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Abstract: - A low signal relative to background noise (signal-to-noise ratio: SNR) signifies a challenge in 
distinguishing the signal from the background noise. Herein, estimates for the simultaneous confidence 
intervals (SCIs) for the differences between the SNRs of several log-normal (LN) distributions are presented. 
These are based on the fiducial generalized confidence interval (FGCI), large sample (LS), method of variance 
estimates recovery (MOVER), and Bayesian (BS) approaches. By using a Monte Carlo simulation study with 
RStudio programming, all SCIs are compared based on their coverage probabilities and average lengths. The 
results indicate that LS approach provided shorter average lengths compared to the MOVER approach, the 
former approach is the most effective for estimating the SCIs for the differences among the SNRs of several LN 
distributions. Furthermore, these methods were also used to compare the equality of three price-earning ratios: 
the SET50, SET100, and sSET indexes. In conclusion, the LS approach proved to be the best method and is 
thus recommended for estimating the SCIs for the differences between the SNRs of multiple LN distributions. 
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1   Introduction 
The log-normal distribution is well-known to 
applied to many areas including business and 
finance [1], such as it has been utilized to model 
stock prices. The signal-to-noise ratio (SNR) 
measures the quality of a signal with reference to 
the background noise, with a higher SNR indicating 
better signal quality. The SNR is an essential metric 
in many fields such as telecommunications, finance, 
economics, business and biology, [2]. For example, 
in finance, the higher SNR indicates a more reliable 
trading signal.  

Following the investigation of [3] and [4], [5] 
derived estimates for the simultaneous confidence 
intervals (SCIs) for the ratios of means of several 
log-normal distributions. The SCI can be used to 
assess several parameters concurrently within a 
predetermined confidence level while the CI 
concentrates the analysis on a single parameter. The 

SCI involves specialized methods to consider the 
joint estimation of multiple parameters and control 
the overall confidence level, [6]. The SCIs have 
been used in experimental scenarios involving the 
comparison of multiple populations. The objective 
is to enable the drawing of conclusions about 
differences between the SNRs of more than two LN 
populations.  

The estimation of the SCI for differences 
between the SNRs of multiple LN distributions is 
presented herein using four approaches. The first is 
the fiducial generalized confidence interval (FGCI) 
approach, in which fiducial intervals are estimated 
using fiducial distributions. The simultaneous 
fiducial generalized confidence intervals (SFGCIs) 
for ratios of means of log-normal distributions using 
fiducial generalized pivotal quantities (FGPQs) 
were proposed by [7]. The second is the large 
sample (LS) approach, for which the Central Limit 
Theorem (CLT) is key. Several researchers have 
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used it to estimate the CI for various distribution 
parameters, [8]. The third is the method of variance 
estimates recovery (MOVER) approach, which 
involves a two-step process. First, initial estimates 
of the variance are derived from the data, which 
provides crucial insights into sample variability. 
Second, the variance estimates are used to estimate 
the CI for the parameter of interest, [9]. The fourth 
is the Bayesian (BS) approach, which is a statistical 
methodology that centers around probabilistic 
inference and the interpretation of beliefs regarding 
hypotheses. Normally, the BS analysis involves a 
likelihood function and defining a prior distribution 
which are then used to explore the posterior 
distribution, [10]. 
 
 
2   Methods 
Let 

i ii i1 i2 in i1 i2 inX (X ,X ,...,X ) (log(Y ),log(Y ),...,log(Y ))  be 
a random sample of size in  from normal distribution 
with mean i  and variance 2

i , where i 1,2,...,k . Let iY  
be the LN distribution with mean 2

Y(i) i iexp( ( / 2))      
and variance 2 2 2

Y(i) i i i(exp( ) 1)exp(2 )      . The SNR 
of iY  is 

Y(i)
i 2 2

Y(i) i

1
exp( ) 1


  

  
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The estimator of i  is 

i 2
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exp(S ) 1
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,                                         (2) 

where 
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2 2
i ij i i
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S (X X ) / (n 1)



   . 

The variance of i̂  is 
4 2
i i
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i i

exp(2 )ˆVar( )
2(n 1)(exp( ) 1)

 
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(3) 
Therefore, the difference between SNRs is 

il i l 2 2
i l

1 1ˆ ˆ ˆ
exp(S ) 1 exp(S ) 1

      
 

,                 (4) 

where i,l 1,2,...,k  and i l . 
The variance of il i l

ˆ ˆ ˆ     is  
4 2 4 2
i i l l

il 2 3 2 3
i i l l

exp(2 ) exp(2 )ˆVar( )
2(n 1)(exp( ) 1) 2(n 1)(exp( ) 1)

   
  

     
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                                                                               (5) 
 

2.1 Fiducial Generalized Confidence Interval 

Approach 
The concept of generalized pivotal quantities (GPQs) 
for constructing generalized confidence intervals 
(GCIs) were proposed by [11]. A subclass of GPQs 
known as fiducial generalized pivotal quantities 

(FGPQs) was introduce by [12]. Following [12], the 
FGPQs were used to estimate fiducial generalized 
confidence intervals (FGCIs). In a related work, 
proposed FGPQs to construct simultaneous fiducial 
generalized confidence intervals (SFGCIs) were 
proposed by [7]. The FGCI technique provides an 
advantage by being able to determine confidence 
intervals for complex parameters. However, its 
downside stems from its reliance on simulated data. 

Following [12], let 
ii i1 i2 inX (X ,X ,...,X )  and let 

ii i1 i2 inx (x ,x ,...,x ) be the observation of 

ii i1 i2 inX (X ,X ,...,X )   with sample size in , and 

1 2 kX (X ,X ,...,X ) , 1 2 kx (x ,x ,...,x ) , 1 2 k( , ,..., )     , 
2 2 2 2

1 2 k( , ,..., )     , 2
i i i( , )    , and 1 2 k( , ,..., )     . Let 

*X  be an independent copy of X . Let *
iR (X,X , )  be 

a function of X , *X , and  . Since 
* * * *

1 2 kR(X,X , ) (R (X,X , ),R (X,X , ),...,R (X,X , ))     . For 
real functions 1 2 kg ,g ,...,g , the random quantities 

* * *
1 2 kg (R(X,X , )),g (R(X,X , )),...,g (R(X,X , ))   are 

simultaneous fiducial generalized pivotal quantities 
(SFGPQs) for 1 2 kg ( ),g ( ),...,g ( )    if the following two 
properties are satisfied: 
FGPQ1: The conditionnal distribution of *R(X,X , )

is free of  . 
FGPQ2: For every x , *R(x,x , )    
 

Let iX  and *
iX  be both independent and 

identically distributed. Let 2
iS  and 2*

iS  be both 
independent and identically distributed. Therefore, 

*
iX  and 2*

iS  are independent. Since *
iX  and 2*

iS  are 
defined by 

2
* i
i i

i

X ~ N ,
n

 
 
 

                       (6) 

and 

i

2*
2i i
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i
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
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
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where 

i

2
n 1  is chi-squared distribution with in 1  

degrees of freedom. 
According to [12], the GPQs for i  and 2

i  are 
defined as 

 
i

*i
i i i*

i

SR X X
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and 

2
i

2
2i
i2*

i

SR
S

  .                         (9) 

 
The simultaneous fiducial generalized pivotal 

quantities (SFGPQs) for i l    are  

il i l

* 2 * 2 * 2R (X,X , , ) R (X,X , , ) R (X,X , , )           
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2 2
i l

1 1
exp(R ) 1 exp(R ) 1

 

 
 

,          (10) 

where 2
i

R


 is defined as in Equation (9). 
 
The variance of i l

ˆ ˆ    is: 
4 2 4 2
i i l l

il 2 3 2 3
i i l l

S exp(2S ) S exp(2S )V
2(n 1)(exp(S ) 1) 2(n 1)(exp(S ) 1)

 
   

.   (11) 

 
According to [7] and [12], random quantity is: 

il

* 2
il

i l
il

ˆ R (X,X , , )
T max

V




   
 ,                  (12) 

where il̂  is defined as in Equation (4), 

il

* 2R (X,X , , )    is defined as in Equation (10), and 

ilV  is defined as in Equation (11). 
 
Therefore, the 100(1 )%  two-sided SCIs using 

the FGCI approach are 
il(FGCI) il(FGCI) il(FGCI)SCI [L ,U ]  
            il 1 il il 1 il

ˆ ˆd V , d V 
     
 

,         (13) 

where 1d 
 is the (1 ) -th quantile of T . 

 
The following algorithm is used to construct 

SCIs using the FGCI approach. 
 

Algorithm 1 

For a given ix , lx , 2
is , and 2

ls  
For g   1 to h  
Generate *

ix , *
lx , 2*

is , and 2*
ls     

Compute 2
i

R


 and 2
l

R


 
Compute 

il

* 2R (X,X , , )    
Compute ilV  
Compute T  
End g  loop 
Compute 1d 

 
Compute il(FGCI)L  and il(FGCI)U  
 
2.2   Large Sample Approach 
The LS approach relies on the CLT. In the context 
of a substantial sample size, the distribution of the 
sample mean tends to approximate a normal 
distribution, as predicted by the CLT. In practical 
terms, this implies that statistical methods based on 
the normal distribution can be effectively applied to 
inferential statistics when dealing with large 
samples, facilitating certain types of analyses and 
hypothesis testing. The LS approach simplifies the 
construction of confidence intervals using precise 
formulas, yet its reliance on the normal distribution 

makes it particularly applicable to inferential 
statistics in the context of large sample sizes. 

Therefore, the 100(1 )%  two-sided SCIs using 
the LS approach are 

il(LS) il(LS) il(LS)SCI [L ,U ]  

       il 1 /2 il il 1 /2 il
ˆ ˆ ˆ ˆz Var( ), z Var( ) 
       
         

(14)   

where 1 /2z 
 is the (1 / 2) -th quantile of the 

standard normal distribution, and il̂  is defined as in 
Equation (4), and il

ˆVar( )  is defined as in Equation 
(5) with i  and l  replaced by is  and ls , 
respectively. 
 
2.3  Method of Variance Estimates Recovery 

Approach 
The MOVER CI relies on individual exact CIs, 
indicating that the MOVER approach constructs CIs 
by using precise intervals for each parameter 
separately. In simpler terms, the MOVER approach 
involves obtaining accurate CIs for individual 
parameters, and these specific intervals are 
combined to form the MOVER CI. This collective 
approach aims to offer a more precise and 
dependable range for the overall parameter of 
interest. The MOVER CI for the difference of SNRs 
is based on the individual exact CIs of two SNRs. 
Constructing confidence intervals based on the exact 
formula is straightforward with the MOVER 
approach. This approach relies on the initial 
confidence interval for a single parameter. 

Let il  and iu  be the lower limit and the upper 
limit of the CI for the SNR of LN distribution based 
on i -th sample is 

i i i 1 /2 i i 1 /2 i
ˆ ˆ ˆ ˆ[l ,u ] t Var( ), t Var( ) 
       
  

,       (15) 

where 1 /2t 
 is the (1 / 2) -th quantile of t  

distribution, i̂  is defined as in Equation (2), and 

i
ˆVar( )  is defined as in Equation (3) with i  and l  

replaced by is  and ls , respectively. 
Following [13], the 100(1 )%  two-sided SCIs 

using the MOVER approach are: 
il(MOVER) il(MOVER) il(MOVER)SCI [L ,U ]  

     2 2 2 2
i l i i l l i l i i l l

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( l ) (u ) , (u ) ( l )               
  

, 

                                                                             (16) 
where 

i i 1 /2 i
ˆ ˆl t Var( )    , 

i i 1 /2 i
ˆ ˆu t Var( )    , 

l l 1 /2 l
ˆ ˆl t Var( )    , 

and 
l l 1 /2 l

ˆ ˆu t Var( )    . 
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2.4   Bayesian Approach 
The BS approach involves applying Bayes’ 
theorem, wherein the prior distribution is adjusted 
using observed data to generate the posterior 
distribution. This posterior distribution serves as the 
updated probability distribution for the parameters, 
incorporating the information gleaned from the 
observed data. The BS approach is applicable for 
constructing complex parameters. It relies on the 
posterior probability obtained from both a prior 
probability and a likelihood function. 

The posterior distribution for 2
i  is: 

2
2 i i i
i i

n 1 (n 1)s| x ~ IG ,
2 2

  
  

 
.                 (17) 

The conditional posterior distribution for i  
given 2

i  and ix  is 
2

2 i
i i i i

i

ˆ| ,x ~ N ,
n

 
   

 
,                   (18) 

where 2
i  is defined as in Equation (17). 

The posterior distribution for i  is 

i(BS) 2
i

1
exp( ) 1

 
 

,                     (19) 

where 2
i  is defined as in Equation (17). 

The posterior distribution for i l    is 
il(BS) i(BS) l(BS)    ,                  (20) 

where i(BS)  and l(BS)  are defined as in Equation (19). 
 
Therefore, the 100(1 )%  two-sided SCIs using 

the BS approach are 
il(BS) il(BS) il(BS)SCI [L ,U ] ,                (21)  

where il(BS)L  and il(BS)U  are the lower limit and the 
upper limit of the shortest 100(1- )%  highest 
posterior density interval of il(BS) , respectively. 

The following algorithm is used to construct the 
SCIs using the BS approach. 
 

Algorithm 2. 

For a given ix , lx , 2
is , and 2

ls  
For g   1 to m  

Generate 2
i  and 2

l  

Compute i(BS)  and l(BS)  
Compute il(BS)  
End g  loop 
Compute il(BS)L  and il(BS)U  
 

 

3   Results 
A simulation study was conducted to assess the 
coverage probabilities (CPs), average lengths (ALs), 

and standard errors (SEs) of the SCIs using RStudio 
programming. The evaluation involved comparing 
the effectiveness of these SCIs, with a focus on their 
CPs and ALs. The preferred confidence interval is 
identified by achieving a CP equal to or exceeding 
the nominal confidence level of 0.95, while also 
having the shortest AL.  

In the simulation study, two scenarios were 
considered with sample cased k   3 and k   6. The 
sample sizes were denoted as 1 2 kn ,n ,...,n , the 
population means as 1 2 k...       1, the 
population SNRs as 1 2 k, ,...,   , and the population 
variances as 2 2

i ilog((1/ ) 1)    , where i 1,2,...,k . The 
specific combinations are presented in the following 
tables. For each parameter steering, 5000 random 
samples were generated using Algorithm 3. For each 
of the random samples, 2500 T  was simulated using 
Algorithm 1, and 2500 il(BS)  was simulated using 
Algorithm 2. 
 
Algorithm 3. 

For a given in , ln , i , l , i , and l  
Compute 2

i  and 2
l  

For h   1 to M  
Generate ijx  from 2

i iN( , )   and ljx  from 2
l lN( , )   

Compute ix , lx , 2
is , and 2

ls  
Construct il(FGCI) il(FGCI) il(FGCI)SCI [L ,U ]  
Construct il(LS) il(LS) il(LS)SCI [L ,U ]  
Construct il(MOVER) il(MOVER) il(MOVER)SCI [L ,U ]  
Construct il(BS) il(BS) il(BS)SCI [L ,U ]  
Record whether or not all the values of il  fall in CIs 
Compute il ilU L  
End h  loop 
Compute the CPs, ALs, and SEs for each CI 
 

Table 1 and Table 2 in Appendix present the 
CPs, ALs, and SEs of SCIs for all differences of 
SNRs of LN distributions for k   3 and k   6, 
respectively. For k   3, the results indicate that the 
CPs of the SCIs based on the FGCI approach exceed 
0.9700 for all cases. Furthermore, the CPs of the 
SCIs based on the LS and MOVER approaches 
surpass 0.9500 for almost all cases. In addition, the 
CPs of the SCIs based on the BS approach exceed 
0.9500 for some cases. The ALs of the SCIs based 
on the BS approach are shorter than those of the 
SCIs. For k   6, the CPs of the SCIs based on the 
FGCI approach are close to 1.0000. The CPs of the 
SCIs based on the LS and MOVER approaches 
exceed 0.9500 for some cases. Moreover, the CPs of 
the SCIs based on the BS approach are less than 
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0.9500 for almost all cases. Hence, the LS approach 
is recommended for constructing the SCIs for all 
differences of SNRs of LN distributions, as it 
consistently achieves CPs above 0.9500 and shorter 
ALs. 
 

 

4   Empirical Application 
Monthly index data from January 2023 to November 
2023 were provided by [14]. The sample statistics of 
price-earnings ratios of the SET50 index are 1n   
11, 1y   19.57, 

1Ys   1.00, 1x   2.97, 
1Xs   0.05, and 

1̂   19.98. The sample statistics of price-earnings 
ratios of the SET100 index are 2n   11, 2y   18.83, 

2Ys   1.29, 2x   2.93, 
2Xs   0.07, and 2̂   15.07. 

The sample statistics of price-earning ratios of the 
sSET index are 3n   11, 3y   17.21, 

3Ys   1.26,  

3x   2.84, 
3Xs   0.07, and 3̂   14.09. The SET50, 

SET100, and sSET indexes follow LN distributions, 
[14]. 

The SCIs for all differences of SNRs of price-
earnings ratios using the FGCI, LS, MOVER, and 
BS approaches are given in Table 3 (Appendix). 
According to Table 3 (Appendix), the findings 
indicate that the FGCI, LS, MOVER, and BS 
approaches encompass accurate differences in 
SNRs. Notably, the BS approach yields shorter 
intervals compared to the other approaches, 
demonstrating its superiority in terms of interval 
lengths. 
 
 
5   Discussion 
The efficacies of the SCI estimates derived using the 
FGCI, LS, MOVER, and BS approaches for 
differences among the SNRs of multiple LN 
distributions were compared via simulation studies. 
The results indicate that the FGCI approach yielded 
a conservative SCI estimate as its CPs approached 
1.0000. Conversely, the CPs of the BS approach 
were below 0.9500, thereby indicating that it is 
unsuitable in this scenario. Meanwhile, those of 
both the LS and MOVER approaches exceeded 
0.9500, and since the LS approach provided shorter 
ALs compared to the MOVER approach, the former 
approach is the most effective for estimating the SCI 
for the differences among the SNRs of several LN 
distributions.  
 
 
 
 

6   Conclusions 
The LS approach is the most effective for estimating 
the SCI for differences among the SNRs of multiple 
LN distributions. In the future, we will investigate 
using the LS approach for estimating the SCI for 
differences among the SNRs of other distributions. 
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APPENDIX 

 
Table 1. The CPs, ALs, and SEs of 95% two-sided SCIs for all differences of SNRs of LN distributions:  

3 sample cases 

1 2 3(n ,n ,n )  1 2 3( , , )    1 2 3( , , )    FGCICI  LSCI  MOVERCI  BSCI  

CP AL SE CP AL SE CP AL SE CP AL SE 

(10,10,10) (1,1,1) (1,1,1) 0.9811 2.3259 0.1245 0.9513 1.9697 0.1057 0.9793 2.2734 0.1220 0.9509 1.9373 0.1083 

(1,2,5) 0.9813 5.2871 1.1107 0.9540 4.5585 0.9593 0.9808 5.2613 1.1073 0.9501 4.4532 0.9296 

(10,20,20) (1,1,1) (1,1,1) 0.9808 1.8208 0.1527 0.9501 1.5375 0.1290 0.9713 1.7085 0.1686 0.9481 1.5167 0.1262 
(1,2,5) 0.9795 3.6767 0.6506 0.9535 3.1330 0.5551 0.9691 3.3896 0.5740 0.9504 3.0869 0.5460 

(20,20,20) (1,1,1) (1,1,1) 0.9811 1.5438 0.0534 0.9495 1.2948 0.0448 0.9641 1.3827 0.0479 0.9487 1.2824 0.0464 
(1,2,5) 0.9791 3.4794 0.7249 0.9504 2.9704 0.6193 0.9634 3.1721 0.6614 0.9475 2.9293 0.6086 

(20,30,30) (1,1,1) (1,1,1) 0.9814 1.3422 0.0630 0.9523 1.1254 0.0528 0.9622 1.1860 0.0599 0.9513 1.1157 0.0532 

(1,2,5) 0.9821 2.8518 0.5494 0.9539 2.4248 0.4673 0.9643 2.5374 0.4842 0.9504 2.3965 0.4603 

(30,30,30) (1,1,1) (1,1,1) 0.9813 1.2361 0.0333 0.9497 1.0349 0.0279 0.9600 1.0800 0.0291 0.9477 1.0262 0.0291 
(1,2,5) 0.9799 2.7910 0.5828 0.9505 2.3785 0.4970 0.9609 2.4820 0.5186 0.9473 2.3495 0.4893 

(30,50,50) (1,1,1) (1,1,1) 0.9823 1.0435 0.0546 0.9510 0.8743 0.0457 0.9583 0.9034 0.0502 0.9488 0.8673 0.0461 
(1,2,5) 0.9801 2.1888 0.4124 0.9510 1.8568 0.3499 0.9579 1.9081 0.3567 0.9492 1.8388 0.3460 

(50,50,50) (1,1,1) (1,1,1) 0.9818 0.9399 0.0191 0.9513 0.7863 0.0159 0.9573 0.8062 0.0163 0.9498 0.7803 0.0172 
(1,2,5) 0.9781 2.1246 0.4431 0.9473 1.8069 0.3770 0.9529 1.8526 0.3865 0.9445 1.7881 0.3723 

(50,100,100) (1,1,1) (1,1,1) 0.9806 0.7597 0.0520 0.9505 0.6364 0.0436 0.9554 0.6482 0.0460 0.9488 0.6317 0.0435 
(1,2,5) 0.9773 1.5498 0.2802 0.9475 1.3117 0.2372 0.9505 1.3304 0.2390 0.9443 1.3004 0.2350 

(100,100,100) (1,1,1) (1,1,1) 0.9811 0.6572 0.0094 0.9509 0.5496 0.0078 0.9535 0.5564 0.0079 0.9485 0.5455 0.0091 
(1,2,5) 0.9796 1.4836 0.3089 0.9523 1.2603 0.2625 0.9547 1.2759 0.2657 0.9497 1.2491 0.2599 

(100,200,200) (1,1,1) (1,1,1) 0.9819 0.5320 0.0355 0.9513 0.4456 0.0297 0.9529 0.4497 0.0306 0.9487 0.4424 0.0297 
(1,2,5) 0.9809 1.0889 0.1976 0.9487 0.9212 0.1672 0.9505 0.9276 0.1678 0.9463 0.9138 0.1658 

(200,200,200) (1,1,1) (1,1,1) 0.9797 0.4622 0.0046 0.9475 0.3865 0.0038 0.9486 0.3889 0.0039 0.9456 0.3835 0.0051 
(1,2,5) 0.9815 1.0436 0.2176 0.9512 0.8860 0.1847 0.9525 0.8914 0.1858 0.9489 0.8788 0.1833 

 

Table 2. The CPs, ALs, and SEs of 95% two-sided SCIs for all differences of SNRs of LN distributions:  
6 sample cases 

1 2 3(n ,n ,n ,  

4 5 6n ,n ,n )  

1 2 3( , , ,    

4 5 6, , )    

1 2 3( , , ,    

4 5 6, , )    

FGCICI  LSCI  MOVERCI  BSCI  

CP AL SE CP AL SE CP AL SE CP AL SE 

(10,10,10, 
10,10,10) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9968 2.8092 0.0890 0.9507 1.9690 0.0624 0.9794 2.2726 0.0721 0.9498 1.9367 0.0637 
(1,1,2,2,5,5) 0.9960 6.2552 0.6450 0.9549 4.4715 0.4615 0.9801 5.1610 0.5326 0.9520 4.3719 0.4485 

(10,10,10, 
20,20,20) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9959 2.3582 0.1059 0.9516 1.6510 0.0742 0.9736 1.8574 0.0933 0.9492 1.6273 0.0735 
(1,1,2,2,5,5) 0.9955 4.6447 0.3471 0.9505 3.2749 0.2449 0.9696 3.5888 0.2530 0.9488 3.2262 0.2416 

(20,20,20, 
20,20,20) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9968 1.8721 0.0371 0.9508 1.2936 0.0256 0.9648 1.3814 0.0274 0.9495 1.2819 0.0262 
(1,1,2,2,5,5) 0.9951 4.1345 0.4072 0.9526 2.9239 0.2881 0.9661 3.1224 0.3076 0.9494 2.8828 0.2830 

(20,20,20, 
30,30,30) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9959 1.6895 0.0439 0.9516 1.1676 0.0303 0.9630 1.2352 0.0339 0.9499 1.1571 0.0306 
(1,1,2,2,5,5) 0.9953 3.5047 0.2922 0.9490 2.4632 0.2054 0.9605 2.5863 0.2119 0.9465 2.4343 0.2028 

(30,30,30, 
30,30,30) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9959 1.4994 0.0237 0.9485 1.0335 0.0163 0.9581 1.0785 0.0170 0.9464 1.0250 0.0169 
(1,1,2,2,5,5) 0.9954 3.3126 0.3217 0.9521 2.3366 0.2270 0.9612 2.4382 0.2368 0.9494 2.3094 0.2239 

(30,30,30, 
50,50,50) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9956 1.3277 0.0356 0.9487 0.9162 0.0246 0.9568 0.9495 0.0267 0.9471 0.9089 0.0247 
(1,1,2,2,5,5) 0.9952 2.7105 0.2151 0.9496 1.8986 0.1507 0.9563 1.9562 0.1531 0.9475 1.8798 0.1492 

(50,50,50, 
50,50,50) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9957 1.1447 0.0135 0.9499 0.7879 0.0093 0.9552 0.8078 0.0095 0.9475 0.7818 0.0099 
(1,1,2,2,5,5) 0.9944 2.5239 0.2419 0.9488 1.7766 0.1703 0.9552 1.8215 0.1746 0.9464 1.7594 0.1685 

(50,50,50, 
100,100,100) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9957 0.9770 0.0309 0.9499 0.6743 0.0213 0.9542 0.6882 0.0224 0.9477 0.6691 0.0213 
(1,1,2,2,5,5) 0.9957 1.9427 0.1413 0.9501 1.3570 0.0987 0.9543 1.3791 0.0992 0.9478 1.3454 0.0979 

(100,100,100, 
100,100,100) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9958 0.7987 0.0065 0.9507 0.5494 0.0045 0.9536 0.5562 0.0045 0.9486 0.5453 0.0051 
(1,1,2,2,5,5) 0.9949 1.7631 0.1678 0.9498 1.2396 0.1180 0.9528 1.2549 0.1195 0.9466 1.2290 0.1171 

(100,100,100, 
200,200,200) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9958 0.6846 0.0208 0.9490 0.4725 0.0143 0.9513 0.4772 0.0147 0.9468 0.4690 0.0144 
(1,1,2,2,5,5) 0.9948 1.3629 0.0991 0.9507 0.9511 0.0691 0.9528 0.9587 0.0693 0.9481 0.9435 0.0687 

(200,200,200, 
200,200,200) 

(1,1,1,1,1,1) (1,1,1,1,1,1) 0.9957 0.5621 0.0032 0.9509 0.3866 0.0022 0.9523 0.3890 0.0022 0.9487 0.3836 0.0028 
(1,1,2,2,5,5) 0.9950 1.2389 0.1173 0.9492 0.8704 0.0824 0.9505 0.8757 0.0830 0.9470 0.8632 0.0818 

 
Table 3. The 95% two-sided SCIs for all differences of SNRs of price-earnings ratios 

Comparison 
FGCICI  LSCI  MOVERCI  BSCI  

Lower Upper Lower Upper Lower Upper Lower Upper 

SET50/ SET100 -17.8727 8.0469 -15.8977 6.0718 -17.4007 7.5748 -15.6252 5.1416 
SET50/ sSET -18.5532 6.7713 -16.6235 4.8416 -18.0920 6.3101 -16.3131 4.9186 
SET100/ sSET -11.6691 9.7131 -10.0398 8.0837 -11.2796 9.3236 -10.1369 7.3696 
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