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Abstract: One insect pest that causes enormous damage to rice plants in many countires is the brown planthopper
(BPH). Various strategies have been proposed to control BPH outbreaks, such as cultural control, physical control,
chemical control and biological control. Integrated pest management (IPM) is a method of controlling pests using
a variety of methods to achieve effective and environmentally friendly results. However, the best methods in
IPM application are yet to be determined. Since laboratory experiments have limitations in many respects, such
as ethics, time, environment, and cost, mathematical modeling is considered as an option which can be used to
study the effects of IPM on BPH infestation. In this article, we investigate mathematical models describing
management of BPH under IPM strategies. In particular, we study two biological control agents including
Cyrtorhinus lividipennis, a natural enemy of BPH, and Metarhizium neoanisopliae, an entomopathogenic fungus
that causes diseases in pests. A data set from laboratory experiments previously published is also used in this study.
In addition, we study functional responses describing predator's prey consumption. Finally, mathematical features
of the proposed models are analyzed. The existence of equilibrium points, their stability and Hopf bifurcation are
proved and numerical results are obtained to illustrate the theoretical results. This study suggests that using IPM
is an effective method for rapidly reducing insect populations in the early stages of BPH outbreaks which might
contribute to the long-term suppression of BPH.
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1 Introduction
Brown planthopper (BPH), Nilaparvata lugens,

is a pest that causes damage to rice in many
countries, especially Asia, where rice is a staple food,
[1]. Hence, various methods of BPH management
have been proposed to reduce the damage to rice
plants, such as chemical techniques, [2], [3], [4], [5],
biological techniques, [6], [7], [8], using resistant
rice varieties, [9], and integrated pest management

(IPM) principles, [10], [11]. The use of pesticides
can cause damage to the environment and increase
the insecticide resistance of pests. As an example
of chemical pesticides, the effects of nitenpyram
were studied on the developmental, reproduction, and
survival rates of BPH, and the results of the study
showed that insecticide resistance to nitenpyram
may cause significant spending on resistant BPH,
[3]. Likewise, Wen et al. discussed the effects of
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triflumezopyrim on BPH and the results showed that
the application of triflumezopyrim had a significant
effect on the development of BPH, [4]. Additionally,
Kang et al. investigated the feeding behavior and life
table ofNilaparvata lugens and Sogatella furcifera by
using the control of imidacloprid and sulfoxaflor, [5].
For environmental reasons and studies of pesticide
resistance, some research has been conducted on
the use of biological pesticides such as using the
plant essential oil, [6], natural enemies of BPH,
[7], [12], entomopathogenic fungi, [8], and resistant
rice varieties, [9]. However, using natural methods
such as biological control and resistant rice varieties
may not be enough to stop an outbreak of BPH on
plants. Therefore, integrated pest management (IPM)
has been proposed to determine the suitability of
pest control with a combination of various methods
to achieve cost-effectiveness. IPM strategies for
pest control were studied to illustrate the effect of
human management on insects using a variety of
methods and to demonstrate the cost-effectiveness of
appropriate controls, [10], [11].

There are many natural enemies of BPH, such
as: Crytorrhinus lividipennis, [7], [12], Tytthus
chinensis, [12], and Pardosa pseudoannulata, [13].
However, the most popular predator is Crytorrhinus
lividipennis because it is effective in getting rid of
BPHs. Crytorrhinus lividipennis is an essential insect
that plays an important role in reducing planthopper
and leafhopper outbreaks. It is a natural predator
of the BPH as it attacks BPH eggs in rice fields.
Crytorrhinus lividipennis can commonly be found in
tropical to warm temperate areas, together with BPH
outbreak areas, [14]. In areas where BPH outbreaks
occur, it is often found that Crytorrhinus lividipennis
is able to reduce the population density of BPH, and
an increase in the number ofCrytorrhinus lividipennis
causes the population density of BPH to decrease as
well, [15]. Therefore, in this work, we choose to study
Crytorrhinus lividipennis as a natural enemy of BPH.

Another biocontrol that will be considered in
this paper is the use of a pathogen. We focus on
the use of Metarhizium, a fungus that is an insect
pathogen that can kill pests and which is also known
as an entomopathogenic fungus, [16]. Using the
Metarizium fungus to control BPH is a method of
biological prevention and elimination that is effective
in the long term and leaves no toxic residue. It is
safe for the environment. Metarizium's properties
are that it is easy to produce and durable in high
environments, being able to live in the soil for
years. It is also easy to use by mixing fresh germs
into the soil or by mixing with water to spray. It
also spreads easily as it can be blown away by the
wind or by being attached to people, animals, or
insects. Additionally, Metarhizium can be used to

reduce the population of various pests such as the
Rhinoceros beetle (Oryctes agamemnon arabicus),
[17], the desert locust (Schistocerca gregaria), [18],
and the BPH (Nilaparvata lugens), [19].

Mathematical modeling with ordinary differential
equation systems has become a tool used to analyze
many biological phenomena. In the past few years,
a number of dynamical models of rice plants have
been developed. For example, in 2017, [20],
published an epidemic model to study the occurrence
of disease in rice due to infection by the Southern
rice black-stained dwarf virus with the vector, the
white-backed planthopper, Sogatella furcifera. In
2020, a mathematical model of rice tungro disease
with insecticide and biological agent was published
by [21]. In 2021, [22], studied a dynamical model of
rice blast disease that is affected by tropical climate
conditions. In 2023, [23], analyzed a tungro virus
disease spread model in rice plants by investigating
the characteristics of two viruses, namely, the rice
tungro spherical virus and the rice tungro bacilliform
virus. In 2024, [24], applied optimal control
theory to a vector-borne rice yellow mottle virus
disease problem. In the same year, [25], developed
mathematical models for the interaction of rice and
BPH to illustrate the effects of habitat complexity and
monsoon migration.

One of the most prominent recent mathematical
models for rice-pest interactions has been proposed
by [26], who assessed the effects of IPM, which
combined a cultural method and a chemical method,
for managing insect pest outbreaks through the use
of optimal control. IPM strategies have also been
studied in conjunction with mathematical models
of other types of plants, for example, by [27],
who presented a mathematical model with IPM
of Jatropha curcas in 2019. In 2021, [28],
presented a mathematical model for controlling fall
armyworm management on maize biomass by using
IPM strategies. The above research has certainly
demonstrated many useful results and improved the
existing knowledge on IPM strategy modeling.

In this paper, we study a mathematical model
for the relationship between susceptible and
infected BPHs with IPM treatment by a pathogen
Metarhizium, a natural enemy of BPH such as
Crytorrhinus lividipennis, and a chemical pesticide.

The remainder of this paper is organized as
follows. In Section 2, we describe the assumptions,
the derivation, and the details of the model. In Section
3, we discuss best fitting for six functional responses
for Crytorrhinus lividipennis consumption on BPH
density. In Section 4, the Metarhizium fungus will
be fitted to the susceptible-infected-removed model
to determine the parameters. Next, in Section 5, we
prove the positivity and boundedness of the models
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and derive the equilibrium points and investigate their
stability. In Section 6, numerical computations are
shown to illustrate the analytical results. Finally,
in Section 7, we discuss and summarize the results
obtained in this study.

2 Assumptions and Modeling
2.1 Assumptions

Integrating the IPM strategy into the mathematical
model is an effective way to consider controlling
insect pest outbreaks. Our model focuses on
a scenario in which the effects of infections by
entomopathogenic fungus (Metarhizium), predation
by the natural enemy (Crytorrhinus lividipennis),
and poisoning by chemical insecticides are the main
factors controlling BPH populations. The following
assumptions are made to formulate our mathematical
model:

[H1] The BPH population thrives under abundant rice
resources and no other resource limitations. In
such a situation, the BPH population can grow
or at least approximately grow in an exponential
manner.

[H2] Individual BPH is susceptible to getting the
disease because the Metarhizium fungus affects
all BPH stages: egg, nymphal, and adult
stages. The fungus Metarhizium does not cause
significant disease in Crytorrhinus lividipennis.

[H3] Infected BPH cannot revert to susceptible BPH.
That is, if a BPH has been exposed to the
fungus and has symptoms, then it is unable to
recover. When infected BPH show symptoms,
they become motionless or barely movable, are
covered with hard spores, and eventually die.

[H4] Infected BPH cannot produce new offspring.

[H5] Crytorrhinus lividipennis attacks mainly BPH
eggs to reduce the number of BPH.

[H6] The consumption of BPH eggs by Crytorrhinus
lividipennis correlates with a functional
response.

[H7] Predator ingestion of infected eggs has no
significant effect on the system. BPH eggs that
are exposed to the fungus die so rapidly that
natural enemies cannot hunt them. The natural
enemy Crytorrhinus lividipennis is more likely
to feed on the healthy eggs.

[H8] Crytorrhinus lividipennis can consume other
food resources (reserve food) to support their
population.

[H9] The growth of the natural enemy population,
Crytorrhinus lividipennis, cannot continue
indefinitely as the growth is limited by resource
availability and environmental constraints.

[H10] The chemical pesticide affects both susceptible
BPH and its natural enemy, but has no significant
effect on infected BPH.

2.2 Modeling
We assume that the three variables in the

mathematical model are susceptible BPH population
density Bs(t) at time t, infected BPH population
density Bi(t) at time t, and predatory Cyrtorhinus
lividipennis population density P (t) at time t.
With the assumptions in subsection 2.1, the system
of ordinary differential equations governing the
population dynamics is given in system (1). A
diagram of the model is given in Figure 1.

dBs(t)

dt
= rBs − βBsBi − f(Bs)P − csBs,

dBi(t)

dt
= βBsBi − γBi,

dP

dt
= αP

(
1− P

Kp

)
+ µf(Bs)P − cpP,

(1)

where r is the intrinsic growth rate of susceptible
BPH, representing the difference between the natural
birth and death rates. β is the disease transmission
coefficient. γ is the mortality rate with the disease.
α is the intrinsic growth rate of the predator,
representing the birth rate of Cyrtorhinus lividipennis
supported by food reserves minus the natural death
rate of Cyrtorhinus lividipennis. Kp is the carrying
capacity for Cyrtorhinus lividipennis population. µ
is the energy conversion rate, which means the
rate of energy conversion from consuming prey to
reproductive success and production of the new
offspring of Cyrtorhinus lividipennis. The functional
response f(Bs) means the ability of Cyrtorhinus
lividipennis to consume eggs of susceptible BPH.
cs and cp are the mortality rates due to chemical
insecticide of susceptible BPH and Cyrtorhinus
lividipennis, respectively. The initial conditions are
given by Bs(t0) = Bs,0 ≥ 0, Bi(t0) = Bi,0 ≥ 0 and
P0(t0) = P0 ≥ 0. All parameters in system (1) are
positive.

In the absence of Metarhizium, Cyrtorhinus
lividipennis, and chemical insecticide, the growth
dynamics of susceptible BPH population density is to
increase exponentially, represented by the term rBs.
Especially, when there is a large amount of food in
the area, BPH population is large enough to create a
new population quickly. Including the sudden arrival
of BPH can lead to a rapid increase in the BPH
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Fig. 1: Schematic diagram of the dynamical model
with IPM given by system (1). Susceptible BPH
population density at time t is denoted by Bs(t).
Infected BPH population density at time t is
denoted by Bi(t). Predatory Cyrtorhinus lividipennis
population density at time t is denoted by P (t).

population. This situation usually occurs in the early
stages of a BPH outbreak.

Assumption [H1] means that there is no significant
environmental constraints on the population growth
of BPH. We define the term βBsBi to represent
the pathogenicity of the fungus Metarhizium, as
assumed in [H2]. We ignore the recovery term of
infected BPH by the assumption [H3]. However,
the term γBi represents the decay of infected BPHs.
Assumption [H4] indicates that we neglect the
increase in the BPH population dependent on infected
BPHs because BPHs infected by the Metarhizium
fungus often suffer physiological damage that results
in a significant reduction in their reproductive ability,
[29], [30]. Consequently, infected individuals
typically do not contribute to reproduction in this
population dynamics. In addition, assumption [H2]
also indicates that Metarhizium does not cause
significant disease in the predator, [31].

When BPH population grows, its natural enemies
appear as predators, namely Cyrtorhinus lividipennis.
Cyrtorhinus lividipennis can reduce the population
of BPH by consuming BPH eggs, reducing the total
population of BPH as assumed in [H5]. From
assumption [H6], the functional response is given by
f(Bs) expressed in the terms f(Bs)P and µf(Bs)P .
Assumption [H7] is used to define the role between
Cyrtorhinus lividipennis and infected BPH. It shows
that Cyrtorhinus lividipennis does not consume eggs
of infected BPH, that is, there is no direct relationship
between P (t) and Bi(t).

According to assumption [H8], we assume that
there are other reserve foods that can support the
population of Cyrtorhinus lividipennis. Nevertheless,
following the assumption [H9], the population growth
of Cyrtorhinus lividipennis due to reserved foods has
limitations represented by the carrying capacity of

Cyrtorhinus lividipennis given by Kp. Therefore,
the term αP (1− P/Kp) refers to assumptions [H8]
and [H9]. Then the negative density effect is
introduced in the per capita growth rate of the enemy
population as α (1− P/Kp) indicating the logistic
growth. Examples of alternative foods include eggs
of the whitebacked planthopper (WBPH), Sogatella
furcifera, [32], [33], and the green leafhopper (GLH),
Nephotettix virescens, [33].

BPH infected with Metarhizium may have an
impaired immune system, and this can make them
more sensitive to chemical insecticides. On the
other hand, the spores that emerge after infection
may provide some protection against the chemicals.
This, along with the reason that infected insects
are usually less motile than susceptible ones, means
that they are less likely to come into contact with
the chemicals. However, according to assumption
[H3], infected BPH dies after a certain time.
We therefore assumed that the chemicals had no
significant effect on infected BPHs. In addition,
there are insecticides that specifically target healthy
BPH while having a minimal effect on infected BPH,
such as dinotefuran, [34], [35], imidacloprid, [35],
[36], and thiamethoxam, [36]. It is also interesting
that chemical intervention often affects insects that
are natural enemies of BPHs, [37], [38]. Therefore,
Cyrtorhinus lividipennis are assumed to be affected
by the insecticides in this model. Application of
chemical insecticide is defined by the assumption
[H10] which indicates that the chemical intervention
affects susceptible BPH and Cyrtorhinus lividipennis,
given by the terms csBs and cpP , respectively.

3 Functional Responses of
Cyrtorhinus lividipennis on BPH

In this subsection, we consider functional
response models based on equation (1) to determine
the suitability and rationale for observing the
consumption behavior of the BPH eggs by the
Cyrtorhinus lividipennis. We compare six candidate
functional responses by fitting parameters to the
following models: Holling's type I, Holling's type II,
Holling's type III, Holling's type IV, Roger's type, and
Ivlev's type, and checking for suitable parameters
using statistical techniques. We introduce the
functional responses as models for the consumption
curve of adult Cyrtorhinus lividipennis on BPH egg
density.

3.1 Functional response models
The factor denoted by f in (1) represents the

effect of the egg consumption by an individual
of Cyrtorhinus lividipennis on the recruitment of
reproductive BPH individuals. Thus, in our
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modeling, f could be given as a function of
the number of eggs produced by the adult BPH
population (i.e., Bs). Since the BPH population
intrinsically is assumed to grow in the exponential
manner with the constant growth rate r, we can
assume in addition that the total number of eggs
produced by BPH adults is proportional toBs. Hence,
for mathematical simplicity, we give the factor as a
function of Bs, f = f(Bs) in (1).

In 1959, [39], presented the simplest expression
for the relationship between prey offered and prey
consumed as the linear functional response,

fHollingI(x) = a1x, (2)

where a1, which is a parameter to be fitted, denotes
attack rate on BPH eggs by Cyrtorhinus lividipennis.
Normally, (2) is known as the Holling's type I or
Lotka-Volterra type, [40]. Essentially, (2) describes
a situation where a predator's consumption rate
increases linearly with prey density, meaning that
the higher the prey density, the greater the predator's
attack rate. In the same study, Holling also introduced
a functional response that adds the parameter of the
time to pick up one prey, which can be written in the
following form:

fHollingII(x) =
a2x

1 + a2b2x
, (3)

where a2 is the rate of successful search, and b2 is
a positive value and denotes the time to pick up one
BPH, that is, handling time, [39]. Generally, equation
(3) is called the Holling's type II functional response,
or the Holling's disc equation. The relationship
between prey density and predator consumption
resembles the shape of a hyperbola with a finite upper
bound for the predation rate in terms of the prey
density.

According to [41], [42], when the attack rate a2
in (3), changes from being constant to depending
linearly on prey density as a3x, then the functional
response becomes a sigmoid curve that can be written
in the form

fHollingIII(x) =
a3x

2

1 + a3b3x2
, (4)

where a3 is the attack coefficient, and b3 is handling
time. This form of sigmoid functional response
is often called the Hill function with reference to
the usage of the formula in the context of chemical
kinetics, see for example in [43].

One of the most interesting ecological phenomena
between predators and prey is the prey's defense
behavior. Prey can defend themselves by various
means, for example, by the swarming effect or by the
anti-predator behavior of adult prey attacking juvenile

predators. However, the prey's defense behavior
depends on the population density, [44], [45], [46].
These phenomena can reduce the attack rate or
increase the predator's capture time. These behaviors
are often encountered in the form of a dome-shaped
curve, [46], [47], [48]. This corresponds to Holling's
type IV functional response which is given by:

fHollingIV(x) =
a4x

b4 + x2
, (5)

which takes the maximum value a4/(2
√
b4) for

x =
√
b4. Equation (5), which is also

called the simplified Monod-Haldane function, was
proposed by [47]. Examples of the functional
response type IV applied to studying insect societies
are given in many papers, [46], [48], [49], [50].
In addition to the functions mentioned earlier,
predator food consumption can also depend on the
predator consumption velocity, for example, the
faster consumption can be assumed to reduce the
consumption velocity. An example of such functional
response is Roger’s type functional response, which
can be written in the following form:

fRoger(x) = x (1− exp (−a5 (1− b5fRoger(x)))) ,
(6)

where a5 is the attack rate and b5 is the handling
time, [51], [52]. Equation (6) is sometimes called the
Roger's random predator equation, [51]. Moreover,
we can use the Lambert W function to solve (6) (for
details see, [52]).

In mathematical models, there is another function
that has been studied, namely the Ivlev's functional
response, which can be expressed in the following
form:

fIvlev(x) = a6 (1− exp(−b6x)) , (7)

where a6 denotes the maximum number of
attacks that can be made per predator, and b6
denotes a positive constant, which is a coefficient
relating change in prey consumption rate to prey
concentration, [53]. Ivlev's functional response can
also be obtained from Watt's equation, [39], [54].

In addition to the above models, there are many
functional response models in which we are not
interested in this study, such as the generalized
Holling's type III functional response, [42], the
generalized Holling's type IV functional response,
[45], [55], and the Roger's random predator type III
functional response, [56], [57], [58], because those
functions do not adequately explain the biological
meaning of BPH and its predators.

3.2 Data collection and processing
The data used in this section to calculate functional

responses showing the number of BPHs (N. lugens)
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eggs consumed per Cyrtorhinus lividipennis were
originally given in Table 1 in the research work of
[7]. The following details were given for the data:
BPH populations were maintained at the Department
of Entomology, Faculty of Agriculture, Khon Kaen
University, Thailand. Five densities of eggs of BPH
were offered as 5, 10, 20, 30, and 40 eggs per predator.
Here, average data on adult male and female stages of
Cyrtorhinus lividipennis consumption were used.

Non-linear regression analysis was performed on
this data using the fitnlm function in MATLAB
to model the relationship between the independent
and dependent variables using the six functional
responses in (2)-(7). The independent variable x
consisted of five values: 5, 10, 20, 30, and 40. The
dependent variable f(x) was calculated as the mean
of the data from two groups, adult male and adult
female of Cyrtorhinus lividipennis. For the fitnlm
function, the constant(s) to be fitted were constrained
by lower and upper bounds, and initial guesses were
provided. Subsequently, the output of the fitting
parameter command fitnlm estimated values of the
model coefficient(s) for each model.

The statistical techniques that were applied in
this work to determine the suitability of functional
responses for data were the sum of square errors
(SSE), the coefficient of determination (R-squared;
R2), the adjusted coefficient of determination
(adjusted R-squared; R2

adj), and the root-mean-square
error (RMSE). In addition, model selection criteria
that are commonly used in statistics, such as the
Akaike information criterion (AIC), and the corrected
Akaike information criterion (AICc), [59], [60], were
used to select parameters. Let n indicate the total
number of data points, p indicate the number of
parameters in the model. ŷi signify the predicted
value, yi signify the observed value, and ȳ signify the
mean of the observed values. The SSE was computed
by

SSE =

n∑
i=1

(yi − ŷi)
2 . (8)

The R2 was calculated by

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (9)

The adjusted R2 was calculated by

R2
adj = 1−

(
1− R2

) n− 1

n− p− 1
. (10)

The RMSE was calculated by

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (11)

Fig. 2: Plots of six functional responses with data
points.

The AIC was calculated by

AIC = n ln

(
SSE
n

)
+ 2p. (12)

The AICc was computed by

AICc = AIC +
2p(p+ 1)

n− p− 1
. (13)

3.3 Results of fitting functional responses
We show the results of adult Cyrtorhinus

lividipennis consumption on BPH eggs by using
the disc method in Table 1. The results indicate that
Holling's Type II functional response has the highest
R2 and adjusted-R2 values. Similarly, Holling's
Type II has the lowest values for SEE and RMSE.
However, we should also consider the AIC and
AICc values of functional responses where the AICc
value of Holling's type II functional response was
the lowest. Therefore, the Holling's type II was
taken as the best fitting model for adult Cyrtorhinus
lividipennis. A plot of all functional responses for
adult Cyrtorhinus lividipennis is shown in Figure 2.

4 Pathogen Virulence Assay
In this section, we exploited the fit of the

cumulative number of BPH deaths in the treated
group under laboratory conditions for obtaining the
transmission rate and mortality rate of BPH due to
Metarhizium using the susceptible-infected-removed
(SIR) model.

4.1 Data collection and processing
BPH population data was gathered from three

distinct geological regions in Thailand: Phetchabun
province in the Central region, Buri Ram province
in the Northeast region, and Phatthalung province
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Table 1. Summary of theoretical values of consumption of adult Cyrtorhinus lividipennis from all functional
responses.

Statistical
Test

Holling's
Type I

Holling's
Type II

Holling's
Type IIII

Holling's
Type IV

Reger's
Type

Ivlev's
Type

Estimated
Parameters a1 = 0.6509

a2 = 0.9009
b2 = 0.0131

a3 = 0.0928
b3 = 0.0362

a4 = 4303
b4 = 5480

a5 = 1.856
b5 = 0.0202

a6 = 44.81
b6 = 0.0196

SSE 9.2548 0.8931 13.194 1.4369 1.0729 0.9375
RMSE 1.5211 0.5456 2.0971 0.6921 0.598 0.559

R2 0.9652 0.9966 0.9504 0.9946 0.9960 0.9965
R2

adj 0.9652 0.9955 0.9338 0.9928 0.9946 0.9953
AIC 19.2679 9.5769 23.041 11.9547 10.494 9.8192
AICc 20.6012 15.5769 29.041 17.9547 16.494 15.8192

in the South region, during 2021-2022. Data
on Metarhizium neoanisopliae strain BCC4849 was
obtained from the BIOTEC Culture Collection
(BCC), Thailand. The sample consisted of 270 BPH
individuals. The BPH mortality was recorded daily
over a span of 7 days. The BPH data before and
after infection with Metarhizium fungus are given in
Figure 3.

For parameter estimation, the two Matlab
functions used in this section were ode45 and
fminsearch. The ode45 function, based on the 4th and
5th-order Runge-Kutta integration method known
as the Dormand-Prince pair, [61], was employed
to numerically solve the dynamical system. The
function fminsearch, based on the Nelder-Mead
simplex direct search method, [62], was used for
parameter optimization to fit experimental data.

4.2 Model based on experimental data
The data included in our experimental design is

explained in subsection 4.1. We considered an SIR
model, [63], [64], based on experiments to determine
the infection rate or severity of Metarhizium fungus.
In a practical experiment, it was assumed that when
we introduce fungus, every BPH in the trial unit
comes into contact with the fungus.

Let the susceptible BPH population density Bs

denote the population of BPH individuals exposed
to Metarhizium but not necessarily infected. The
infected BPH population density is denoted by Bi.
The removed BPH population, Br, denotes BPHs that
died from exposure to the Metarhizium fungus and
have been removed from the system. Removed BPH
individuals cannot return to the susceptible or infected
class.

Based on model (1) in Section 2, we considered
the effect of Metarhizium fungus only; that is,
the system (1) excluded the variable of predator
(P (t) ≡ 0). In the experiment, the number of
susceptible BPHs cannot be increased by producing
new populations because our experimental period

(a)

(b)

Fig. 3: The characteristics of Metarhizium fungal
infestation on BPH: (a) Before treatment with
Metarhizium, (b) After treatment with Metarhizium.

of 7 days was too short for a gestation period of
BPHs. We therefore assumed that there was no
growth term of exposed BPH that is r = 0. There
is no chemical effect in this section cs = 0. All
BPH individuals were exposed to the fungus, so we
assumed that BPH mortality occurred only due to the
fungal toxins, with β representing the transmission
rate from exposed group to infected group and γ
representing the BPH mortality rate in the infected
group. The numbers of BPH in the populations in

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.61

Nattawut Khansai, Hiromi Seno, 
Nuntapon Thamareerat, Sekson Sirisubtawee, 

Sanoe Koonprasert, Watchareewan Jamboonsri

E-ISSN: 2224-2678 604 Volume 23, 2024



the laboratory were established before the experiment
and remained constant throughout the study. The total
BPH population was given by Bt = Bs + Bi + Br,
which satisfies the differential equation B′

t = 0. The
experiment contained 270 BPHs, that is, Bt = 270.

The number of dead BPH was counted daily and
they were removed from the system. The model used
in this section was given by

dBs(t)

dt
= −βBsBi,

dBi(t)

dt
= βBsBi − γBi,

dBr(t)

dt
= γBi,

(14)

where parameters β and γ can be determined by
fitting the differential system (14) to the laboratory
data with the initial conditions Bs,0 ≥ 0, Bi,0 ≥
0, Br,0 ≥ 0 at the initial time t0. The number
of removed BPH Br was obtained by counting the
number of dead BPH from day 1 to day 7.

4.3 Results of fitting data Metarhizium
Parameters β and γ for the SIR model shown in

(14) were fitted using ode45 and fminsearch functions
from Matlab with guessed values as β = 0.5, and
γ = 0.5.

For setting the initial conditions, we considered
that at the start (t = 0) of the experiment no death had
occurred. Therefore, we set Br(0) = 0. BPH death
may occur on day 1. However, BPH can be infectious
from day one. We considered the lowest infection on
the first day to be 1 individual to observe the spread of
Metarhizium fungus, so Bi(0) = 1 and Bs(0) = 269.

After obtaining the parameters β and γ, the
basic reproduction number (R0) is given by R0 =
βBt/γ. Median lethal time (LT50) can be calculated
by estimating Br(t) ≥ Bt/2 and calculating the
smallest t value corresponding to the time that BPH
populations approaches 50% mortality.

The calculated results are shown in Table 2. In
addition, the visualization of the model is also shown
in Figure 4.

5 Mathematical Results of the Model
with IPM

According to the model (1) with the Holling's type
II functional response in Section 3, we can express the

Table 2. Estimation from SIR model using initial
conditions Bs,0(0) = 269, Bi,0(0) = 1 and
Br,0(0) = 0 and guessed parameters β = 0.5, γ =
0.5. We also exhibit the basic reproduction number
R0 and the median lethal time LT50.

Parameters
Estimated

β 0.0107
γ 1.0387

Goodness-of-fit RMSE 7.0032
R2 0.9948

R0 2.781
LT50 (days) 3.90

Fig. 4: This figure shows plot of the system (14).
Estimated parameters used to plot are shown in Table
2.

main model used in this study as follows:

dBs(t)

dt
= rBs − βBsBi −

aBsP

1 + abBs
− csBs,

dBi(t)

dt
= βBsBi − γBi,

dP

dt
= αP

(
1− P

Kp

)
+ µ

aBsP

1 + abBs
− cpP,

(15)

where a is the rate of successful search and b is the
handling time given by (3) with Bs,0 ≥ 0, Bi,0 ≥ 0
and P0 ≥ 0. All parameters are defined in section 2.2.

5.1 Positivity and boundeness
Theorem 5.1 For given initial condition W (0) ∈
R3
+, the system (15) has a unique solution. Further,

the trajectories of (15) starting at W (0) are positive
and uniformly bounded.

Proof. Let W (0) = (Bs(0), Bi(0), P (0)) ∈
R3
+. Before proving the existence and uniqueness

of a solution, we will prove that if solutions exist,
they are non-negative and bounded. We prove the
non-negativity of the trajectories of (15) by solving
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the first equation of system (15). We get the following
relationship:

Bs(t) =Bs(0) exp

[∫ t

0

(
r − βBi(τ)

− aP (τ)

1 + abBs(τ)
− cs

)
dτ

]
.

(16)

Therefore, Bs(t) ≥ 0 if Bs(0) ≥ 0 and Bs(t) > 0
if Bs(0) > 0. The proof for Bi(t) and P (t) can be
conducted in the same manner.

We let the function W (t) = Bs(t)+Bi(t)+P (t)
and σ ∈ R. Accordingly, we get the derivative with
respect to time as:

dW (t)

dt
+ σW (t) =αP

(
1− P

Kp

)
− (1− µ)

aBsP

1 + abBs
+ [σ − (cs − r)]Bs

+ (σ − γ)Bi + (σ − cp)P.

(17)

We choose σ = min{cs − r, γ, cp}, with cs > r and
0 < µ ≤ 1. We have

dW (t)

dt
+ σW (t) ≤ αP

(
1− P

Kp

)
≤ αKp

4
. (18)

Hence, we have

W (t) ≤ exp(−σt)W (0) + (1− exp(−σt))
αKp

4σ
,

(19)
for t ≥ 0. Thus it holds for t ≥ 0 that

W (t) ≤ max

[
W (0),

αKp

4σ

]
< ∞, (20)

and therefore the solution is bounded. �

5.2 Existence of equilibrium points
The model (15) has the following six equilibrium

points:
(i) The trivial equilibrium E0(0, 0, 0) always

occurs. This corresponds to the case of BPH and
Cyrtorhinus lividipennis not appearing in the system.

(ii) The BPH free equilibrium is expressed
as Ē(0, 0, Kp

α (α− cp)). This is an interesting
equilibrium point because it describes the situation
where BPHs disappear from the system but
Cyrtorhinus lividipennis are available. This
equilibrium is valid if α > cp, that is, the intrinsic
growth rate of the predator based on food reserves
α, which is the difference between the Cyrtorhinus

lividipennis's birth rate supported by eating other
foods and their natural mortality rate, is greater than
chemical effect cp. Conversely, if the growth rate
of Cyrtorhinus lividipennis supported by alternative
food is lower than the rate of destruction by chemicals
α ≤ cp, the BPH free equilibrium Ē does not exist.

(iii) The predator free equilibrium Ẽ( γβ ,
r−cs
β , 0).

This means that there are no predator Cyrtorhinus
lividipennis left to sustain the system. This
equilibrium is feasible if r > cs, otherwise Ẽ does
not exist.

(iv) The infection free equilibrium Ê
(
B̂s, 0, P̂

)
.

This is associated with the case that the infected
BPH has been eliminated, but susceptible BPH and
Cyrtorhinus lividipennis still remain. The expression
of B̂s can be implicitly written as

B̂s =
1

ab

(
aP̂

r − cs
− 1

)
. (21)

Then, B̂s is feasible if

0 < r − cs < aP̂ , (22)

and P̂ is the positive root of the following equation:

P̂ 2 − Kp

α

(
α− cp +

µ

b

)
P̂ +

µKp(r − cs)

αab
= 0. (23)

Since r − cs > 0, the solution P̂ of equation (23)
does not have a positive single real root. Therefore,
two positive real roots of equation (23) denoted by
P̂1,2 can be written in the following form

P̂1,2 =
1

2

{
Kp

α

(
α− cp +

µ

b

)

±

√
K2

p

α2

(
α− cp +

µ

b

)2
− 4µKp(r − cs)

αab

}
.

(24)
Solution (24) must satisfy the following conditions:

r − cs <
abKp

4µα

(
α− cp +

µ

b

)2
, (25)

and

α− cp +
µ

b
> 0. (26)

Therefore, if the conditions (25) and (26) are satisfied
along with P̂1 > (r−cs)/a and P̂2 > (r−cs)/a, then
from (22), the infection free equilibrium point Ê can
exist as two points simultaneously. With the analysis
on the inequalities of (22), (25), and (26), we can find
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the following conditions for the existence of Ê , i.e., if
and only if

0 <
r − cs

a
<

K

α
(α− cp) or

{
r−cs

a
< K

α
(α− cp);

0 < α− cp < µ
b
,

then the infection free equilibrium point Ê uniquely
exists with P̂ = P̂2 given by (24). If and only if{

max
[
0,

Kp

α
(α− cp)

]
< r−cs

a
<

bKp

4µα

(
α− cp + µ

b

)2
;

−µ
b
< α− cp < µ

b
,

we have two points simultaneously as the infection
free equilibrium point Ê where P̂ = P̂1 and P̂ = P̂2

given by (24), respectively.
(v) The interior equilibrium E∗(B∗

s , B
∗
i , P

∗). This
corresponds to the case that BPH and Cyrtorhinus
lividipennis remain, where

B∗
s =

γ

β
,

B∗
i =

1

β

{
r − cs

− Kpβa

α(β + abγ)

[
α− cp +

µaγ

β + abγ

]}
,

P ∗ =
Kp

α

[
α− cp +

µaγ

β + abγ

]
,

(27)

Therefore, E∗ exists if

0 <
Kpβa

α(β + abγ)

[
α− cp +

µaγ

β + abγ

]
< r − cs. (28)

5.3 Local stability of equilibrium points
In this subsection, we discuss the stability of

the equilibrium points of system (15) derived in the
previous subsection. We first obtain the Jacobian
matrix of the system at an equilibrium point E =
(Bs, Bi, P ) given by

J(E) =

 G1 −βBs − aBs

1+abBs

βBi −βBs − γ 0
G2 0 G3

 . (29)

where G1 = r − cs − βBi − aP
1+abBs

+ a2bBsP
(1+abBs)2

,
G2 = µaP

1+abBs
− µa2bBsP

(1+abBs)2
, and G3 = α − cp −

2αP
Kp

+ µaBs

1+abBs
. Making use of the eigenvalues of the

Jacobian matrix (29) for each of the feasible equilibria
obtained in the previous section, we can obtain the
condition for their local stability. We show the results
in this section as five theorems which we will use
to check local stability in the following section of
numerical simulations.

Theorem 5.2 The trivial equilibrium point E0 of
system (15) is locally asymptotically stable if r < cs
and α < cp.

Proof. The stability of the equilibrium point E0
of model (15) can be obtained by computing the
Jacobian matrix at point E0 as follows:

J(E0) =

 r − cs 0 0

0 −γ 0
0 0 α− cp

 . (30)

Since the Jacobian is diagonal, the eigenvalues are the
diagonal elements. Therefore,

λ1 = −γ < 0, λ2 = r − cs, λ3 = α− cp. (31)

Therefore, E0 is locally asymptotically stable if r < cs
and α < cp. �

Theorem 5.3 When the BPH free equilibrium point Ē
of system (15) exists, it is locally asymptotically stable
if r − cs < aKp

α (α− cp). Otherwise, if r − cs >
aKp

α (α− cp), it is unstable.

Proof. The Jacobian matrix of system (15) at Ē is
expressed as

J(Ē) =

 r − cs − aKp

α (α− cp) 0 0

0 −γ 0
µaKp

α (α− cp) 0 cp − α

 .

(32)
Since the Jacobian is lower tridiagonal, the
eigenvalues are the diagonal elements and therefore

λ1 = −γ < 0, λ2 = −(α− cp) < 0,

λ3 = r − cs −
aKp

α
(α− cp) .

(33)

Therefore, Ē is locally asymptotically stable if α > cp
and r − cs − aKp

α (α− c2) < 0. �

Theorem 5.4 When the predator free equilibrium Ẽ
of system (15) exists, it is unstable ifα− cp+

µaγ
abγ+β >

0. In contrast, it is locally asymptotically stable only
ifα− cp+

µaγ
abγ+β ≤ 0. The solution has an oscillatory

behavior around the equilibrium.

Proof. The Jacobian matrix of system (15) at Ẽ is
expressed as

J(Ẽ) =


0 −γ − γ a

abγ+β

r − cs 0 0

0 0 α− cp +
µaγ

abγ+β

 . (34)
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The eigenvalues of (34) are the lowest diagonal
element and the eigenvalues of the top right 2× 2
block. Therefore the eigenvalues are:

λ1 = α− cp +
µaγ

abγ + β
, (35)

and

λ2,3 = ±i
√

γ (r − cs). (36)

Therefore, when the equilibrium Ẽ exists, it is
unstable if α−cp+

µaγ
abγ+β > 0. We cannot determine

the stability when α − cp + µaγ
abγ+β < 0, because of

the purely imaginary eigenvalues. However, if the
equilibrium Ẽ is locally asymptotically stable, it must
be satisfied that α− cp +

µaγ
abγ+β ≤ 0. �

Theorem 5.5 The infection free equilibrium Ê is
locally asymptotically stable if

n1 > 0, n2 > 0 and βB̂s < γ, (37)

where n1 and n2 are the coefficients of λ in the
characteristic equation of the variational matrix of
system (15) evaluated at Ê which can be arranged in
the form (

λ2 + n1λ+ n2

)
= 0. (38)

Proof. The Jacobian matrix of model (15) at Ê can be
expressed as

J(Ê) =


a2bB̂sP̂

(1+abB̂s)2
−βB̂s − aB̂s

1+abB̂s

0 βB̂s − γ 0

Ξ 0 −αP̂
Kp

 , (39)

where Ξ = µaP̂

1+abB̂s

− µa2bB̂sP̂

(1+abB̂s)2
.

The characteristic equation of (39) is(
λ− (βB̂s − γ)

) (
λ2 + n1λ+ n2

)
= 0, (40)

where

n1 =
αP̂

Kp
− a2bB̂sP̂

(1 + abB̂s)2
,

n2 =− a2bB̂sP̂

(1 + abB̂s)2
αP̂

Kp
+

aB̂s

1 + abB̂s

Ξ.

(41)

If n1 and n2 in (40) are such that n1 > 0 and n2 > 0

along with βB̂ − γ < 0, then the equilibrium point Ê
has local asymptotic stability. �

Theorem 5.6 The equilibrium point E∗ is locally
asymptotically stable if the following conditions hold:

m1 > 0, m2 > 0, m3 > 0, and m1m2 −m3 > 0,
(42)

where m1, m2, m3 are the coefficients of λ in the
characteristic equation of the variational matrix of
system (15) evaluated at E∗ which can be written in
the form

λ3 +m1λ
2 +m2λ+m3 = 0. (43)

Proof. The Jacobian matrix of system (15) at E∗ is
given by

J(E∗) =


a2bB∗

sP
∗

(1+abB∗
s )

2 −γ − aB∗
s

1+abB∗
s

βB∗
i 0 0

µaP ∗

1+abB∗
s
− µa2bB∗

sP
∗

(1+abB∗
s )

2 0 −αP ∗

Kp

 .

(44)
Then, the characteristic equation of the matrix J(E∗)
can be obtained in the following form

λ3 +m1λ
2 +m2λ+m3 = 0, (45)

where

m1 =
αP ∗

Kp
− a2bB∗

sP
∗

(1 + abB∗
s )

2
,

m2 =
a2bB∗

sP
∗

(1 + abB∗
s )

2
(βB∗

i ) + γβB∗
i

+
aB∗

s

1 + abB∗
s

(
µaP ∗

1 + abB∗
s

− µa2bB∗
sP

∗

(1 + abB∗
s )

2

)
,

m3 =
γβB∗

i αP
∗

Kp
> 0.

(46)
Using the Routh-Hurwitz criterion for the necessary
and sufficient conditions for the locally asymptotic
stability of system (15) at E∗, if

mi > 0, (i = 1, 2, 3), and m1m2 > m3, (47)

hold, then the equilibrium point E∗ is locally
asymptotically stable. �

5.4 Bifurcation Analysis
We consider parameter β, which represents the

fungus's potential to spread from the susceptible
group to the infected group, as the bifurcation
parameter to observe the long-term effect of the
fungus infection on population dynamics. We next
consider the stability of the system (15) at the
coexistence equilibrium point E∗.
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Theorem 5.7 If there exists a bifurcation point at
β = β∗ for the equilibrium point E∗(B∗

s , B
∗
i , P

∗)
expressed in (27), then a Hopf bifurcation can occur
under the following conditions:

m2(β
∗) > 0, m3(β

∗) > 0, H(β∗) = 0, (48)

and

dH(β)

dβ

∣∣∣
β=β∗

̸= 0, (49)

whereH = m3−m1m2 and the coefficientsm1, m2

andm3 are formulated in (46).

Proof. The proof of this theorem is similar to
Theorem 3.6 in [25]. Therefore, we omit the details
of this proof here. �

6 Numerical Simulations
In this section, we use numerical simulations

of model (15) to illustrate the theoretical results
presented in section 5. We also give a discussion
of the numerical results. For the parameter values
a and b in Holling's type II functional response, we
used the values given in Table 1 in section 3. The
other parameters whose values are required are listed
in subsection 2.2 after equation (1). We selected
sets of suitable values as follows. There are many
reports in the literature on the intrinsic growth rate
of BPHs (r) such as [4], [65], [66], [67], [68],
[69], with values varying based on the experimental
conditions, data collection methods, and factors such
as temperature and rice varieties. Here, we picked
r = 0.1803, presented in [4]. For the disease
transmission rate (β) and the death rate of infected
BPH (γ) that are indicators of the severity of the
Metarhizium fungus, we used M. neoanisopliae as
shown in Table 2, Section 4. For parameters including
conversion rate (µ) and intrinsic growth rate (α)
of Cyrtorhinus lividipennis, we used values from
research findings for Cyrtorhinus lividipennis in [70],
[71]. We assumed values for parameters cs, cp and
Kp which appeared suitable.

Following the above methods, we obtained our
first parameter set S1 := {β = 0.0107, γ =
1.0387, a = 0.9009, b = 0.0131, r = 0.1803, α =
0.05, cs = 0.2, cp = 0.1, µ = 0.123,Kp = 0.1}.
For this set, the equilibrium E0 always occurs and
since the system (15) reaches equilibrium if r > cs
and α > cp, which is proved in Theorem 5.2, a
numerical solution should converge to E0. Using the
parameter set S1 with the initial values Bs,0 = Bi,0 =
P0 = 10, we obtained the simulation of (15) for E0
shown in Figure 5.

We then slid the intrinsic growth rate of
Cyrtorhinus lividipennis from α = 0.05 to α = 0.5 in

(a)

(b)

Fig. 5: Solution behavior of system (15) when the
parameter set S1 and the initial values Bs,0 = Bi,0 =
P0 = 10 are used. The eigenvalues are λ1 = −1.03,
λ2 = −0.019 and λ3 = −0.05. The solution is
locally asymptotically stable at the equilibrium point
E0(0, 0, 0): (a) Time series solutions of Bs, Bi, and
P , (b) Phase plot of Bs, Bi, and P .

the parameter set S1. We then had the parameter set
S2 := {β = 0.0107, γ = 1.0387, a = 0.9009, b =
0.0131, r = 0.1803, α = 0.5, cs = 0.2, cp =
0.1, µ = 0.123,Kp = 0.1}. Based on S1, we see
that the rate of insect destruction in S2 has been
decreased since the use of chemicals has decreased.
Using the parameter set S2 with the initial values
Bs,0 = Bi,0 = P0 = 0.1, we obtained the simulation
of (15) shown in Figure 6 which converges to the
equilibrium point Ē as proved in Theorem 5.3.

For the next set, we reduced the parameter of the
Cyrtorhinus lividipennis's ability to hunt eggs of BPH
to (µ = 0.001), to get the parameter set S3 :=
{β = 0.0107, γ = 1.0387, a = 0.9009, b =
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(a)

(b)

Fig. 6: Solution behavior of system (15) when the
parameter set S2 and the initial values Bs,0 = Bi,0 =
P0 = 0.1 are used. The eigenvalues are λ1 = −1.03,
λ2 = −0.009 and λ3 = −0.4. The solution is
locally asymptotically stable at the equilibrium point
Ē(0, 0, 0.08): (a) Time series solutions of Bs, Bi, and
P , (b) Phase plot of Bs, Bi, and P .

0.0131, r = 0.1803, α = 0.05, cs = 0.1, cp =
0.1, µ = 0.001,Kp = 0.1}. Using the parameter set
S3 with the initial values Bs,0 = 100, Bi,0 = P0 = 1,
we obtained the simulation of (15) shown in Figure 7
which oscillates around Ẽ as proved in Theorem 5.4.

To visualize the stability of the infection free
equilibrium point Ê , we substituted α = 0.2, cs =
0.001, cp = 0.08 and µ = 0.98 into the parameter set
S1. We obtained the set S4 := {β = 0.0107, γ =
1.0387, a = 0.9009, b = 0.0131, r = 0.1803, α =
0.2, cs = 0.001, cp = 0.08, µ = 0.98,Kp = 0.1}.
Using the parameter set S4 with the initial values
Bs,0 = 5, Bi,0 = P0 = 1, the simulation of
(15) shown in Figure 8 converges to Ê as proved in

(a)

(b)

Fig. 7: Solution behavior of system (15) when the
parameter setS3 and the initial values Bs,0 = 100,
Bi,0 = P0 = 1 are used. The eigenvalues are λ1 =
−0.049, λ2,3 = ±0.288i. The solution oscillates
around the equilibrium point Ẽ(97.07, 7.50, 0): (a)
Time series solutions of Bs, Bi, and P , (b) Phase plot
of Bs, Bi, and P .

Theorem 5.5.
For the stability analysis of the coexistence

equilibrium E∗, we assumed an increase in the
intrinsic growth rate of BPH (r) and a decrease in
the BPH egg consumption ability of Cyrtorhinus
lividipennis (a). These changes cause the BPH
population to remain in the system. When the BPH
population is large enough, the food source for the
Cyrtorhinus lividipennis is sufficient and it remains
in the system as well. Based on parameter set S1,
we change the parameters to r = 0.8 and a = 0.1.
Then, we have a new set of parameters: S5 :=
{β = 0.0107, γ = 1.0387, a = 0.1, b =
0.0131, r = 0.8, α = 0.05, cs = 0.2, cp =
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(a)

(b)

Fig. 8: Solution behavior of system (15) when the
parameter setS4 and the initial values Bs,0 = 5,
Bi,0 = P0 = 1 are used. The eigenvalues are λ1 =
−1.0352, λ2,3 = −0.199±0.099i with the conditions
in Theorem 5.5 as n1 = 0.40 > 0 and n2 = 0.049 >
0. The solution is locally asymptotically stable at the
equilibrium point Ê(0.317, 0, 0.199): (a) Time series
solutions of Bs, Bi, and P , (b) Phase plot of Bs, Bi,
and P .

0.1, µ = 0.123,Kp = 0.1}. Using the parameter
set S5 with the initial values Bs,0 = 5, Bi,0 = P0 =
1, the simulation of (15) for E∗ shown in Figure 9
converges to E∗ as proved in Theorem 5.6. Note that
the parameter values in S5 give eigenvalues of the
Jacobian as

λ1 = −0.889, and λ2,3 = −0.049± 0.702i. (50)

Since all real parts are negative, E∗ is locally
asymptotically convergent. Also, the Routh-Hurwitz
conditions given in the caption of Figure 9 are
satisfied.

According to parameter set S5, we obtained the
bifurcation point β∗ = 0.108 satisfying the conditions
presented in Theorem 5.7 as

m2(β
∗) = 0.006 > 0, m3(β

∗) = 0.61 > 0,

H(β∗) = 0,
dH(β)

dβ

∣∣∣
β=β∗

= 0.0015 ̸= 0.
(51)

In addition, for β = β∗ = 0.108, we obtain
eigenvalues

λ1 = −0.066, and λ2,3 = 0± 0.781i. (52)

In Figure 9, we used β = 0.0107 in parameter set
S5. Therefore, Figure 9 presents the case of β < β∗.
Next, we choose β = 0.2, satisfying β∗ < β, to
present the instability around the equilibrium point
E∗. Using initial values Bs,0 = Bi,0 = 10, P0 = 0.1,
parameter setS5 and β = 0.2, we obtain the following
eigenvalues:

λ1 = −0.013, and λ2,3 = 7× 10−6 ± 0.78i, (53)

with the conditions in Theorem 5.6 as m1 = 0.01 >
0, m2 = 0.62 > 0, m3 = 0.008 > 0, but
m1m2 − m3 = −8 × 10−6 < 0. Therefore,
the solution is unstable at the equilibrium point
E∗(5.19, 2.98, 0.026) as shown in Figure 10.

7 Discussion and Conclusions
In this article, we present a mathematical model

of BPH, with IPM strategies consisting of biological
control and chemical control. We used two types of
biological control: a natural enemy of BPH and an
entomopathogenic fungus. Specifically, Cyrtorhinus
lividipennis is considered to be a natural enemy of
BPH, and an entomopathogenic fungus is studied as
Metarhizium fungus. In addition, we add a chemical
control in our model.

Under assumptions [H1]-[H10] in Section 2, we
constructed a model that includes the IPM strategy
shown in (1). We defined the BPH population
into two groups: the susceptible group Bs and the
infected group Bi, while the predator population
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(a)

(b)

Fig. 9: Solution behavior of system (15) when the
parameter setS5, the initial values Bs,0 = 100,
Bi,0 = P0 = 1 are used. The eigenvalues are
λ1 = −0.889, λ2,3 = −0.049 ± 0.702i with the
conditions in Theorem 5.6 asm1 = 0.989 > 0, m2 =
0.585 > 0, m3 = 0.441 > 0, and m1m2 − m3 =
0.137 > 0. Additionally, this figure simultaneously
presents in the case of β < β∗. Therefore, solutions is
locally asymptotically stable at the equilibrium point
E∗(97.07, 39.33, 2.01): (a) Time series solutions of
Bs, Bi, and P , (b) Phase plot of Bs, Bi, and P .

was represented by the variable P . To observe
the behavior of severe BPH outbreaks, we assumed
that the BPH population increases exponentially,
as defined by the term rBs, meaning that in the
early stages of an outbreak, BPHs can increase
their population exponentially without limitations
from food or space as assumed in assumption [H1].
Furthermore, to observe long-term IPM control, we
disregarded the carrying capacity variable of the
BPH population. There is no clear evidence that

(a)

(b)

Fig. 10: Solution behavior of system (15) when β∗ <
β with the initial values Bs,0 = Bi,0 = 10, P0 =
0.1 are used. The obtained solution is unstable at
the equilibrium point E∗(5.19, 2.98, 0.026): (a) Time
series solutions of Bs, Bi, and P , (b) Phase plot of
Bs, Bi, and P .

infected individuals with Metarhizium can return
to being susceptible BPH again. Metrhizium is a
fungus that targets specific insect species and has no
effect on Crytorrhinus lividipennis. We then used
the assumptions [H2]-[H7] to construct a model for
the epidemic ability of Metarhizium. Also, because
Crytorrhinus lividipennis can eat other small insects
in the ecosystem, we assumed [H8] and [H9]. The
chemical effect was added with the assumption [H10]
that the severity of a chemical depends on the
population density. Therefore, the effect of chemical
control on BPH and its predator were represented by
csBs and cpP respectively. However, we neglect to
analyze the stability of system (1), instead, we define
a functional response before analyzing the stability of
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the system.
In Section 3 we defined the functional response

function, which is an important function in studying
the dynamics of predator-prey systems. Functional
response has been studied to estimate the predator's
hunting ability on prey density. Functional responses
have been used in entomological research to measure
the ability of predators to kill insects under various
conditions. Six functions presented in subsection
3.1, Holling's type I, Holling's type II, Holling's type
III, Holling's type IV, Roger's type, and Ivlev's type,
were fitted to data. Adult Crytorrhinus lividipennis
was able to consume significantly more BPH eggs
than nymphs Crytorrhinus lividipennis. Therefore,
we were only interested in adult Crytorrhinus
lividipennis that have important implications for
controlling BPH populations with the data reported
in [7]. We found that Holling's type II functional
response best fits the data with attack rate a = 0.9009
and handling time b = 0.0131 as shown in Table 1.
Thus, we defined f(Bs) = aBs/(1+abBs) in system
(1), and we obtained the system (15).

An SIR model was developed in Section 4 to
evaluate fungal performance. We were able to
calculate the R0 value of an entomopathogenic
fungus, Metarhizium neoanisopliae, as shown in
Table 2. This shows that the use of M. neoanisopliae
fungus under laboratory conditions cannot cause the
BPH population to disappear from the system. This
study indicates that using fungus alone can reduce the
number of BPHs but cannot stop BPH infestation in
the long term, especially when the BPH population
has increased exponentially or through immigration.
Therefore, in the following section of the study, we
examined the model (15) that incorporates IPM in
Section 5.

The results from the analysis of model with
IPM (15) show that the system has positivity and
boundeness as proved in Theorem 5.1. The details
of equilibrium points and their stability have been
presented in subsections 5.2 and 5.3 respectively.
Moreover, numerical results were used to illustrate
the theoretical results presented in Section 6.

The equilibrium point E0(0, 0, 0) indicates that
when BPH growth rate is less than the insecticide
efficiency (r < cs), then BPH disappears from the
system. By Theorem 5.2, if the insecticide is very
effective, it can also cause Cyrtorhinus lividipennis
to become extinct (α < cp).

Cyrtorhinus lividipennis, which is the main natural
enemy of BPH, can eat other small insects. With
sufficient food reserves, its population can survive,
which will be beneficial for managing the next
generation of BPHs. According to the existence
condition for Ē(0, 0, Kp

α (α− cp)), α > cp, and
the stability conditions in Theory 5.3, we found that

the equilibrium point is Ē , which means that BPH
becomes extinct when a chemical and Cyrtorhinus
lividipennis with sufficient food reserves are used
simultaneously.

On the other hand, if the chemical has enough
effect on Cyrtorhinus lividipennis (α + µaγ/(abγ +
β) < cp) but has little effect on the BPH (r >
cs), it may cause the BPH to remain in the system
but Cyrtorhinus lividipennis to disappear as was the
case proved in Theorem 5.4 for the predator free
equilibrium Ẽ( γβ ,

r−cs
β , 0).

It was found that the infection free equilibrium
Ê
(
B̂s, 0, P̂

)
can occur at two points simultaneously

when the conditions in equations (22), (25), and (26)
are satisfied. Additionally, the stability condition was
proved in Theorem 5.5.

For the interior equilibrium E∗(B∗
s , B

∗
i , P

∗), we
showed that a Hopf bifurcation could occur that
satisfied the conditions in Theorem 5.7 at β = β∗.
If β < β∗, the system is locally asymptotically stable
at E∗ with the conditions in Theorem 5.6. Otherwise,
the system is unstable at E∗ if β∗ < β. These
results also follow from the changing of the real part
of eigenvalues λ2,3 as shown in Equations (50), (52),
and (53).

For some initial values, the equilibrium points Ẽ
and E∗ indicate that the population of susceptible
BPHs depends on the severity of the fungus as
Bs → γ/β as t → ∞. Therefore, under some
conditions, both infected and susceptible groups can
coexist in the system with the number of susceptible
BPHs remaining over time depending on the severity
parameters of infection with the fungus β, and γ.

Therefore, from the results of this study, we
recommend the use of an IPM control method that
combines fungi, Cyrtorhinus lividipennis, and a
chemical pesticide as a means of quickly eradicating
insects in the early stages of an outbreak and of
possibly causing BPHs to become extinct in the long
term. The important factor that reduces pests is the
use of chemicals. The severity of a chemical has a
great effect on the model we study. If the chemicals
affect Cyrtorhinus lividipennis, it could cause them to
become extinct as well. However, without the use of
chemicals, the population of Cyrtorhinus lividipennis
must be large enough to cause long-term extinction.
In addition, the use of pathogenic fungus also has
long-term effects on the system. In cases where we
want to avoid the effects of chemicals as much as
possible, fungi and insect predators should be applied
together to eliminate insect pests.

In fact, there are many factors affecting BPH
populations, such as species of rice, migration,
temperature, humidity, other insect predators, habitat
complexity, etc. In the future, we intend to include
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some of these factors in the model to be more
realistic. For example, using other insect predators
such as Paederus fuscifes and wolf spider Pardosa
pseudoannulata. Using other kinds of fungus
such as Beauveria bassiana and Metarhizium spp.,
including specifying the specific type of chemical.
Additionally, pest management may be achieved
through the repeated release of chemical or fungal
pesticides and natural enemies of BPH, which can
lead to a model that incorporates an impulsive model
to observe periodic pest eradication. In addition, the
model presented in this work can be further improved
to the stochastic differential model, [72], and the
delay-differential model, [73]. Ultimately, we hope
that this research will provide a guide for the analysis
and control of BPH outbreaks in rice fields.
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