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Abstract: - In this paper, we will show that the C1-continuous B-spline functional set of polynomial degree

3p  , can be written as a linear transformation of the well-known piecewise cubic Hermite polynomials. This 

change of functional basis means that the global B-spline finite element solution is equivalent to that of usual 

piecewise finite elements in conjunction with cubic Hermite polynomials, with two degrees per nodal point, 

like those used in beam-bending analysis. In this context, we validate the equivalence between the global B-

spline solution and the piecewise solution in boundary-value and eigenvalue problems, for collocation and Ritz-

Galerkin methods. 
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1  Introduction 
The use of splines dates to the early days of 

shipbuilding and engineering. Splines were 

originally flexible strips of wood or metal used by 

shipbuilders and draftsmen to draw smooth, curved 

lines between fixed points. This practice likely 

originated in the 18th century, with splines being 

essential for creating the accurate, smooth curves 

needed in hull designs and other structural elements.  

The mathematical formalization of “B-splines” 

as smooth, piecewise-polynomial functions can be 

traced back to 1946, [1]. In the beginning, B-splines 

were defined using uncomfortable truncated powers 

but, later in 1966, B-splines were re-defined in 

terms of bell-shaped basis functions associated with 

control points or coefficients [2], as we know them 

today. 

One of the first publications on the 

implementation of B-splines in the numerical 

solution of ordinary (ODE) and partial differential 

equations (PDEs) is [3]. Later, a fast method was 

proposed to calculate B-splines and their derivatives 

by recursion [4], and this is the standard technique 

applied to this date.  

Regarding the numerical solution of ODEs and 

PDEs, B-splines were implemented initially in 

conjunction with the Collocation method [5] and 

later the Finite element method [6].  

In the B-spline collocation method, it was found 

that the polynomial degree 3p   in conjunction 

with C1-continuity (i.e., double inner knots) is ideal, 

because if two collocation points are taken between 

two successive fixed points (knots), they create so 

many equations as the number of the unknowns. 

The ideal position for these two collocation points is 

the image of the Gauss points, [7].  

In the B-spline finite element method, the 

standard is to use basis functions of C2-continuity 

(i.e., single inner knots) [6]. Nevertheless, when an 

elastic continuum is coupled with beams or plates, 

rotational degrees of freedom (DOF) appear, and 

thus more than two DOF ( ,u u x  ) may be 

associated with each nodal point. This in turn 

suggests the utilization of C1-continuity 

approximation of the displacement field, [8]. 

In this paper, we shall show that despite the 

global character of the C1-continuous cubic B-spline 

approximation, there is an inherent linear 

relationship between this functional basis and the 

four cubic Hermite polynomials (local 

approximation) in the interior of the knot spans. 

This in turn explains the coincidence of the 

numerical results which were obtained using the 

global and local approximations, in both the 

collocation and the Ritz-Galerkin formulations, [8]. 
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2  Global and Local Approximations 
 

2.1  Global Approximation (B-spline) 

Based on a set of fixed points,  1 2 1, , , ,n nx x x x , 

and considering a certain multiplicity   for the 

inner points  2 1, , nx x   while the multiplicity at 

the ends 
1( , )nx x  is usually standardized at 1p  , we 

can construct the so-called knot vector U .  

 For example, in the case of four uniform cubic 

B-spline elements, where the fixed points are {x1, x2, 

x3, x4, x5} = {0, 1/4, 1/2, 3/4, 1}, i.e. 5n   fixed 

points, taking double inner knots ( 2)  , the knot 

vector becomes: 

1 1 1 1 3 3
0,0,0,0, , , , , , ,1,1,1,1

4 4 2 2 4 4
U

 



 


. (1) 

 

If the knot vector in Eq. (1) is written in the form:  

 1 2, , , mU u u u ,   (2) 

the number of the involved basis functions will be:  

( 1).n m p       (3) 

 

Therefore, since 14m   and 3p  , the above 

knot vector gives 14 (3 1) 10n     , i.e., ten C1-

continuous basis functions which are shown in 

Figure 1.  

 

2.1.1 Galerkin Method  

In the Ritz-Galerkin formulation dealing with the 

above knot vector U, where double inner knots have 

been considered, the numerical solution u(x) is 

approximated as a series of all these ten basis 

functions. In general, we have:  

1

( ) ( )
n

i i

i

u x N x 


 ,   (4) 

where ( )iN x  are the B-spline (basis) functions and 

i  the generalized coefficients (DOFs: degrees of 

freedom) to be determined. To determine ( )iN x , 

one possibility is to use the MATLAB® function 

spcol.  

 Within each of the ( 1n  ) fixed-point spans (i.e. 

1 2 2 3 1[ , ],[ , ], ,[ , ]n nx x x x x x
), there are only ( 1)p   

non-zero basis functions (local support property), 

and thus we usually refer to ( 1n  ) B-spline 

elements. Each of these B-spline elements is treated 

in a similar way with the conventional finite element 

method. To make this issue clear, we resort to a 

typical partial differential equation such as the one-

dimensional wave equation in the interval [0, ]L : 

 
Fig. 1: Basis functions for C1-continuity of inner 

knots 
2 2

2 2 2

1
0

u u

c t x

 
 

 
,   (5) 

which by virtue of Eq. (4) leads to the well-known 

matrix form: 

[ ]{ ( )} [ ]{ ( )} { ( )}t t t M u K u f ,  (6) 

with  

2

0

1
[ ] d

L

ij i jN N x
c

 M    and    
0

[ ] d

L

ij i jN N x  K ,   (7) 

 

 Although the integrals in Eq. (7) refer to the 

entire domain [0, L], the piecewise character of B-

splines makes it necessary to perform numerical 

integration within the ( 1n  ) B-spline elements, i.e. 

in the four ones of the example corresponding to the 

knot vector of Eq. (1), considering the local support 

property. In more detail, since 3p  , in the first 

element [0,1/4] the nonzero basis functions will be 

{N1, N2, N3, N4}, in the second will be {N3, N4, N5, 

N6}, in the third will be {N5, N6, N7, N8}, whereas in 

the fourth {N7, N8, N9, N10}. 

 In general, since the total number of DOFs is 

2n n , the produced stiffness matrix will be of size 

2 2n n n n   . Furthermore, imposing the two 

boundary conditions (BCs), the number of equations 

reduces to  2 1eqn n  , which is in consistency 

with the unknown DOFs associated to the  2n   

nodal points in the interior plus one DOF per end. 

For example, the matrices associated to Eq. (1) are 

of size 10 × 10, while after the imposition of the 

BCs the deleted ones become of size 8 × 8, i.e. we 

have eight equations and eight unknowns, which is a 

straightforward case.  

 Note that since the polynomial degree is 3p  , 

according to Eq. (7) the maximum polynomial 

degree involved in the integrands is 2 6p  , and 

thus for accurate numerical integration the required 

number of Gauss points per element will be 4gn  . 
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2.1.2  Collocation Method  

Similarly, in the Collocation formulation using the 

same global cubic polynomials ( )iN x  which were 

created considering the multiplicity of inner knots 

equal 2  , the abovementioned discrete 

breakpoints 
1 2, , , nx x x  create the abovementioned 

( 1n  ) B-spline elements. Now, considering two 

collocation points per element (preferably at the 

Gauss points as proposed in [7]), we derive 

 2 1eqn n   equations, which is the same number 

as that in the Galerkin method (see Sect. 2.1.1). If 

the collocation points are denoted by col jx x , the 

governing equation of motion is again given by Eq. 

(6), but now we have: 

 2

1
[ ]ij i jN x

c
M    and     [ ]ij i jN x K .    (8) 

 

2.2  Local Approximation 
 

2.2.1  Galerkin Method 

In the Ritz-Galerkin formulation (i.e., the Finite 

Element Method), when dealing with one-

dimensional (1D) problems, the computational mesh 

consists of the nodal points 
1 2, , , nx x x , which 

create the finite elements in the sub-intervals 

1 2[ , ],x x  
2 3[ , ]x x , …, 

1[ , ]n nx x
. Considering cubic 

Hermite polynomials per element, the numerical 

solution ( )u x  may be approximated using two 

degrees of freedom (DOF) per nodal point (i.e., four 

DOFs per cubic Hermite element). Since the total 

number of DOFs is 2n n , the produced stiffness 

matrix will be again of size 2 2n n , as happened 

with the global formulation as well. Furthermore, 

imposing the two boundary conditions of Dirichlet 

type, the number of equations reduce to 2( 1)n  , 

which is in consistency with the unknown DOFs 

associated to the ( 2n  ) nodal points in the interior 

plus one DOF per end. Since the polynomial degree 

is 3p  , the maximum polynomial degree in the 

integrands is 2 6p  , and thus the required number 

of Gauss points per element will be 4gn  , exactly 

as was the case in the global approximation. 

Nevertheless, for the wave equation, analytical 

expressions are possible, as shown in Appendix A. 

 In other words, although the local 

approximation uses different basis functions than 

what the global approximation does, the number and 

location of the Gaussian points are the same, and the 

same number of equations are derived. 

 

2.2.2  Collocation Method 
As previously happened with the global collocation, 

two collocation points are taken in each element, 

and thus  2 1eqn n   equations are derived. In the 

case of two BCs of Dirichlet type, after the 

imposition of them, we derive a system of 

 2 1eqn n   equations with the same number of 

unknowns. 

It is worth mentioning that the equations matrix 

of the local collocation method is quite different 

than the corresponding matrix in the global 

collocation method of Section 2.1.2. 

 

2.3 Handling of Dirichlet and Neumann 

Boundary Conditions  
Now we consider one end (let it be the left one) 

under Dirichlet-type BC, while the BC of the other 

(right end) is of Neumann type. Below we discuss 

the difference in the handling for the two previous 

formulations. 

 

2.3.1  Galerkin Method  

In the Galerkin method, whatever the approximation 

is (global or local), we merely delete the first row 

(associated with the BC of Dirichlet type) in the 

mass and stiffness matrices. This results in 

 2 1eqn n   equations and the same number of 

unknowns. Therefore, the numerical solution is a 

straightforward procedure. 

 

2.3.2  Collocation Method  

In both the global and local approximation, we have 

a system of  2 1eqn n   equations and (2 )n  

DOFs in total. Therefore, whatever the 

approximation is (global or local), we delete the first 

column (associated to the BC of Dirichlet type at the 

first DOF) in the mass and stiffness matrices. As a 

result, the remaining equations matrix becomes non-

square of size (2 2) (2 1)n n   , and thus we must 

find a way to reduce the number of columns by one. 

In this context, regarding the right end at which a 

BC of Neumann type occurs, the procedure is 

different for the local and the global approximation.  

In more detail, in the local approximation the 

condition 0u x    at 
nx x L   is directly 

applicable at the n −th DOF because it is prescribed 

and thus the n −th (last) column must be deleted. 

Therefore, a system of 2 2 2n n    equations with 

2 2 2n n    unknowns is produced.  

In contrast, in the global approximation a more 

complex procedure must be followed. Since the 

approximate solution is given by Eq. (4) where the 
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n -th DOF 
n  (or even its 

1n 
 due to the 

mirroring) does not exactly represent the derivative 

u x  , it is our preference to eliminate one out of 

the ( 1)n   free DOFs. More accurately, taking the 

first derivative in both parts of Eq. (4), considering 

homogeneous BC of Neumann type, and then 

solving (say) in 
1n 
, we have:  

1

( )
0,

n
i

i

i

N Lu

x x





 

 
    (9) 

and thus solving (say) in 
1n 
, we receive: 

1

11
( 1)

1
( ) .

( )

n

n i i

in
i n

N L
N L

 


 

 


    (10) 

 

In the particular case of cubic B-spline 

approximation (i.e., 3p  ), it can be shown that 

only two out of the four nonzero basis functions 

within the last element 
1[ , ]n nx x

 have nonzero 

derivatives at the end point ( )nx x L  . This is 

obviously valid for 2n   referring to a set of four 

Hermite functions which covers the entire domain 

1 2[0 , ]nx x x L   , but holds for every n .  

 

Therefore, for 3p  , Eq. (10) is simplified to 

1

1

( )
.

( )

n
n n

n

N L

N L
 




 


    (11) 

 

If we return to the matrix formulation, the 

arbitrary i −th equation of motion is written as: 

1 1 2 2 , 2 2 , 1 1 ,

1 1 2 2 , 2 2 , 1 1 ,

( )

( )

( )

i i i n n i n n i n n

i i i n n i n n i n n

i

m m m m m

k k k k k

f t

    

    

   

   

    

     



(12) 

 

Substituting 
1n 
 from Eq. (11) into Eq. (12), after 

rearrangement we receive: 

1 1 2 2 , 2 2 , , 1

1

1 1 2 2 , 2 2 , , 1

1

( )

( )

( )

( )

( )

n
i i i n n i n i n n

n

n
i i i n n i n i n n

n

i

N L
m m m m m

N L

N L
k k k k k

N L

f t

   

   

  



  



  
      

   

  
       

   



 (13) 

 

Equation (13) shows that the first ( 2)n   

columns in the mass and stiffness matrices must be 

preserved as are, while the ( 1)n  -th column must 

be embodied into the n −th column which will 

eventually replace the ( 1)n  -th one. More 

precisely, Appendix B shows that 

   1n nN L N L    , and therefore the ratio 

involved in Eq. (13) becomes: 

1

( )
1.

( )

n

n

N L

N L


 


   (14) 

 

Therefore, by virtue of Eq. (14), one may 

observe that the imposition of a Neumann BC at the 

right end ( x L ) imposes two equal coefficients at 

the end (cf. Eq. (11)), i.e. 
1n n   . Therefore, the 

reduction of the number of columns by one is 

accomplished merely by the addition of the last two 

columns in only one column. 

 

 

3 From the Knot Vector to the 

Hermite polynomials 
Although the global basis functions shown in Figure 

1 do not remind the Hermite polynomials at all, in 

this section we shall determine a linear relationship 

between the C1-continuous B-splines and the 

classical Hermite polynomials.  

 The first step is to establish a relationship 

between the functional set (B-splines) of C1 

continuity and the Bernstein polynomials, which is 

usually called ‘Bezier extraction’, [9]. This task can 

be easily performed by increasing the multiplicity of 

inners knots, from 2   (e.g., Eq. (1)) to 3  .  

 In general, for a knot vector such as that in Eq. 

(2) associated to a set of control points {P1,...,Pn}, a 

knot insertion at the position u u  requires -first of 

all- the determination of the unique index k  so as 

1[ , )k ku u u  . Then, the control points {P1,...,Pk−p} 

as well as {Pk+1,...,Pn} remain invariable at their 

previous position, while p new control points Q 

replace the older ones according to the formula: 

1 1 1 1(1 )i i i i iQ a P a P      ,  with 1 1 ,k p i k       

(15a) 

with, 

1
1

1 1

i
i

i p i

u u
a

u u




  





   (15b) 

 

If Eq. (15a) is successively applied to all the 

inn  inner knots of the vector U, we easily establish 

the non-square matrix [T2] (of size  inn n n  ) in 

the following linear relationship (the superscript ‘t’ 

stands for transpose): 

2{ } [ ] { }tQ T P      (16) 

 

Moreover, since it is well known that the shape 

remains unaltered after knot insertion, [9], for any 
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parameter u  we have the same image in both 

systems, and hence: 

       
1 0

( )     ,
tt

C Cx u N Q N P    (17) 

where {NC1}
t and {NC0}

t are the transpose of the 

column vectors including the n basis functions of 

C1-continuity (such as those shown in Figure 1) and 

the n p  basis functions of C0 continuity (shown in 

Figure 2), respectively. Obviously, the column-

vector {NC0}
t coincides with the well-known 

column-vector of Bernstein polynomials, and thus 

we can write:  

   0CN B .    (18)  

  

Clearly, for the case of the knot vector given by 

Eq. (1) and associated to the ten C1-continuous basis 

functions shown in Figure 1, the corresponding set 

of thirteen C0-continuous Bernstein polynomials 

(with {NC0} = {B}) is shown in Figure 2. 

Substituting Eq. (16) into Eq. (17), and then deleting 

the common factor {P} in both parts of the equality, 

we receive the following linear relationship between 

the C1-continuous basis functions and the C0-

continuous Bernstein polynomials:  

    1 2 ·CN T B .   (19) 

 

The next step is to express the Hermite polynomials: 
3 2 2

00 ( ) 2 3 1 (1 2 )(1 ) ,h u u u u u       (20a) 
3 2 2

10 ( ) 2 (1 ) ,h u u u u u u       (20b) 
3 2 2

01( ) 2 3 (3 2 ),h u u u u u      (20c) 
3 2 2

11( ) ( 1),h u u u u u      (20d) 

in terms of the Bernstein-Bézier ones: 
3

0 ( ) (1 ) ,B u u     (21a) 
2

1( ) 3(1 ) ,B u u u     (21b) 
2

2 ( ) 3(1 ) ,B u u u     (21c) 
3

3( ) .B u u     (21d) 

 

The conventional cubic Hermite polynomials 

are shown in Figure 3, where each node (filled by 

red color) is associated with two shape functions as 

follows. At a certain node, one of the two shape 

functions takes the unity value whereas the first 

derivative of the other equals unity. 

Considering Eq. (20) and Eq. (21), one may 

validate the obvious linear relationships between the 

two functional sets, per element ‘e’: 

 

 

 
Fig. 2: Basis functions for C0-continuity of inner 

knots 
 

 

000

110

201

311

1 1 0 0

1
0 0 0

3
,

0 0 1 1

1
0 0 0

3

e

Bh

Bh
H

Bh

Bh

 
    
    
          
    
      

    (22) 

and after inversion: 

 

0 00

1 10

2 01

3 11

1 3 0 0

0 3 0 0

0 0 0 3

0 0 1 3

e

B h

B h
B

B h

B h

    
    
      
    
    

    

. (23) 

 

By substituting Eq. (23) into Eq. (19), we derive 

the desired linear relationship between the C1 and 

the C0-continuous sets of basis functions: 

 

 
Fig. 3: Cubic Hermite polynomials 
 

        1 2 3 ,CN T T H     (24) 

with  
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 3

1 3 0 0

0 3 0 0
.

0 0 0 3

0 0 1 3

T

 
 
 
 
 
 

   (25) 

 

In general, if we collect the partial 

transformations [T2] and [T3] into a total 

transformation matrix [T] given by: 

     2 3 ,T T T      (26) 

 

Eq. (24) is shortened as: 

     1 .CN T H     (27) 

 

For the case of a knot vector U with double 

inner knots, we propose the following theorem 

which establishes an easily implemented algorithm: 

 

THEOREM-1: Let  1, , nx x  be a non-decreasing 

sequence of single fixed points (interpolation 

points). Let also the point spans (i.e., the B-spline 

elements) be of length 
1, , nl l . Obviously, there are 

( 2)n   inter-element junctions qx  with 

2, , 1q n  . The q -th junction is characterized 

by the ratio 1( )q q q ql l l   , which is the length of 

the right point span over the length of the sum of the 

two adjacent elements. Show that: 

 

 The Bézier extraction operator [T2] from C1 

to C0-continuity is automatically produced 

when considering three types of elements, 

as follows: 

o The first element (e=1) corresponds 

to the matrix: 

 2 1
2

2

1 0 0 0

0 1 0 0
.

0 0 1

0 0 0 1

e
T







 
 
 
 
 

 

    (28) 

o All intermediate elements 

( 2, , 2)e n   ) correspond to the 

matrix: 

 2

1

1

0 0 0

1 1 0 0
.

0 0 1

0 0 0 1

e

e

e
e

e

T













 
 


 
 
 

  (29) 

 

o The last element ( 1e n  ) 

corresponds to the matrix: 

 

1

1

2 1

0 0 0

1 1 0 0
.

0 0 1 0

0 0 0 1

n

n

e n
T









 

 
 


 
 
 
  (30) 

 The final transformation element matrices 

from B-splines of C1-continuity to Hermite 

polynomials are as follows: 

o The first element (e=1) corresponds 

to the matrix: 

 
1

2 2

2 2

1 3 0 0

0 3 0 0
.

0 0 3(1 )

0 0 3(1 )

e
T

 

 



 
 
 
  
 

  

(31) 

o All intermediate elements 

( 2, , 2)e n    correspond to the 

matrix: 

 
1 1

1 1

3 0 0

1 3 0 0
.

0 0 3(1 )

0 0 1 3(1 )

e e

e e

e
e e

e e

T

 

 

 

 

 

 

 
 


 
  
 

   (32) 

o The last element ( 1e n  ) 

corresponds to the matrix: 

 

1 1

1 1

1

3 0 0

1 3 0 0
.

0 0 0 3

0 0 1 3

n n

n n

e n
T

 

 

 

 

 

 
 


 
 
 
  (33)

 

 

Proof: We consider the knot vector U with double 

inner knots, which ensures C1-continuity at the 

breakpoints. We successively apply a knot insertion 

at all the inner breakpoints by using Eq. (15), 

starting from the breakpoint 
2x  till the fixed point 

1nx 
. Since for a clamped curve the first four (i.e.,

1p  ) knots equal zero and the multiplicity is 2   

(hence ( 1) 4 2 6p      ), one may easily 

understand that the index k , so that the inserted 

value qx  at the k -th breakpoint belongs to the 

interval 
1[ , )k ku u 

 of the knot vector before this 

insertion, becomes equal:  

6 3( 2) 6,9,12,k q       (34) 

 

Based on the indices shown in Eq. (34), the 

combination of Eq. (15a) and Eq. (15b) determines 

that the only newly inserted control point is 

 2 2 1 2 21k k k k kQ a P a P       , which is influenced 

by the factor: 
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2

2

2 2

q k

k

k p k

x u
a

u u





  





, where 2 1k qu x   and  

2 1k p qu x                                           (35a) 

 

or, equivalently 

2

left

k

left right

L
a

L L
 


,   (35b) 

where 1( )left qL l   and ( )right qL l  are the lengths of 

breakpoint spans at the left and at the right, 

respectively, of the inserted knot qx . Therefore, we 

have: 

 2 2 3 2 2

3 2

3 2

3 2

1

1

(1   )

k k k k k

left left

k k

left right left right

right left

k k

left right left right

q k q k

Q a P a P

L L
P P

L L L L

L L
P P

L L L L

P P 

    

 

 

 

  

   
     
       

   
    
       

  

(36) 

 

Note that in each knot insertion, only one 

control point is revised whereas the other control 

points remain invariable as are. After each knot 

insertion, the knot vector U is updated by adding the 

value qx  in the previous one. 

The above Eq. (36) is the one that successively 

contains the mentioned length ratios q , with 

2, , 1q n  . The rest of the proof is 

straightforward and is left as an exercise to the 

interested reader. Several numerical validations of 

Theorem-1 are given in Section 5. 

 

 

4  Equivalence between Global and 

Local Approximation 
Due to the linear relationship between the two 

functional sets according to Eq. (27), the mass and 

stiffness matrices in the former system will be a 

quadratic form of those in the latter and vice versa. 

This is well known in the eigenvalue problem where 

the calculated eigenvalues are given by the so-called 

Rayleigh-Ritz quotient. 

For the sake of simplicity, the relation between 

the two functional sets, i.e. the initial 1P CN N  and 

the final QN H , is re-written as follows: 

     = ,P QN T N     (37) 

whereas the relation between the two coefficient 

sets, i.e. the initial generalized    1, ,P n    

and the final nodal values    1 1 , , , ,Q n nu u u u    

will be (Eq. (16)): 

     .Q PT      (38) 

 

Regarding a typical ODE: 
2

2
( ),

d u
b x

dx
       (39) 

the matrix equation in the initial system will be: 

  
0

( )

L

P PK N b x dx      (40) 

where 

    
0

,

L
t

P PK N N dx      (41) 

where  PN   represents the first derivative of the 

vector  PN . 

 

Substituting  PN  from Eq. (37) and from Eq. (38) 

into Eq. (41), the latter becomes: 

1

0

0

[ ] { }{ } [ ] ([ ] )

[ ] ( ) ,

L

t t t

Q Q Q

L

Q

T N N dx T T a

T N b x dx


 

    
 

 





      (42) 

whence, after deletion of the pre-multiplier [T], we 

get: 

0 0

{ }{ } ( ) ,

L L

t

Q Q Q QN N dx a N b x dx
 

    
 
   (43) 

 

Comparing Eq. (43) with the couple of Eq. (40) 

and Eq (41), one concludes the equivalence of the 

numerical solution between the initial system {P} 

(based on the C1 continuous B-spline) and the final 

system {Q} (based on an assembly of conventional 

cubic Hermite elements). 

Similar conclusions are derived when the mass 

matrix is considered as well. In both cases, the 

matrices of one system are quadratic forms of them 

in the other system, and vice versa. 

 

 

5 Numerical Examples of the 

 Transformation Matrix 
In all examples of this section, we consider the unit 

domain [0, L] with L = 1. In the beginning, we 

consider uniform subdivision into nnele = 2, 3, 4 

cubic B-spline elements. Then, we also test a non-

uniform assembly. 
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5.1  Two Uniform B-spline Elements 
Starting from the knot vector 

1 1
0,0,0,0, , , 1,1,1,1

2
,

2
U

 
 
 

   (44) 

the transformation matrix from C1- to C0-continuity 

(Bernstein polynomials) is easily found as: 

2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 2 0 0 0
[ ] .

0 0 0 1 2 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

T

 
 
 
 

  
 
 
 
  

 (45) 

 

Therefore, by post-multiplying [T2] of Eq. (45) 

with the 4 × 4 matrix [T3] of Eq. (25), according to 

Eq. (26), we receive the total transformation matrix 

[T] for each of the two elements (the first e = 1, and 

the second e = 2): 

For e = 1:  
1 0 0 0 1 3 0 0 1 3 0 0

0 1 0 0 0 3 0 0 0 3 0 0
[ ]

0 0 1 1 2 0 0 0 3 0 0 1 2 3 2

0 0 0 1 2 0 0 1 3 0 0 1 2 3 2

T

      
     
      
      
     
     

(46a) 

For e = 2:  
1 2 0 0 0 1 3 0 0 1 2 3 2 0 0

1 2 1 0 0 0 3 0 0 1 2 3 2 0 0
[ ]

0 0 1 0 0 0 0 3 0 0 0 3

0 0 0 1 0 0 1 3 0 0 1 3

T

      
     
      
      
     
     

(46b) 

 

Since 2 1 2  , one may validate that Eq. (46a) 

is according to Eq. (31), while Eq. (46b) is 

according to Eq. (33), as anticipated. 

 

5.2  Three uniform B-spline Elements 
We continue with the knot vector: 

1 1 2 2
0,0,0,0, , , , ,1,1,1,1

3 3 3 3
.U

 
  
 

  (47) 

 

In this case the transformation matrix from C1- 

to C0-continuity (in terms of Bernstein polynomials) 

is found to be: 

2

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 2 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0
[ ]

0 0 0 0 0 1 1 2 0 0 0

0 0 0 0 0 0 1 2 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

T

 
 
 
 
 
 
 
 
 
 
 
  

 (48) 

Therefore, by multiplying Eq. (45) with the 4 × 

4 matrix [T3] given by Eq. (25), we receive the 

transformation matrices for each of the three 

elements (the first e = 1, the second e = 2, and the 

third e = 3) which relate the four element basis 

functions of C1-continuity which the four element 

Hermite polynomials [h00, h10, h01, h11]t: 

For 1e  : 
1 0 0 0 1 3 0 0 1 3 0 0

0 1 0 0 0 3 0 0 0 3 0 0
[ ]

0 0 1 1 2 0 0 0 3 0 0 1 2 3 2

0 0 0 1 2 0 0 1 3 0 0 1 2 3 2

T

      
     
      
      
     
     

(49a) 

 

For 2e  : 
1 2 0 0 0 1 3 0 0 1 2 3 2 0 0

1 2 1 0 0 0 3 0 0 1 2 3 2 0 0
[ ]

0 0 1 1 2 0 0 0 3 0 0 1 2 3 2

0 0 0 1 2 0 0 1 3 0 0 1 2 3 2

T

      
     
      
      
     
     

(49b) 

 

For 3e  : 
1 2 0 0 0 1 3 0 0 1 2 3 2 0 0

1 2 1 0 0 0 3 0 0 1 2 3 2 0 0
[ ]

0 0 1 0 0 0 0 3 0 0 0 3

0 0 0 1 0 0 1 3 0 0 1 3

T

      
     
      
      
     
     

(49c) 

 

One may observe that Eq. (49) has matrices of 

the same pattern as Eq. (46). In more detail, the 

transformation matrix associated with the first and 

the last elements is one the mirror of the other, 

while the upper half of the intermediate matrix (for 

e = 2 is the same with the lower half of the element 

e = 1 and the lower half of e = 2 is the same as the 

upper part of element e = 3). Overall, Eq. 49(a,b,c) 

are according to Eq. (31), Eq. (32) and Eq. (33), 

respectively.  

 

5.3  Four Uniform B-spline Elements 
The straightforward way is to consider the knot 

vector: 

2 2 2

1 1 2 2 3 3
0,0,0,0, , , , , , , 1,1,1,1

4 4 4 4 4 4
.U

    

 
 
 
 
 

      (50) 

 

Working as previously, the transformation 

matrix [T2] from C1 to C0 continuity was found as: 
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 2

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 0 0 0 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 2 0 0 0 0 0 0

0 0 0 0 0 0 1 2 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 2 0 0 0

0 0 0 0 0 0 0 0 0 1 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

T

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 (51) 

 

Splitting the matrix [T2] (of size 10 × 13) into 

four element sub-matrices and then multiplying by 

the standard matrix [T3] of Eq. (25), we receive the 

C1-continuous basis functions per element in terms 

of the corresponding Hermite polynomials of the 

same elements, as follows: 

 

For 1e  : 

1 00

2 10

3 01

4 111 1

1 3 0 0

0 3 0 0

0 0 1 2 3 2

0 0 1 2 3 2
C e

N h

N h

N h

N h


    
    
     
    
    

    

(52a) 

For 2e  : 
3 00

4 10

5 01

6 11 21

1 2 3 2 0 0

1 2 3 2 0 0

0 0 1 2 3 2

0 0 1 2 3 2
eC

N h

N h

N h

N h


    
    
     
    
    

    

(52b) 

For 3e  : 

5 00

6 10

7 01

8 11 31

1 2 3 2 0 0

1 2 3 2 0 0

0 0 1 2 3 2

0 0 1 2 3 2
eC

N h

N h

N h

N h


    
    
     
    
    

    

(52c) 

For 4e  : 

7 00

8 10

9 01

10 11 41

1 2 3 2 0 0

1 2 3 2 0 0

0 0 0 3

0 0 1 3
eC

N h

N h

N h

N h


    
    
     
    
    

    

(52d) 

 

One may observe that: 

 The element transformation matrices in Eq. 

(52) are in full accordance with Eq. (49), and 

therefore one could blindly repeat them.  

 The above transformation matrices of Eq. (52) 

are in full accordance with the Theorem-1 of 

section 3. 

 

It is noted that the above remarks were the 

inspiration point for expressing the generally 

applicable Theorem-1, which is cited in section 3. 

 

5.4  Four non-uniform B-spline Elements 
In contrast to the uniform elements which are fully 

described in subsection 5.3, in general the 

transformation element matrices associated with the 

junction of two unequal B-spline elements differ 

from the standard algorithm shown in the previous 

section. 

For example, let us continue with the non-

uniform knot vector: 

1 1 2 2 4 4
0,0,0,0, , , , , , , 1,1,1,1

4 4 4 4 5 5
.U

 
  
 

    (53) 

 

In this case, the transformation matrix from C1- to 

C0-continuity was found to be: 

 2

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 0 0 0 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 6 11 0 0 0 0 0 0

0 0 0 0 0 0 5 11 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 5 0 0 0

0 0 0 0 0 0 0 0 0 3 5 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

T

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

(54) 

 

Comparing Eq. (54) to Eq. (51), one may 

observe that the first element remains intact 

(because the first two elements are of the same 

length equal to 0.25), the second element differs at 

its ends (where the two vertically placed values of 

1/2 change to vertically placed values 6/11 and 5/11, 

respectively), and similarly the ends of the third 

element change (the two values of 1/2 change to 2/5 

and 3/5, respectively). Obviously, the beginning of 

the fourth element follows the change at the end of 

the previous third element. 

Based on the transformation matrix of Eq. (54) 

and writing for each of the four B-spline elements 

the analogous equalities such as those in Eq. (52), 

we receive:  

 

For 1e  : 

1 00

2 10

3 01

4 111 1

1 3 0 0

0 3 0 0

0 0 1 2 3 2

0 0 1 2 3 2
C e

N h

N h

N h

N h


    
    
     
    
    

    

(55a) 

For 2e  : 
3 00

4 10

5 01

6 11 21

1 2 3 2 0 0

1 2 3 2 0 0

0 0 6 11 15 11

0 0 5 11 15 11
eC

N h

N h

N h

N h


    
    
     
    
    

    

(55b) 

For 3e  : 
5 00

6 10

7 01

8 11 31

6 11 18 11 0 0

5 11 18 11 0 0

0 0 2 5 9 5

0 0 3 5 9 5
eC

N h

N h

N h

N h


    
    
     
    
    

    

(55c) 

For 4e  : 

7 00

8 10

9 01

10 11 41

2 5 6 5 0 0

3 5 6 5 0 0

0 0 0 3

0 0 1 3
eC

N h

N h

N h

N h


    
    
     
    
    

    

(55d) 
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Fig. 4: Validated basis functions for C1-continuity of 

inner knots ( 2  ) 
 

Furthermore, it was found that the original ten 

C1-continuous basis functions, calculated using the 

spcol function of MATLAB®, coincide with 

those found by Eq. (55), as shown in Figure 4. 

 

Rule-of-Thumb: As previously mentioned, 

comparing Eq. (54) with Eq. (51), the only 

difference concerns the double values of ‘1/2’ which 

appear in the 4th, 7th, and 10th matrix columns in 

Eq. (51), while two pairs of them are different in Eq. 

(54). A careful reader may observe that each of 

these pairs is proportional to the ratio of the two 

adjacent elements while their sum equals unity. 

Indeed, regarding the breakpoint at 0.50x   which 

joints the element at left ( 0.25 0.50x   of length 

0.25leftL  ) and the element at right ( 0.50 0.80x   

of length 0.30rightL  ), we have: 

 2 5,7

0.30 6

0.25 0.30 11

right

left right

L
T

L L
  

 
 (56a) 

 2 6,7

0.25 5
,

0.25 0.30 11

left

left right

L
T

L L
  

 
 (56b) 

which are exactly the elements (T2)5,7 and (T2)6,7 in 

the matrix [T2] of Eq. (54). 

 

Similarly, regarding the breakpoint at 0.80x  , 

which joints the element at left ( 0.50 0.80x   of 

length 0.30leftL  ) and the element at right (

0.80 1.00x   of length 0.20rightL  ), we have: 

 2 7,10

0.20 2

0.30 0.20 5

right

left right

L
T

L L
  

 
 (57a) 

 2 8,10

0.30 3
,

0.30 0.20 5

left

left right

L
T

L L
  

 
 (57b) 

which are exactly the elements (T2)7,10 and (T2)8,10 in 

the matrix [T2] of Eq. (54). 

After the above discussion, the algorithm for the 

automatic construction of the transformation matrix 

[T2] is obvious. The new concept came from 

numerical experimentation and intuition, but 

rigorous proof is in Theorem-1 of Section 3. 

 

5.5 Knots Following an Arithmetic 

 Progression 
As a final test of the proposed algorithm which uses 

the length ratios of the adjacent knot spans, we test 

the case in which the knots follow an arithmetic 

progression, i.e., the knot vector is: 

2 =2 =2

0,0,0,0,  0.1,0.1,  0.3,0.3,  0.6,0.6,  1,1,1,1U

  


 
 
  

   (58) 

 

Considering the three elements junctions, the 

corresponding length ratios (right : total) will be: 

1 2

3

0.3 0.1 2 0.6 0.3 3
, ,

0.3 0.0 3 0.6 0.1 5

1.0 0.6 4
.

1.0 0.3 7

 



 
   

 


 



  (59) 

 

As a result, the associated transformation matrix 

becomes: 

 2

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 0 0 0 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 6 11 0 0 0 0 0 0

0 0 0 0 0 0 5 11 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 5 0 0 0

0 0 0 0 0 0 0 0 0 3 5 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

T

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 (60) 

 

Following the same procedure as previously, the 

original C1-continuous basis functions and their 

validation using Eq. (60) is shown in Figure 5. 

 
Fig. 5: Validated basis functions for C1-continuity of 

inner knots in arithmetic progression ( 2  ) 
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6 Boundary-Value and Eigenvalue 

Examples 
Although the established linear relationship between 

the basis functions in (i) the original B-spline 

approximation of C1-continuty of degree 3p   and 

(ii) the local cubic Hermite, ensures the equivalence 

in the solution of the BV and eigenvalue problem, 

we also validate this fact by a few numerical results. 

 

6.1  Example 1: Eigenvalue Extraction 
An acoustic pipe of length L, governed by the PDE 

of Eq. (5), is under free-free (Neumann) boundary 

conditions. Implementing the Galerkin and the 

collocation formulations, calculate some of the 

lowest eigenvalues, of which the exact values are 

given by the formula: 
2

2 2 , 0,1,2,n

n
c n

L
 

 
  

 
  (61) 

 

Following the procedures discussed in Section 

2, using four uniform elements ( 4elen  ) which 

span the domain [0, L] according to Eq. (1), and 

thus having the ten basis functions shown in Figure 

1, the lowest calculated eigenvalues are shown in 

Table 1.  

One may observe that in each formulation 

(Galerkin or Collocation), the global and local cubic 

approximations lead to the same numerical result 

although each method has its own different 

matrices, as predicted by the preceding theory. 

 

Table 1. Errors of calculated eigenvalues 
 

Mode 

( )n  

Error in percent (%)  

Exact 

 2

n n   

Galerkin method Collocation 

method 

Global Local Global Local 

1 - - - - 0.0000000e+00 

2 0.00 0.00 0.02 0.02 9.8696044e+00 

3 0.02 0.02 0.23 0.23 3.9478418e+01 

4 0.17 0.17 0.67 0.67 8.8826440e+01 

5 0.12 0.12 8.81 8.81 1.5791367e+02 

6 2.20  2.20 11.02 11.02 2.4674011e+02 

7 5.72 5.72 12.38 12.38 3.5530576e+02 

8 11.67 11.67 7.82 7.82 4.8361062e+02 

9 125.74 125.74 - - 6.3165468e+02 

10 86.56 86.56 - - 7.9943796e+02 

 

6.2 Example 2: Ordinary Differential 

Equation 
Let us consider the ODE 0u u x     in the 

domain [0,1] , with boundary conditions 

(0) (1) 0u u  . The exact solution is given by: 

sin
( )

sin1
exact

x
u x x      (62) 

The accuracy of each formulation is evaluated 

in terms of the L2-norm, which in our case was taken 

in percent (%) using the formula: 
1

22

0
2

2

0

( )
100%

( )

L

calculated exact

L

exact

u u dx
L

u dx

 
  
 
  




        (63) 

 

Using now a variable number of 1, ,10elen 

uniform elements that span the domain [0,1] , the L2-

norm is shown in Table 2.  

 

Table 2. L2-norm for several uniform discretizations 
 

Number  

of 

elements 

( )elen  

L2-norm in percent (%) 

Galerkin method Collocation method 

Global Local Global Local 

1 3.0122811e-01 3.0122811e-01 1.9548847e+00 1.9548847e+00 

2 3.5241821e-02  3.5241821e-02 1.2632632e-01 1.2632632e-01 

3 8.8421658e-03  8.8421658e-03 2.5070791e-02 2.5070791e-02 

4 3.1388530e-03  3.1388530e-03 7.9449369e-03 7.9449369e-03 

5 1.3729196e-03  1.3729196e-03 3.2565510e-03 3.2565510e-03 

6 6.9050132e-04  6.9050132e-04 1.5710803e-03 1.5710803e-03 

7 3.8370598e-04  3.8370598e-04 8.4822380e-04 8.4822380e-04 

8 2.2975322e-04  2.2975322e-04 4.9728673e-04 4.9728673e-04 

9 1.4577665e-04  1.4577665e-04 3.1048506e-04 3.1048506e-04 

10 9.6871369e-05  9.6871369e-05 2.0372396e-04 2.0372396e-04 

  

  

7    Discussion 
The existence of the original Theorem-1 would be 

sufficient to establish the equivalence between C1-

continuous cubic B-splines and cubic Hermite 

polynomials. Therefore, in principle, section 5 and 

section 6 could be omitted. Nevertheless, these two 

sections remain cited, for the sake of completeness 

and for the benefit of the reader, because only after 

their completion it was made possible to formulate 

Theorem-1. In other words, sections 5 and 6 were 

the source of inspiration for this novel theorem.  

It is recognized that the numerical results are 

basic but were chosen because they possess closed-

form analytical solutions, and thus they leave no 

room for doubt regarding the achieved accuracy. 

The interested reader may implement any other test 

case, for which (because of Theorem-1) he/she will 

find identical results for both formulations. It is 

worth mentioning that the coincidence of the 

numerical results between the two formulations was 

the earliest observation (approximately fifteen years 

ago) and the practical reason for seeking a 

theoretical explanation in terms of Theorem-1. 

The present study is limited to one-dimensional 

problems using B-splines only, for which 

international research continues, [10], [11]. The 

application (or the modification) of Theorem-1 to 

two-dimensional problems is still an open issue. 
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8    Conclusions 
It was theoretically shown that, for one-dimensional 

problems, the functional set being inherent in the 

global cubic B-spline approximation of C1-

continuity, is a linear transformation of the set of 

four conventional cubic Hermite polynomials 

involved per element. A generic closed-form 

expression was proposed for the transformation 

matrix, based on the length ratios of the adjacent 

elements at the interelement junctions. Numerical 

implementation of Galerkin and collocation 

methods, using both the B-spline and conventional 

Hermite finite elements, showed identical results of 

both approximation types in each separate method. 

Practically, this means that instead of implementing 

the subroutines of C1-continuous cubic B-splines, it 

is equivalent to using piecewise-cubic Hermite 

elements, like those used in beam bending analysis.  
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APPENDICES 
 

 

Appendix A: Matrices of Hermite element 

For the Hermite element of length eL , having the 

shape functions of Eq. (20), the analytical 

integration on the integrands involved in the mass 

matrix (Me) and stiffness matrix (Ke), according to 

Eq. (7), lead to the following expressions: 

     
2

156 22 54 13

22 4 13 3

54 13 156 22

1

42

3 3 2

0

42

e
e

L

c







  

 
 
 
 
 
 

M     (A.1) 

and  

 

6 / 5 1/10 6 / 5 1/10

1/10 2 /15 1/10 1/ 30

6 / 5 1/10 6 / 5 1/10

1/10 1/ 30 1/10 2 /15

36 3 36 3

3 4 3 1

36 3 3

1

1

30 6 3

3 1 3 4

e

e

e

L

L



 

  



 
 
 






 

  

 


 
 

 
 
 
 
 
 

K

    (A.2) 

 

 

Appendix B: Derivative at the free end (x = L) 

We shall show that a zero derivative at the endpoint 

x L  leads to equality of the two greatest 

coefficients. 

Indeed, the derivative of a B-spline of degree p 

is given by the formula (see, Ref. [9]): 

, , 1 1, 1

1 1

( ) ( ) ( )i p i p i p

i p i i p i

dN x N x N x
p

dx u u u u

  

   

 
  

   

      (B.1) 

 

It is also known that among the n basis 

functions, only the last one becomes equal unity at 

the right endpoint whereby the others vanish, i.e.  

( ) 1nN L   and ( ) 0, 1, , 1.iN L i n         (B.2) 

 

The latter happens to any degree; in our case we 

are interested in 3p   and 2p  .  

Since the multiplicity is 2   (double knots), 

within the utmost right B-spline element the 1p   

nonzero basis functions will be ( )iN x  with 

3, ,i n n   (for 3p  ). 

Setting in Eq. (B.1) the indices associated to the 

nearest-to-the-end element ( 3, ,i n n  ), and also 

considering Eq. (B.2), we find that for the 

derivatives of the basis functions associated to the 

first two indices vanish (i.e., 3, 2, 0n p n pN N   ), 

while those associated to the next two which are the 

nearest control points to the end (at x L ) are 

characterized by equal and opposite derivatives, i.e.: 

1( ) ( ).n nN L N L
      (B.3) 

 

It is left to the reader to prove that for the knot 

vector of Eq. (1), the positive value of the derivative 

in Eq. (B.3) equals 12 (i.e., 1(1) 12nN 
    and 

(1) 12nN   ) with 10n  . 
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