for some
non-negative integers µ̂j , some positive delays θ̂ij ,
i = 1, . . . , µ̂j , and some appropriately dimensioned
matrices Pij , i = 0, . . . , µ̂j ,

ψj(t) =

µ̂j∑
i=0

Pijηj(t− θ̂ij) , j = 1, . . . , ν , (22)

where θ̂0j := 0, j = 1, . . . , ν. We note that in many
cases we may have µ̂j = 0, for some or all j, in
which case, (22) will reduce to ψj(t) = P0jηj(t).

Now, to present our main result, let us define
the following decentralized control system with state
vector ξ̂(t) ∈ Rnξ+mnψ , where nψ :=

∑ν
j=1 n

ψ
j ,

inputs υ̂j(t) ∈ Rnυj , and measurements η̂j(t) ∈
Rnηj+mn

ψ
j , j = 1, . . . , ν:

L̂
˙̂
ξ(t) =

µ∑
i=0

[
Âiξ̂(t− θi) +

∑ν
j=1Ĉij υ̂j(t− θi)

]
(23)

η̂j(t) =

µ∑
i=0

[
D̂ij ξ̂(t− θi) +

∑ν
k=1F̂ijkυ̂k(t− θi)

]
(24)

j = 1, . . . , ν, where L̂ :=

[
L 0
0 Imnψ

]
,

Âi :=

[
Ai 0

QGi M̂i

]
, Ĉij :=

[
Cij
QKij

]
,

D̂ij :=

[
Dij 0

0 R̂ij

]
, and F̂ijk :=

[
Fijk

0mnψj ×nυk

]
,

where Q :=

[
Inψ

0(m−1)nψ×nψ

]
(which reduces to

Q := Inψ if m = 1), Gi :=

 Gi1
...
Giν

,

M̂i := Mi⊗Inψ , Kij :=

 Ki1j
...

Kiνj

, for i = 0, . . . , µ

and j, k = 1, . . . , ν. Finally, R̂0j := Im ⊗ Rj ,
and, for i = 1, . . . , µ, R̂ij := 0mnψj ×mnψ , where

Rj :=
[

0nψj ×
∑j−1
k=1 n

ψ
k

Inψj 0nψj ×
∑ν
k=j+1 n

ψ
k

]
, j =

1, . . . , ν, where
∑0

k=1(·) and
∑ν

k=ν+1(·) are to be
interpreted as zero (i.e., the first zero block does not
appear in R1 and the last zero block does not appear
in Rν).

We can now state our main result:
Theorem 1: There exists a solution to DRSP if and
only if the decentralized control system (23)–(24)
does not have any unstable DFMs.

Proof: First, to prove the necessity, let us define

ε(t) :=

 ε1(t)
...

εν(t)


and

ε̃(t) :=



ε(t) , if m = 1
εm−1(t)

...
ε1(t)
ε(t)

 , if m ≥ 2
,

where (for m ≥ 2)

ε1(t) := ε̇(t) +

µ∑
i=0

αm−1,iε(t− θi) ,

and (for m ≥ 3)

εl(t) :=
d

dt
εl−1(t) +

µ∑
i=0

αm−l,iε(t− θi) ,
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for l = 2, . . . ,m− 1. Note that, these relations give

d

dt
εm−1(t) = Dε(t)−

µ∑
i=0

α0iε(t− θi) ,

for m ≥ 2, and

ε̇(t) = Dε(t)−
µ∑
i=0

α0iε(t− θi) ,

for m = 1.
Next, let us also define ξ̃(t) := Dξ(t), υ̃j(t) :=

Dυj(t), j = 1, . . . , ν, and ξ̄(t) :=

[
ξ̃(t)
ε̃(t)

]
. Then,

we obtain

L̂ ˙̄ξ(t) =

µ∑
i=0

[
Âiξ̄(t− θi) +

∑ν
j=1Ĉij υ̃j(t− θi)

]
(25)

which is dynamically equivalent to (23). Note that

ε(t) = R̃ε̃(t) =
[

0nψ×nξ R̃
]
ξ̄(t) , (26)

where R̃ :=
[

0nψ×(m−1)nψ Inψ
]
, and

rank


R̃

R̃M̂0
...

R̃M̂m−1
0

 = mnψ

(which reduce to R̃ := Inψ and rank(R̃) = nψ, for
m = 1). This implies that, in order to have (9), i.e.,
in order to have limt→∞ ε(t) = 0, we must have
limt→∞ ε̃(t) = 0, [2]. This means that the part of
the system (25) which corresponds to ε̃(t) must be
stabilized. On the other hand, the remaining part,
i.e., the part which corresponds to ξ̃(t), must also be
stabilized, since this part is dynamically equivalent
to the given system (13), which must be stabilized as
a problem requirement. Thus, the system (25) must
be stabilized. Furthermore, according to the problem
statement, this stabilization must be achieved by
decentralized feedback, where υ̃j(t) must be applied
by the jth control agent, j = 1, . . . , ν. Recall that
the jth control agent can access ηj(t) and ρj(t).
However, from ηj(t), one can obtain η̃j(t) :=
Dηj(t). Furthermore, using (22), one can also obtain
ψj(t) and, thus, εj(t) := ψj(t)− ρj(t), from which
(for the case m ≥ 2)

ε1j (t) := ε̇j(t) +

µ∑
i=0

αm−1,iεj(t− θi)

and (for the case m ≥ 3)

εlj(t) :=
d

dt
εl−1j (t) +

µ∑
i=0

αm−l,iεj(t− θi) ,

for l = 2, . . . ,m− 1, can also be obtained. Thus,

ε̃j(t) :=



εj(t) , if m = 1
εm−1j (t)

...
ε1j (t)

εj(t)

 , if m ≥ 2

can also be obtained. Note that ε̃j(t) can also be
expressed as ε̃j(t) = R̂0j ε̃(t) =

∑µ
i=0 R̂ij ε̃(t − θi).

Therefore, to stabilize (25), the jth control agent can
use

η̄j(t) :=

[
η̃j(t)
ε̃j(t)

]
=

µ∑
i=0

[
D̂ij ξ̄(t− θi)

+
∑ν

k=1F̂ijkυ̃k(t− θi)
]
, (27)

j = 1, . . . , ν. However, a necessary condition for
the decentralized stabilization of (25) using the
measurements (27) is that, the decentralized control
system (25) & (27) should not have any unstable
DFMs, [27]. This proves the necessity, since (25) &
(27) is equivalent to (23)–(24).

Next, we will provide a constructive proof for
sufficiency. As a part of the jth decentralized
controller, let the jth control agent build the
following system, to be called the jth

servocompensator,

σ̇j(t) =

µ∑
i=0

M̃ijσj(t− θi) + Q̃jεj(t) , (28)

where σj(t) ∈ Rmnψj is the state vector, M̃ij :=

Mi ⊗ Inψj , i = 0, . . . , µ, Q̃j :=

[
Inψj

0(m−1)nψj ×n
ψ
j

]
(which reduces to Q̃j := Inψj if m = 1), and εj(t)

is obtained using (22) and (8).

Let σ(t) :=

 σ1(t)
...

σν(t)

 and ρ(t) :=

 ρ1(t)
...

ρν(t)

.

Then, the given system (13) augmented by the ν
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to be called stabilizing compensators (each from[
ηj(t)
σj(t)

]
to υj(t), j = 1, . . . ν), which stabilize the

system (29)–(30), [27]. Thus, these controllers also
stabilize the given system (3)–(4), since (29)
includes (3)–(4). Furthermore, the same controllers
also stabilize (23)–(24), since (23)–(24) is equivalent
to (29)–(30). Therefore, when these controllers are
applied, we have limt→∞ ξ̂(t) = 0. Thus, we also
have limt→∞ ξ̄(t) = 0, since (23) is equivalent
to (25). Thus, by (26), limt→∞ ε(t) = 0, which
implies (9). This completes the proof. �

The above proof implies that, as in the case
of delay-free systems, [19], the solution to DRSP
involves ν decentralized controllers, each of which
is composed of two parts: a servocompensator, given
by (28), and a stabilizing compensator, which is
designed to stabilize the augmented system
(29)–(30). The implementation of these controllers
is depicted in Fig. 1 for the case ν = 2. Each
servocompensator is fixed and is determined by the
dynamics of the fictitious system (18) producing
the references and the disturbance. Stabilizing
compensators, on the other hand, can be designed
using any decentralized stabilizing controller design
method developed for descriptor-type time-delay
systems (e.g., see [31] and references therein; a
software package developed in [32] may also be
used for this purpose).

5 Conclusions
Decentralized robust servomechanism problem for
LTI descriptor-type discrete-time-delay systems
has been considered. It has been shown that the
necessary and sufficient condition for the solvability
of this problem is that the decentralized control
system (23)–(24), which in fact is an augmented
system of the given plant and a fictitious
system producing the disturbance and the
references, should not have any unstable DFMs. It
has further been shown that, when this condition
is satisfied, the solution involves ν decentralized
controllers, each of which is composed of two parts:
a servocompensator, given by (28), and a
stabilizing compensator, which is designed to
stabilize the augmented system (29)–(30). Each
servocompensator is fixed and is determined by the
dynamics of the fictitious system (18) producing
the references and the disturbance. Stabilizing
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servocompensators (28) can be described as

L̂

[
ξ̇(t)
σ̇(t)

]
=

µ∑
i=0

([
Ai 0

Q̃Gi M̃i

] [
ξ(t− θi)
σ(t− θi)

]

+

[
Bi
Q̃Hi

]
ω(t− θi) +

ν∑
j=1

[
Cij
Q̃Kij

]
υj(t− θi)


−
[

0nξ×nψ

Q̃

]
ρ(t) , (29)

where Q̃ := bdiag(Q̃1, . . . , Q̃ν), M̃i :=

bdiag(M̃i1, . . . , M̃iν), and Hi :=

 Hi1
...

Hiν

,

i = 0, . . . , µ. From this system, the measurement
available to the jth control agent is[
ηj(t)
σj(t)

]
=

µ∑
i=0

([
Dij 0

0 R̃ij

] [
ξ(t− θi)
σ(t− θi)

]
+

[
Eij
0

]
ω(t− θi)

+

ν∑
k=1

[
Fijk

0

]
υk(t− θi)

)
, (30)

where R̃0j := Rj ⊗ Im, and, for i = 1, . . . , µ,
R̃ij := 0mnψj ×mnψ . Note that L̂ = T L̂T−1,[

Ai 0

Q̃Gi M̃i

]
= TÂiT

−1 ,[
Cij
Q̃Kij

]
= TĈij ,[

Dij 0

0 R̃ij

]
= D̂ijT

−1 ,

and [
Fijk

0

]
= F̂ijk ,

i = 0, . . . , µ, j, k = 1, . . . , ν, where

T :=


Inξ 0
0 Im ⊗R1
...

...
0 Im ⊗Rν

 .

This implies that, apart from the existence of
external signals ω(t) and ρ(t) in (29)–(30),
(29)–(30) is equivalent to (23)–(24), [30].
Therefore, by the hypothesis of the theorem,
(29)–(30) does not have any unstable DFMs. This
implies that there exist ν decentralized controllers,
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-
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� ρ2
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-
υ2 η2 ψ2
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Fig. 1. Implementation of the decentralized controllers for the
case ν = 2, where S is the given system (13)–(15), Pj is the
transformation (22), Rj is the jth servocompensator (28), and
Kj is the jth stabilizing compensator, j = 1, 2.

compensators, on the other hand, can be designed
using any decentralized stabilizing controller design
method developed for descriptor-type time-delay
systems.

In this work, the decentralized controllers to be
designed have been restricted to be LTI controllers.
Although LTI controllers may be desired for many
practical reasons, [33], it may be possible to
relax the necessary and sufficient conditions for
the existence of a solution if nonlinear and/or
time-varying controllers are allowed. To research
how these conditions may be relaxed might be a
direction for future work.

Furthermore, in (22), we assumed that the outputs
depend only on the present and past values of the
measurements. It may, however, be possible that
the measurements may lag the outputs, i.e., the
outputs may also depend on the future values of
the measurements. In such a case, in order to obtain
the outputs, and hence the tracking error, a predictor
would be needed. The design of such a predictor is
another subject for future research.

Another direction for future research is to
consider descriptor type systems with distributed
time delay. Yet another direction is to consider
non-linear and/or time-varying time-delay systems.
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