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1  Introduction 
We consider the one-dimensional controlled 
diffusion process {𝑋(𝑡), 𝑡 ≥ 0} defined by the 
stochastic differential equation: 

 

d𝑋(𝑡) = 𝑏0𝜃𝑢[𝑋(𝑡)]d𝑡 +
(𝛼 − 1)

2𝑋(𝑡)
d𝑡 + 𝜎d𝐵(𝑡), (1)

           
 

 
where 𝑏0, 𝜃, 𝛼 and 𝜎 are non-negative constants, the 
continuous function 𝑢(∙) is the control variable and 
{𝐵(𝑡), 𝑡 ≥ 0} is a standard Brownian motion. The 
uncontrolled process {𝑋0(𝑡), 𝑡 ≥ 0} is a Bessel 
process of dimension 𝛼 (if 𝜎 = 1). 
 
Let 𝑇(𝑥) be the first-passage time defined by: 
 
𝑇(𝑥) = inf{𝑡 > 0: 𝑋(𝑡) = 𝑑 | 𝑋(0) = 𝑥},              (2) 
 
where 𝑥 > 𝑑 ≥ 0. The aim is to find the control 
𝑢∗[𝑋(𝑡)] that minimizes the expected value of the 
cost function:  
 

 𝐽(𝑥) = ∫ {
1

2
𝑞0𝑔(𝜃)𝑢2[𝑋(𝑡)]𝑋2(𝑡) + 𝜆} d𝑡,

𝑇(𝑥)

0

  (3) 

 
where 𝑞0 and λ are positive constants and 𝑔(𝜃) is a 
non-negative function.  
 

This type of problem, in which the optimizer 
controls a stochastic process until a certain event 
occurs, is known as a homing problem; [1], [2],3]. 
Other papers on homing problems are [4], [5], [6] 
and [7]. The above problem can be interpreted as an 

optimal landing problem, with d representing 
ground level. Because the parameter 𝜆 is positive, 
the optimizer tries to reach d as quickly as possible, 
while taking the control costs into account. 
Therefore, the optimal control 𝑢∗[𝑋(𝑡)]  should in 
general be negative. Moreover, 𝜃 is a risk 
parameter. If 𝜃 < 1 (respectively, 𝜃 > 1) the 
optimizer is risk-averse (resp., risk-seeking) and 
does not want to land too rapidly (resp., wants to 
land rapidly). The case when  𝜃 = 1 is the risk-
neutral case. 

Homing problems are generally very difficult to 
solve explicitly. In the next section, using dynamic 
programming, the equation satisfied by the value 

function: 
             𝐹(𝑥) ∶= inf

𝑢[𝑋(𝑡)] 
0≤𝑡<𝑇(𝑥)

𝐸[𝐽(𝑥)]                              (4) 

 
will be derived. This equation is a non-linear 
second-order ordinary differential equation (ODE). 
From the value function, the optimal control is 
obtained explicitly. An exact solution to the ODE 
will be found in a particular problem. Moreover, the 
effect of the risk parameter 𝜃 on the optimal control 
will be presented. 
 

 

2   Dynamic Programming 
Let 

ℎ(𝑡) ≔
1

2
𝑞0𝑔(𝜃)𝑢2[𝑋(𝑡)]𝑋2(𝑡) + 𝜆.                 (5)  

 
We can write that 
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        𝐹(𝑥) ∶=  inf
𝑢[𝑋(𝑡)] 

0≤𝑡<𝑇(𝑥)

𝐸 [∫ ℎ(𝑡) d𝑡 
𝑇(𝑥)

0

].                 (6) 

 
Next, we divide the integral into two parts: 

𝐹(𝑥) = inf
𝑢[𝑋(𝑡)] 

0≤𝑡<𝑇(𝑥)

𝐸 [∫ ℎ(𝑡)
𝑡

0

d𝑡 + ∫ ℎ(𝑡) d𝑡
𝑇(𝑥)

𝑡

].   (7)  

 
The first integral above can be approximated as 
follows: 

∫ ℎ(𝑡)
𝑡

0

d𝑡 =  ℎ(0)𝑡 +  𝑜(𝑡).                                (8)  

 
Moreover, from Bellman’s principle of optimality, 
[8], we deduce that: 

inf
𝑢[𝑋(𝑡)] 

𝑡≤𝑡<𝑇(𝑥)

𝐸 [∫ ℎ(𝑡) 𝑑𝑡
𝑇(𝑥)

𝑡

]

= 𝐸[𝐹(𝑥 + 𝑡)] + 𝑜(𝑡).           (9) 
 
We have: 

𝐹(𝑥 + 𝑡) = 𝐹 (𝑥 + 𝑏0𝜃𝑢(𝑥)𝑡 +
(𝛼 − 1)

2𝑥
𝑡 + 𝜎𝐵(𝑡))

                             + 𝑜(𝑡).                                                               (10)

 

 
Using Taylor’s formula, we obtain that: 

𝐹 (𝑥 + 𝑏0𝜃𝑢(𝑥)𝑡 +
(𝛼 − 1)

2𝑥
𝑡 + 𝜎𝐵(𝑡))

= 𝐹(𝑥) + (𝑏0𝜃𝑢(𝑥)𝑡 +
(𝛼 − 1)

2𝑥
𝑡 + 𝜎𝐵(𝑡)) 𝐹′(𝑥)

+
1

2
(𝑏0𝜃𝑢(𝑥)𝑡 +

(𝛼 − 1)

2𝑥
𝑡 + 𝜎𝐵(𝑡))

2

𝐹′′(𝑥)

    + 𝑜(𝑡).                                                                             (11)

 

  
Now, we have 𝐸[𝐵(𝑡)] = 0 and 𝐸[𝐵2(𝑡)] =
𝑉𝐴𝑅[𝐵(𝑡)] =  𝑡.  It follows that: 
 

𝐸 [𝐹 (𝑥 + 𝑏0𝜃𝑢(𝑥)𝑡 +
(𝛼 − 1)

2𝑥
𝑡 + 𝜎𝐵(𝑡))]

= 𝐹(𝑥) + (𝑏0𝜃𝑢(𝑥)𝑡 +
(𝛼 − 1)

2𝑥
𝑡) 𝐹′(𝑥)

                                   + 
1

2
 𝜎2𝑡 𝐹′′(𝑥) +  𝑜(𝑡).                (12)

                                                                             

 

 
From what precedes, we find that the value function 
satisfies the equation: 

0 =  inf
𝑢(𝑥)

{
ℎ(0)𝑡 + (𝑏0𝜃𝑢(𝑥)𝑡 +

(𝛼 − 1)

2𝑥
𝑡) 𝐹′(𝑥)

 +
1

2
𝜎2𝑡 𝐹′′(𝑥) +  𝑜(𝑡)

}.      (13) 

 

Finally, dividing both sides of the above 
equation by 𝑡, and taking the limit as 𝑡 decreases 
to zero, we obtain the following proposition. 
 
Proposition 2.1. The value function F(x) satisfies 

the dynamic programming equation (DPE) 
 

0 = inf
𝑢(𝑥)

{ ℎ(0) + (𝑏0𝜃𝑢(𝑥) +
(𝛼 − 1)

2𝑥
) 𝐹′(𝑥) +

1

2
𝜎2𝐹′′(𝑥)} .

                                                                                                             (14)

 

 

 

Moreover, we have the boundary condition 𝐹(𝑑) =
0. 
 

Differentiating the DPE with respect to u(x), we 
obtain an explicit expression for the optimal control 
in terms of the value function.  
Corollary 2.1. The optimal control is given by 

                       𝑢∗(𝑥) = −
𝑏0

𝑞0𝑔()𝑥2
𝐹′(𝑥)             (15) 

for 𝑥 > 𝑑 ≥ 0.  
 
Next, substituting the expression for 𝑢∗(𝑥) into 
(14), we find that we must solve the second-order 
non-linear ODE:  

𝜆 −
1

2

𝑏0
2

𝑞0𝑥2

𝜃2

𝑔()
[𝐹′(𝑥)]2 +

𝛼 − 1

2𝑥
𝐹′(𝑥) +

𝜎2

2
𝐹′′(𝑥) = 0.   (16) 

 
Remark. Since (16) is a second-order equation, we 
need two boundary conditions to obtain a unique 
solution. In addition to the condition 𝐹(𝑑) = 0 
mentioned in Proposition 2.1, we may state that: 
                               lim

𝑥→∞
𝐹(𝑥) = ∞.                           (17)  

 
Indeed, as x tends to infinity, so will 𝑇(𝑥). 

Equation (17) then follows from the fact that all the 
terms in the cost function 𝐽(𝑥) are non-negative 
(and  is assumed to be positive). 

In the next section, a particular problem will be 
solved explicitly. 
 
 
3   A Particular Problem 
Assume that 𝑏0 = 𝑞0 = 𝜎 = 1.  Furthermore, we 
take 𝑔() = . Equation (16) then reduces to:  
 

     𝜆 −
1

2



𝑥2
[𝐹′(𝑥)]2 +

𝛼 − 1

2𝑥
𝐹′(𝑥) +

1

2
𝐹′′(𝑥) = 0.    (18) 

 
It is not easy to obtain an explicit solution to the 

above equation (without arbitrary constants).  
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However, if we try a solution of the form: 
                                𝐹(𝑥) = 𝑘(𝑥 − 𝑑)2 ,                     (19) 
 
where k is a constant to be determined, we find that 
this function does indeed satisfy (18) if and only if: 

                             𝑘 =  
𝛼

4
±

√𝛼2 + 8 𝜆

4
.                (20) 

 
In order to respect the condition in (17), we must 
choose the “+” sign. It follows that: 

         𝐹(𝑥) =
1

4
(𝛼 + √𝛼2 + 8 𝜆) (𝑥 − 𝑑)2     (21) 

 
for  𝑥 ≥ 𝑑 ≥ 0. Moreover, the optimal control is 
given by: 

𝑢∗(𝑥) = −
1

2
(𝛼 + √𝛼2 + 8 𝜆)

(𝑥 − 𝑑)

𝑥2
.   (22)  

  
Let us take 𝛼 = 2, 𝜆 = 1 and d = 0. In Figure 1, 

we show the optimal control for three different 
values of the risk parameter   when x is in the 
interval [0,10].  
 

 
Fig. 1: Optimal control for 𝑥 ∈ [0,10] when   = 
1/10 (dotted line),   = 1 (dashed line) and  = 5 
(dash-dotted line) 
 
Let us define: 
𝛾 = 1 + √1 + 2 .                                                     (23) 
 

The optimally controlled process {𝑋∗(𝑡), 𝑡 ≥ 0} 
satisfies the following stochastic differential 
equation: 

d𝑋∗(𝑡) = −
𝛾

𝑋∗(𝑡)
d𝑡 +

1

2𝑋∗(𝑡)
d𝑡 + 𝜎d𝐵(𝑡).     (24)

           
 

 
That is, 

d𝑋∗(𝑡) =
1 − 2𝛾 

2𝑋∗(𝑡)
d𝑡 + 𝜎d𝐵(𝑡).                               (25)

           
 

 
Therefore, it is also a (generalized) Bessel process.  

Remark. For a Bessel process of dimension 𝛼  0, 
the origin is an exit boundary if 𝛼 =  0, a regular 
boundary if 0 < 𝛼 < 2, and an entrance boundary if 
𝛼  2; see, [9]. Here, the dimension of the optimally 
controlled process is equal to 2(1 − 𝛾) < 0. 

We see in Figure 1 that when  = 1/10, the 
optimizer uses much more control (in absolute 
value) than when   = 1 or  = 5. However, as can 
be seen in (25), when  is small, 𝑋∗(𝑡) will decrease 
less rapidly than when   is large. 

In Figure 2, we present the optimal control 
multiplied by  (as in (1)) for the three values of the 
risk parameter  used in Figure 1. 
 
 

 
Fig. 2: Optimal control multiplied by ,  for  𝑥 ∈
[0,10], when   = 1/10 (dotted line),   = 1 (dashed 
line) and   = 5 (dash-dotted line) 
 
Notice that the position of the curves is reversed 
compared to Figure 1. 
 

 

4   Conclusion 
In this paper, we have considered a homing problem 
for a Bessel diffusion process. The problem 
formulation involved a risk parameter in the 
definition of the controlled process and the cost 
function.  

In Section 2, we derived the dynamic 
programming equation satisfied by the value 
function. Moreover, in Section 3, we found an exact 
and explicit solution to the ODE (16) also satisfied 
by the value function in a particular problem. From 
the value function, the optimal control is deduced at 
once. In this particular problem, we also saw the 
effect of the risk parameter on the optimal control. 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.53 Mario Lefebvre

E-ISSN: 2224-2678 519 Volume 23, 2024



We could try to find other explicit solutions to 
the ODE (16). We could also try to use numerical 
methods to solve this second-order non-linear 
ordinary differential equation.  

Finally, we could compare our solution to the 
one obtained in the risk-sensitive formulation of the 
homing problem proposed in [3] and in [10].      
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