
  
Abstract: - In this paper, we introduce new formulas for calculating the mutual inductance between two 
inclined solenoids positioned in free space. We employ the filament method to derive these calculations and 
explore the optimal number of subdivisions for coil representations, balancing computational efficiency and 
accuracy. Notably, we present the first calculations in the literature addressing singular cases where solenoids 
intersect, acknowledging the theoretical implications of these intersections despite their physical improbability. 
Our results appear reasonable and may challenge engineers and physicists to evaluate their analytical and semi-
analytical methods in this context. We provide examples illustrating both regular and singular cases, 
demonstrating the applicability of our findings. 
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1   Introduction 
A new method has been developed for calculating 
the mutual inductance between two inclined 
solenoids in any relative position and angular 
orientation. This method covers all scenarios, 
whether regular or singular, including cases where 
the solenoids intersect or are in contact. There are 
relatively few papers on this topic in the literatures 
[1], [2], [3], [4], [5], [6] and [7] and the existing 
ones primarily rely on solutions involving special 
functions such as Bessel, Struve, and 
Hypergeometric series, which often require 
numerical integration. An excellent contribution in 
this domain was made in [3]. 

However, engineers, physicists, and others 
working in this field may not be familiar with these 
special functions and often prefer easier, faster, and 
more precise methods for obtaining practical 
solutions. This new method offers a valuable 
contribution to the treatment of inclined solenoids in 
any desired orientation, enabling the calculation of 
key electromagnetic quantities such as mutual 

inductance, magnetic force, torque, and stiffness. 
The method leverages the filament technique, which 
is known for its accuracy and efficiency, minimizing 
computational time. A particularly significant 
contribution of this method is its handling of 
singular cases where solenoids intersect, even 
though such cases may be physically controversial. 
This is critical from an engineering perspective, 
where solutions must be both highly accurate and 
computationally efficient. 

The filament method used in this approach 
replaces each solenoid with a set of filamentary 
Maxwell loops, distributed in a way that respects the 
uniform current distribution over the cross-section 
and coil dimensions. The coils are divided axially, 
with each segment representing a loop carrying the 
corresponding current. The number of segments 
depends strictly on the coil dimensions, which is 
crucial for optimizing both accuracy and 
computation time. The optimal balance between the 
number of axial divisions and computational 
efficiency is explored in detail in [1] and [2]. All 
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calculations are implemented using MATLAB, and 
the provided examples can serve as benchmark 
problems for testing other methods that address 
similar challenges. 

Additionally, this approach provides a 
comprehensive method to calculate all combinations 
of inclined coils (e.g., coil-solenoid, two disk coils), 
ensuring consideration of both conventional and 
non-conventional coils. 
 
 

2   Problem Formulation 
To calculate the mutual inductance between two 
inclined solenoids positioned in any desired 
configuration (Figure 1 and Figure 2), we use the 
fundamental general formulas provided in [1] and 
[2]: Which calculates the mutual inductance 
between two loops in arbitrary positions. In [1] and 
[2], we developed highly effective formulas for 
calculating the mutual inductance between two 
inclined coils with rectangular cross-sections in any 
position, as well as between circular coils with 
rectangular cross-sections and parallel axes. 

By applying certain modifications to these 
formulas—specifically by neglecting the coil 
thickness in the case of rectangular cross-sections—
we derive the mutual inductance between two 
inclined solenoids in any desired orientation as 
follows: 

𝑀 =
𝑁1𝑁2

(2𝐾 + 1)(2𝑚 + 1)
∑ ∑ 𝑀(𝑔, 𝑝)       (1)

𝑝=𝑚

𝑝=−𝑚

𝑔=𝐾

𝑔=−𝐾

 

 

𝑀(𝑔, 𝑝) =
𝜇0𝑅𝑆

𝜋
√𝐿𝑙  𝐼                                               (2) 

 
where, 

𝐼 = ∫
𝑝1 cos(𝑡) + 𝑝2 sin(𝑡) + 𝑝3

√𝑘𝑉1
3

2𝜋

0

𝜙(𝑘)𝑑𝑡  

𝑥 = 𝑥𝐶 +
𝑏𝑎1

(2𝑚 + 1)
𝑝 , 

𝑦 = 𝑦𝐶 +
𝑏𝑏1

(2𝑚 + 1)
𝑝, 

𝑧 = 𝑧𝐶 −
𝑎

(2𝐾 + 1)
𝑔 +

𝑏𝑐1
(2𝑚 + 1)

𝑝 

(𝑔 = −𝐾,… ,0,… , 𝐾;   𝑝 = −𝑚,… ,0, … ,𝑚) 

𝑁⃗⃗ = {
𝑎1

𝐿
,
𝑏1

𝐿
,
𝑐1
𝐿
 } = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧 } 

𝐿 = √𝑎1
2 + 𝑏1

2 + 𝑐1
2  ,   𝑙 = √𝑎1

2 + 𝑐1
2 

𝛼 =
𝑅𝑆

𝑅𝑃
, 𝛽 =

𝑥

𝑅𝑃
 , 𝛾 =

𝑦

𝑅𝑃
 , 𝛿 =

𝑧

𝑅𝑃
     

 

𝑝1 = 𝐿𝛾𝑐1,   𝑝2 = −(𝛽𝑙2 + 𝛾𝑎1𝑏1),   𝑝3 = 𝑙𝛼𝑐1  
 

𝑝4 = −(𝛽𝑎1𝑏1 − 𝛾𝑙2 + 𝛿𝑏1𝑐1) 
 

𝑝5 = −𝐿(𝛽𝑐1 − 𝛿𝑎1) 
 
𝑉1 = 𝐿2𝑙2(𝛽2 + 𝛾2) + 𝛼2(𝐿2𝑙2 − 𝑏1

2𝑐1
2)𝑐𝑜𝑠2(𝑡) + 

 
𝛼2𝐿2𝑐1

2𝑠𝑖𝑛2(𝑡)+𝛼2𝐿𝑎1𝑏1𝑐1 sin(2𝑡) − 
 
2𝐿𝑙𝛼(𝛽𝑎1𝑏1 − 𝛾𝑙2) cos(𝑡) − 2𝐿2𝑙 𝛼𝛽𝑐1𝑎𝑖𝑛(𝑡) 
 
𝐴 = 𝐿𝑙(1 + 𝛼2 + 𝛽2 + 𝛾2 + 𝛿2) + 
 
2𝛼[𝑝4 cos(𝑡) + 𝑝5sin (𝑡)] 
 

𝑘2 =  4𝑉1/(2𝑉1 + 𝐴) 
 

𝜙(𝑘) = (1 −
𝑘2

2
)𝐾(𝑘) − 𝐸(𝑘) 

 

K(k) and E(k) are the complete elliptical integrals of 
the first and second kind, [8] and [9]. 
 
Special case: 

𝑎1 = 𝑐1 = 0 → 𝑙 = 0 
𝑢𝑥 = 0,           𝑢𝑦 = 0, 𝑢𝑧 = 1 
𝑣𝑥 = 1,           𝑣𝑦 = 0, 𝑣𝑧 = 0 

 
The parameters used in this method are defined as 
follows: 

 RP — inner radius of the primary solenoid, 
which is positioned parallel to the Z-axis 
with its center at the origin. 

 RS — outer radius of the secondary inclined 
solenoid, whose center is located at point C, 
the origin of the system x′, y′, and z′. 

 N1 — number of turns in the primary 
solenoid. 

 N2 — number of turns in the secondary 
solenoid. 

 a and b — axial heights of the primary and 
secondary solenoids, respectively. 

 d — perpendicular displacement between 
the axes of the solenoids. 

 c — displacement between the planes of the 
centers of the solenoids. 

 K and m — number of axial subdivisions for 
primary and secondary solenoids,  

 a1, b1 and c1— the component of the unit 
vector 𝑁⃗⃗  positioned at point C following the 
axis z′. 
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In this paper, we employed Gaussian numerical 
integration for the evaluation of the single integrals 
[8] and [9]. 

 

 
Fig. 1: Configuration of mesh matrix: Two inclined 
solenoids (axes intersect but not at the center of 
either) 
 

 
Fig. 2: Configuration of mesh matrix: Two inclined 
solenoids (axes intersect at the center of either) 
 
 
3   The Optimal Choice of the 

Number of the Subdivisions 
In [1] and [2], we discussed and presented the 
relationship between the radial and axial divisions 
as a function of the number of subdivisions for coils 
with rectangular cross-sections, whether inclined or 
with parallel axes. 
Let us define the following radial distances: 

 LN— corresponding to the radial subdivision 
N, 

 Ln — corresponding to the radial 
subdivision n. 

 
𝐿𝑁 = 𝑅2 = 𝑅1 → 𝑁 = 0                                           (3) 
 
𝐿𝑛 = 𝑅4 = 𝑅3 → 𝑛 = 0                                           (4) 

Let us also define the following axial distances: 
La — corresponding to the axial subdivision K, 
Lb — corresponding to the axial subdivision m. 
 
𝐿𝑎 =  𝑎 → 𝐾                                                                 (5) 
 
𝐿𝑏 =  𝑏 → 𝑚                                                                 (6) 
 
La/Lb = a/b = K/m = [t ] ≤ 1 𝑜𝑟 [𝑡] ≥ 1 
 
We have only two dependable variables in the axial 
subdivisions of the solenoids. 
 
Thus, the number of subdivisions for the solenoids 
are as follows: 
 
If [𝑡] < 1 
N = 0, K = K, n = 0 and m = 1/[t] K 

 
If [𝑡] > 1 
N = 0, K = [t] m, n = 0 and m = m 

 
If 𝑡 = 1 
N = 0, K = m, n = 0 and m = m 

 
In the case of solenoids, whether inclined or 

with parallel axes, the problem becomes 
significantly simpler because the two variables N 
and n are zero. This reduces the problem to two 
variables, K and m, which are linearly dependent. 
The selection of these variables, as well as the 
iterative process used to determine the optimal 
balance between minimal computational time and 
maximum accuracy, is detailed in [1] and [2]. 
 
 
4    Singular Treatment 
The singular cases will be solved by ansatz. 
Singular cases often arise in electromagnetic 
systems when there are specific configurations (e.g., 
coils in direct contact, overlapping fields) that lead 
to undefined or infinite values in the governing 
equations. 

An ansatz is an educated guess or a proposed 
form for the solution to a mathematical problem, 
which is then verified through substitution into the 
governing equations. In this case, it allows you to 
find solutions for complex configurations. 

Using an ansatz for singular cases allows for 
obtaining meaningful solutions where direct 
analytical methods might fail, facilitating the 
understanding of complex electromagnetic 
interactions. 
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We are discussing the orientation and 
positioning of a secondary coil relative to a primary 
coil using both cylindrical and Cartesian coordinate 
systems, [3]. 
 
The key points are: 
 

1.Primary Coil (Axisymmetric): The primary coil 
is symmetric around its axis (like the z-axis in 
cylindrical coordinates. 

 
2. Secondary Coil (Position and Orientation): 
The secondary coil's position is described in the 
Cartesian coordinate system by a position vector, 
rc=(xc,yc,zc)  where  xc,yc and zc are its coordinates 
relative to the origin. 
The vector 𝑁⃗⃗  likely represents the orientation of the 
secondary coil's axis. 
 

3. Rotation to Simplify Calculations: 
Since the primary coil is axisymmetric, you can 
rotate the Cartesian coordinate system in such a way 
that the Y-component of the secondary coil’s 
orientation vector ny becomes zero. This simplifies 
the problem, reducing the 3D orientation to a plane 
with only two components, likely nx and nz. 

This setup likely helps simplify the analytical or 
numerical evaluation of mutual inductance or 
magnetic interactions between the two coils, 
especially when solving for cases where the coils 
have a general orientation. The symmetry of the 
primary coil means that one degree of freedom in 
orientation can be removed through this rotation, 
[3]. 

 
Let’s define the unit vector at point C as follows: 
𝑁⃗⃗ = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} = {𝑛𝑥, 0, 𝑛𝑧}                              (7) 
 
Let’s consider cos(θ) = a as a singular case for the 
filament method. To overcome this problem let us 
find the mutual inductance when cos(θ) is near a. 
 
Let’s take a very small positive number 𝜀. By 
introducing cos(𝜃) = 𝑎 − 𝜀 and sin(𝜃) =

√1 − (𝑎 − 𝜀)2 we calculate the mutual inductance  
𝑀(𝑎 −𝜀). 
 
Next, we introduce cos(𝜃) = 𝑎 +𝜀 and sin(𝜃) =

√1 − (𝑎 + 𝜀)2 to calculate the mutual inductance  
𝑀(a +𝜀). 
 
For different values of  𝜀𝑖 = 0.1; 0.01; 0.001;… 
we calculate the corresponding mutual inductance as 

𝑀𝜀𝑖(𝑎) =
[𝑀(𝑎− 𝜀𝑖)+𝑀(𝑎+ 𝜀𝑖)]

2
, 𝑖 = 1,2,3, … .,        (8)   

 
We terminate the process when 
𝑀𝜀𝑖−1 = 𝑀𝜀𝑖                                                              (9) 

or when the calculation diverges to infinity. 
In the case of two solenoids with parallel axes rc = 
(xc = d, yc = 0, zc = c)   and  𝑁⃗⃗ = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} =
{0,0, 1}. 
 
 
5    Examples 
 

5.1  Example 1 
Calculate the mutual inductance between two 
inclined solenoids for which we have: 
 
R1 = 1 m, a = l1 =1 m, N1 = 100 turns  
R2 = 0.25 m, b = l2 = 0.5 m, N2 = 50 turns. 
 
The center of the inclined solenoid is C (0.2 m;0 
cm;0.3m). 
 
a/b = K/m = 1/0.5 = 2, (N = n = 0) 
 
From the coils ‘dimensions the number of axial 
subdivisions can be taken as follows, [1] and [2]: 
N = 0, K = 2m, n = 0, m = m 
 
Let’s examinate the computational time and 
accuracy in the function of the number of the 
subdivisions.  
 
We tested the case where nx =sin(θ)= 0.510.5, ny =0 
and nz =cos(θ) = 0.7. From Table 1 we can see that 
this case is not the singular. 
 

Table 1. Test of the computational time and 
accuracy for the mutual inductance 

N/ K/ m/ n M (µH) Time(s) ARE (%) 
0/50/25/0 381.2429704988 1.861 ---- 

0/100/50/0 381.2408304499 6.039 0.00056 
0/150/75/0 381.2404299999 13.093 0.00011 

0/200/100/0 381.2402893125 23.532 0.00004 
0/ 250/125/0 381.2402240645 35.825 0.00002 
0/300/150/0 381.2401885773 50.334 0.00001 
0/350/175/0 381.2401671615 68.221 0.00001 
0/400/200/0 381.2401532533 89.042 0.000004 

 

All results are in very good agreement, with 
differences appearing only after the sixth decimal 
place. All cases demonstrate excellent accuracy, and 
the first four cases can be considered without any 
reservations. We focus on the case where K=200 
and m=100, for which the computational time is 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2025.24.5 Slobodan Babic, Nikos E. Mastorakis

E-ISSN: 2224-2678 47 Volume 24, 2025



approximately 23.532 seconds. In Table 2, all 
calculations for the different angles of inclination 
are provided.  

 
Table 2. Computation of Mutual Inductance 

between Two Inclined Solenoids. 
nx =sin(θ) nz =cos(θ) M(µH) This work 

0.0 1.0 511.8057225358491 
√0.19 0.9 474.1189590889916 

0.6 0.8 NaN 
√0.51 0.7 381.2402893124998 

0.8 0.6 332.8678266511847 
√0.75 0.5 283.7002109910534 
√0.84 0.4 233.8997743391140 
√0.91 0.3 183.5735208228110 
√0.96 0.2 132.7964260156655 
√0.99 0.1 8.162237991774454 

1.0 0.0 30.09018080816064 
 

Obviously, the singularity appears for nx =sin(θ)= 
0.6, ny =0 and nz =cos(θ) = 0.8. 
 
For different values of epsilon (Table 3), using 
equation (8), we test the mutual inductance near the 
singularity. 
 
Table 3. Test of the mutual inductance close to the 

singularity 
𝜀 M(µH) 

0.001 428.619819230 
0.0001 428.537735536 

0.00001 428.537736336 
0.000001 428.537736344 

0.0000001 428.537736344 
0.00000001 NaN 

 
Thus, we stop here before the mutual inductance 
begins infinity. Let us verify this reasoning with 
condition (9) with a =0.8 and εi  = 0.0000001. 
 

𝑀(𝑎 − 𝜀𝑖) = 428.5376897385664µH 
and 

𝑀(𝑎 + 𝜀𝑖) = 428.537782949496µH 
Finally, 

𝑀(𝑎) = (𝑀(𝑎 − 𝜀𝑖) + 𝑀(𝑎 + 𝜀𝑖))/2 
 

The condition in equation (9) is satisfied, 
indicating that the mutual inductance at this point 
can be considered extremely precise, and it is  

M =   428.537736344 (µH). 

 
It should be noted that this type of singularity is 

referred to as a smooth singularity. This means that 
the intersection of the solenoids occurs at a single 

point, and it is possible to calculate this singularity 
from both sides of that point. 
 
5.2  Example 2 
Calculate the mutual inductance between two 
inclined solenoids for which we have: 
 
R1 = 2 cm, a = l1 = 2 cm, N1 = 100 turns  

 
R2 = 1 cm, b = l2 = 2 cm, N2 = 100 turns. 
 
The center of the inclined solenoid is C (1.1 cm;0 
cm; 0.5 cm). 
 
a/b = K/m = 2/2 = 1, (N = n = 0) 
 
From the coils’ dimensions the number of axial 
subdivisions can be taken as follows, [1], [2]: 
 

N = 0, K = m, n = 0, m = m 
 
Let’s examine the computational time and accuracy 
in the function of the number of subdivisions.  
 
We test the case where nx =sin(θ)= 0.8, ny =0 and nz 

=cos(θ) = 0.6.  From Table 4 we can see that this 
case is not singular.  

 
Table 4. Test of the computational time and 

accuracy for the mutual inductance 
N/ K/ m/ n M (mH) Time(s) ARE 

(%) 
0/40/40/0 6.008378010924 2.195 ---- 
0/80/80/0 6.008246454441 7.733 0.00220 

0/120/120/0 6.008229897189 16.659 0.00028 
0/160/160/0 6.008218245204 28.811 0.00019 
0/ 200/200/0 6.008216146003 70.465 0.00004 
0/ 240/240/0 6.008214413430 104.209 0.00003 

 
All results are in very good agreement, with 

differences appearing only after the five or the sixth 
decimal place. All cases demonstrate excellent 
accuracy, and the first four cases can be considered 
without any reservations. We focus on the case 
where K = m =160, for which the computational 
time is approximately 28.811185 seconds. In Table 
5, all calculations for the different angles of 
inclination are provided. 

 
Obviously, all cases are regular, so the 

presented method is applicable to both regular and 
singular cases. 
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Table 5. Computation of Mutual Inductance 
between Two Inclined Solenoids. 

nx =sin(θ) nz =cos(θ) M(mH) This work 
0.0 1.0 8.74011321164347 

√0.19 0.9 8.238882046221992 
0.6 0.8 7.487950826302638 

√0.51 0.7 6.745801670369136 
0.8 0.6 6.008218245204718 

√0.75 0.5 5.270331596007753 
√0.84 0.4 4.527506873290331 
√0.91 0.3 3.775026595666628 
√0.96 0.2 3.007712605621282 
√0.99 0.1 2.219583638360655 

1.0 0.0 1.403399378413527 
 
5.3   Example 3 
Calculate the mutual inductance between two 
solenoids with parallel axes for which we have: 
 
R1 = 1 m, a = l1 =1 m, N1 = 1000 turns  

 
R2 = 1 m, b = l2 = 1 m, N2 = 1000 turns. 
 
The center of the displaced solenoid is C(xC = d; yC 
= 0; zC = c =1), and the component of the unit vector 
at this point 𝑁⃗⃗ = {𝑛𝑥𝐶 , 𝑛𝑦𝐶 , 𝑛𝑧𝐶} = {0,0,1}. 
 
From the coils’ dimensions the number of axial 
subdivisions can be taken as follows, [5], [6]: 
 
N = 0, K = m, n = 0, m = m 
 
The results in fived column are for K = m = 100, N 

= n = 0. 
 

Let’s take as in the previous case 𝜀 =
0.0000001 and find for d = 1-0.0000001and d = 
1+0.0000001 respectively. 
 
M-=509.5184217293739 mH.  
 
The elapsed time is 6.933516 seconds. 
 
M+=509.5164125027133mH.   
 
The elapsed time is 8.352631 seconds. 
 
Now, the supposed mutual inductance for this case 
could be: 
 
M = (M-+ M+)/2 = 509.5174171160436 mH. 

 

Thus, the problem of the singularity is overcome by 
ansatz, Table 6. 

Table 6. Computation of Mutual Inductance 
between Two Inclined Solenoids. 

d(m) MThis Work (mH) Time(s) 
0.0 1870.827527140828 4.658099 
0.25 1442.641111354813 4.580331 
0.5 1084.060166389914 8.621715 

0.75 777.3078274413109 8.703822 
0.999999 509.5184217293739 7.699235 

1.0 NaN  
1.000001 509.5164125027133 8.674804 

1.25 274.5559991375439 8.315158 
1.5 72.59962217729628 8.410469 
1.75 -86.60801122260487 8.799677 
2.0 -159.1494780152672 6.926220 

2.25 -107.5928368505295 7.882158 
2.5 -75.74174178415984 8.464918 

2.75 -55.3147627583018 8.337810 
3.0 -41.64955582522267 7.441429 

 

It should be noted that this type of singularity is 
referred to as a smooth singularity. This means that 
the intersection of the solenoids occurs at a single 
point, and it is possible to calculate this singularity 
from both sides of that point.  
 

5.4  Example 4 
Calculate the mutual inductance between two 
inclined solenoids for which we have: 
 
R1 = 3 m, a = 4 m, N1 = 1000 turns  

 
R2 = 1 m, b = 4 m, N2 = 1000 turns. 
 
The center of the inclined solenoid is C(xC = 1 m; yC 

= 0 m; zC =2m)  
 
From the coils’ dimensions the number of axial 
subdivisions can be taken as follows, [5], [6]: 
 
N = 0, K = m, n = 0, m = m =300 
 

Table 7. Computation of Mutual Inductance 
between Two Inclined Solenoids 

nx =sin(θ) nz =cos(θ) MThis Work (mH) 

0.0 1.0 NaN 
√0.19 0.9 367.9139516949478 

0.6 0.8 340.3142988590226 

√0.51 0.7 312.0164553561316 

0.8 0.6 283.5531178651556 

√0.75 0.5 255.2917023555278 

√0.84 0.4 226.4840684770490 

√0.91 0.3 195.2347084483120 

√0.96 0.2 161.4129841218354 

√0.99 0.1 125.0515637025127 

1.0 0.0 85.98299013180394 
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Table 8. Test of the mutual inductance close to the 
singularity 

𝜀 M(mH) 
0.001 390.4285350889643 

0.00001 390.2334580148851 
0.000001 390.1650923006923 
0.0000001 390.1404249985815 

0.00000001 NaN 

 
Thus, for the case where cos(θ) = 1, the mutual 
inductance is calculated as  
       
                     M = 390.1404249985815 mH  

 
which can be considered extremely close to the 
exact value.  
 

This scenario represents a singular case that can 
only be addressed at a specific point at the end of 
the calculation process. 

The mutual inductance for this singular case 
was determined using an ansatz, as it was intuitively 
anticipated. 

It should be noted that in all previous examples 
where singularities appear, we are referring to 
smooth singularities. This means the intersection of 
the solenoids occurs at a single point, Table 7 and 
Table 8. 

Hard singularities, on the other hand, arise when 
the solenoids are completely overlapped, such as in 
the case when calculating the self-inductance of a 
solenoid. 
 
5.5  Example 5 
Calculate the mutual (self) inductance between two 
inclined solenoids for which we have: 
R1 =1 m, a = 2 m, N1 = 1000 turns  
R2 = 1 m, b = 2 m, N2 = 1000 turns. 
 

This is the problem where both solenoids are 
completely overlapped. It means we have the double 
singularity or hard singularity (axial and radial), so 
this problem can not be solved by the presented 
method. Helpfully, we can use the well-known 
formula [10], from which the self-inductance is:   

L = 1.35889175900372 H 
 
 
6   Conclusion 
In this paper, a highly efficient and straightforward 
method is presented for calculating the mutual 
inductance between two inclined solenoids 
positioned in any desired spatial configuration. The 
key aspect of this calculation is the treatment of 
singular cases when the solenoids intersect or come 

into contact. This can raise controversy, as one 
might question whether it is physically possible for 
coils to intersect and what the practical use of such 
calculations would be. For this reason, we aim to 
open a discussion on this approach, inviting experts 
in the field to share their opinions on the validity 
and regularity of these calculations. 

From an engineering perspective, the method 
ensures optimal accuracy and minimal computation 
time. Additionally, we provide an incredibly 
effective approach to determine the most optimal 
relationship between the coil dimensions and the 
corresponding number of subdivisions, leading to 
high accuracy with minimal computational effort. 
Furthermore, we offer a solution for resolving 
potential singular cases using an ansatz. 

The filament method is employed, which 
simplifies all procedures for engineers, physicists, 
and others working in the field of electromagnetics, 
without requiring familiarity with complex special 
functions that often pose similar challenges. Some 
representative examples are provided to confirm the 
validity of the present method, and these examples 
can serve as benchmark problems for testing other 
potential methods. All programming is implemented 
in MATLAB, making the method highly accessible 
for potential users. 
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