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1  Introduction 
Integral equations are used in problems of 
diffraction and acoustics, electrodynamics and 
electrical engineering, elasticity theory, and 
aerohydromechanics. They are also encountered in 
problems such as mathematical apparatus for the 
analysis of economic systems and the theory of 
economic-mathematical modeling and in a number 
of other sections of physics, mechanics, 
mathematical physics, and economics. 

As is known, equations with a weak singularity 
include an equation, whose kernel has the form: 

𝐾(𝑥, 𝑠) =
𝐻(𝑥, 𝑠)

|𝑥 − 𝑠|𝛼
 , 

where 0 < 𝛼 < 1 and the function 𝐻(𝑥, 𝑠) is 
bounded. 
     

There are many classical algorithms for 
obtaining numerical solutions to integral equations 
of the second kind, such as the iterated kernel 
method, the method of quadratures, and the  
collocation method,. 

To solve problems, the use of classical methods 
is insufficient. Therefore, the authors need to 
develop new algorithms and investigate their 
properties, [1], [2], [3], [4], [5]. 

Authors often use the Galerkin method with 
orthogonal polynomials or spline approximations on 
uniform and non-uniform grids, [5], [6]. 

In [7], the authors apply Burton's method to 
Hammerstein-type integral equations. 

An algorithm, based on exponential 
transformations is proposed in paper [8]. 

An algorithm, based on the piecewise 
polynomial collocation method is discussed in paper 
[9]. 

Paper [10] discusses algorithms based on the 
explicit Adams methods. 

Special spline interpolants are used in [11], [12], 
[13]. 

In this paper, we propose to modify existing 
numerical methods using local spline 
approximations, [14]. 
 

 

2  Problem Formulation 
Consider the Fredholm integral equation of the 
second kind: 

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

1

0

 . 

 
Here the kernel 𝐾(𝑥, 𝑠) of the integral equation 

has a weak singularity of the form: 
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𝐾(𝑥, 𝑠) =  𝐻(𝑥, 𝑠)𝑝(𝑥, 𝑠), 0 < 𝛼 < 1,

𝑝(𝑥, 𝑠) =
1

|𝑥 − 𝑠|𝛼
 . 

 
Suppose a grid of ordered nodes 𝑠𝑗 is given on 

the segment [𝑎, 𝑏]: 
𝑎 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑛 = 𝑏. 

 
Let us recall how the local spline of the fifth 

order of approximation can be constructed.  
Suppose, 𝑢𝑖 ≈ 𝑢(𝑠𝑖). When 𝑖 = 0, 1,  we apply 

the approximation with the right local basis splines 
using the following formula: 

𝑈𝑅
𝑖 (𝑠) = ∑ 𝑢𝑗𝑤𝑗

𝑅(𝑠),

𝑖+4

𝑗=𝑖

 𝑠 ∊ [𝑠𝑖, 𝑠𝑖+1].  

 
The basis splines 𝑤𝑗

𝑅(𝑠) are described by the 
following formulas: 

𝑤𝑖
𝑅(𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖 − 𝑠𝑖+𝑘

4

𝑘=1

 , 

𝑤𝑖+1
𝑅 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+1 − 𝑠𝑖+𝑘

4

𝑘≠1,𝑘=0

 , 

𝑤𝑖+2
𝑅 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+2 − 𝑠𝑖+𝑘

4

𝑘≠2,𝑘=0

 , 

𝑤𝑖+3
𝑅 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+3 − 𝑠𝑖+𝑘

4

𝑘≠3,𝑘=0

 , 

𝑤𝑖+4
𝑅 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+4 − 𝑠𝑖+𝑘

3

𝑘=0

 . 

 
When 𝑖 = 2, 4, … , 𝑛 − 3, we apply the 

approximation with the middle splines using the 
following formula:  

𝑈𝑀
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗

𝑀(𝑥),

𝑖+2

𝑗=𝑖−2

 𝑥 ∊ [𝑠𝑖, 𝑠𝑖+1],  

 
where basis splines 𝑤𝑗

𝑀 are described by the 
following formulas: 

𝑤𝑖−2
𝑀 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖−2 − 𝑠𝑖+𝑘

2

𝑘=−1

 , 

𝑤𝑖−1
𝑀 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖−1 − 𝑠𝑖+𝑘

2

𝑘≠−1,𝑘=−2

 , 

𝑤𝑖
𝑀(𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖 − 𝑠𝑖+𝑘

2

𝑘≠0,𝑘=−2

 , 

𝑤𝑖+1
𝑀 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+1 − 𝑠𝑖+𝑘

2

𝑘≠1,𝑘=−2

 , 

𝑤𝑖−2
𝑀 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+2 − 𝑠𝑖+𝑘

1

𝑘=−2

 . 

 
When 𝑖 = 𝑛 − 2, 𝑛 − 1, we apply the 

approximation with the left splines using the 
following formula: 

𝑈𝐿
𝑖 (𝑠) = ∑ 𝑢𝑗𝑤𝑗

𝐿 (𝑠),   𝑠 ∊ [𝑠𝑖, 𝑠𝑖+1],

𝑖+1

𝑗=𝑖−3

 

 
where the basis splines 𝑤𝑗

𝐿 are described by the 
following formulas: 

𝑤𝑖−3
𝐿 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖−3 − 𝑠𝑖+𝑘

1

𝑘=−2

 , 

𝑤𝑖−2
𝐿 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖−2 − 𝑠𝑖+𝑘

1

𝑘≠−2,𝑘=−3

 , 

𝑤𝑖−1
𝐿 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖−1 − 𝑠𝑖+𝑘

1

𝑘≠−1,𝑘=−3

 , 

𝑤𝑖
𝐿(𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖 − 𝑠𝑖+𝑘

1

𝑘≠0,𝑘=−3

 , 

𝑤𝑖+1
𝐿 (𝑠) = ∏

𝑠 − 𝑠𝑖+𝑘

𝑠𝑖+1 − 𝑠𝑖+𝑘

0

𝑘=−3

 . 

 
Splines 𝑈𝐿

𝑖 (𝑠), 𝑈𝑅
𝑖 (𝑠), 𝑈𝑀

𝑖 (𝑠), 𝑠 ∊ [𝑠𝑖, 𝑠𝑖+1], are 
called fifth-order splines, since the following 
inequalities hold: 

 
|𝑢(𝑠) − 𝑈𝐿

𝑖 (𝑠)| ≤ ℎ5𝐾1‖𝑢(5)‖
[ 𝑠𝑖−3,𝑠𝑖+1]

 , 
 𝐾1 = 0.03027; 

|𝑢(𝑠) − 𝑈𝑅
𝑖 (𝑠)| ≤ ℎ5𝐾1‖𝑢(5)‖

[ 𝑠𝑖, 𝑠𝑖+4]
 ,  

𝐾1 = 0.03027; 
|𝑢(𝑠) − 𝑈𝑀

𝑖 (𝑠)| ≤ ℎ5𝐾‖𝑢(5)‖
[ 𝑠𝑖−2,   𝑠𝑖+2]

 , 

𝐾1 = 0.01185. 
 

In the next section, we will consider the use of 
fifth-order approximation splines to solve an 
integral equation. 
 

 

3  About the Stability of Calculation 
In this section we apply the fifth order splines to 
construct a numerical method for solving the 
integral equation:  
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𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥),

1

0

 

and we investigate the stability of this numerical 
method. We assume that the kernel of the integral 
equation 𝐾(𝑥, 𝑠) and the right-hand side 𝑓(𝑥) are 
continuous functions. Suppose |𝐾(𝑥, 𝑠)| < 𝜌 < 1. 
We take an integer 𝑛, 𝑛 ≥ 7,  and calculate ℎ =

1

𝑛
, 

thus, ℎ = 𝑥𝑘+1 −  𝑥𝑘 , 𝑘 = 0,1, … , 𝑛 − 1. On each 
grid interval [𝑥𝑘 , 𝑥𝑘+1] we replace the unknown 
function 𝑢 with a fifth-order spline 
𝑈𝐿

𝑖 (𝑠), or 𝑈𝑅
𝑖 (𝑠), or 𝑈𝑀

𝑖 (𝑠). Now we have: 

  ∫ 𝐾(𝑥, 𝑠)

1

0

𝑢(𝑠)𝑑𝑠 ≈ 

∑ ∫ 𝐾(𝑥, 𝑠) (∑ 𝑢𝑖𝑤𝑖
𝑅(𝑠)

𝑘+4

𝑖=𝑘

) 𝑑𝑠 +

𝑠𝑘+1

𝑠𝑘

1

𝑘=0

 

∑ ∫ 𝐾(𝑥, 𝑠) ( ∑ 𝑢𝑖𝑤𝑖
𝑀(𝑠)

𝑘+2

𝑖=𝑘−2

) 𝑑𝑠

𝑠𝑘+1

𝑠𝑘

𝑛−3

𝑘=2

 

+ ∑ ∫ 𝐾(𝑥, 𝑠) ( ∑ 𝑢𝑖𝑤𝑖
𝐿(𝑠)

𝑘+1

𝑖=𝑘−3

) 𝑑𝑠.

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

 

 
Now we put 𝑥 = 𝑠𝑗 and reduce the integral 

equation to a system of algebraic equations with the 
approximate solution 𝑈 = (𝑢0, … , 𝑢𝑛).  

Assume that 𝑢𝑗 is the largest component among 
the components: |𝑢𝑗| = max

𝑘
|𝑢𝑘|.  

 
Thus, we have the equation: 

𝑢𝑗 − 

∑ ∫ 𝐾(𝑥𝑗 , 𝑠) (∑ 𝑢𝑖𝑤𝑖
𝑅(𝑠)

𝑘+4

𝑖=𝑘

) 𝑑𝑠 −

𝑠𝑘+1

𝑠𝑘

1

𝑘=0

 

∑ ∫ 𝐾(𝑥𝑗, 𝑠) ( ∑ 𝑢𝑖𝑤𝑖
𝑀(𝑠)

𝑘+2

𝑖=𝑘−2

) 𝑑𝑠 −

𝑠𝑘+1

𝑠𝑘

𝑛−3

𝑘=2

 

∑ ∫ 𝐾(𝑥𝑗, 𝑠) ( ∑ 𝑢𝑖𝑤𝑖
𝐿(𝑠)

𝑘+1

𝑖=𝑘−3

) 𝑑𝑠 = 𝑓(𝑥𝑗).

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

 

 
For further transformations we need to simplify 

the last equation above. It is easy to calculate these 
integrals: 

∫ 𝑤𝑘
𝑅(𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.349 ℎ,   ∫ 𝑤𝑘+1
𝑅 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.897 ℎ, 

∫ 𝑤𝑘+2
𝑅 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.367 ℎ, ∫ 𝑤𝑘+3
𝑅 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.147 ℎ, 

∫ 𝑤𝑘+4
𝑅 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.0264 ℎ, 

∫ 𝑤𝑘−2
𝑀 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.0153 ℎ, 

∫ 𝑤𝑘−1
𝑀 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.103 ℎ, 

∫ 𝑤𝑘+2
𝑀 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.0264 ℎ, 

∫ 𝑤𝑘+1
𝑀 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.481 ℎ, ∫ 𝑤𝑘
𝑀(𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.633 ℎ, 

∫ 𝑤𝑘−3
𝐿 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.0264 ℎ, 

∫ 𝑤𝑘−2
𝐿 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.147 ℎ, ∫ 𝑤𝑘−1
𝐿 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

− 0.367 ℎ, 

∫ 𝑤𝑘+1
𝐿 (𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.349 ℎ, ∫ 𝑤𝑘
𝐿(𝑠)𝑑𝑠 ≈

𝑥𝑘+1

𝑥𝑘

0.897 ℎ. 

 
Now we can calculate the coefficients at 𝑢0. On 

the first grid interval [𝑥0, 𝑥1] we obtain the 
coefficient at 𝑢0: 

𝑢0 ∫ 𝐾(𝑥𝑗, 𝑠)𝑤0
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

+ 𝑢0 ∫ 𝐾(𝑥𝑗, 𝑠)𝑤0
𝑀(𝑠)𝑑𝑠

𝑥1

𝑥0

≈ 0.576 𝐾(𝑥𝑗, 𝜂𝑘)ℎ 𝑢0 . 

 
This result follows from the application of the 

mean value theorem. Using the mean value theorem 
of integral calculus, we obtain the relation: 

∫ 𝐾(𝑥𝑗, 𝑠)𝑤𝑘
𝑅(𝑠)𝑑𝑠 = 𝐾(𝑥𝑗 , 𝜂𝑘)

𝑥𝑘+1

𝑥𝑘

∫ 𝑤𝑘
𝑅(𝑠)𝑑𝑠

𝑥𝑘+1

𝑥𝑘

≈ 𝐾(𝑥𝑗, 𝜂𝑘) 0.349 ℎ, 
 where  𝜂𝑘 ∈ [𝑥𝑘 , 𝑥𝑘+1] . 
 

Similarly, we get the other coefficients. From 
the intervals with numbers from 𝑖 = 7 to 𝑖 = 𝑛 − 7 
we can calculate that the coefficient at 
𝑢𝑖  is 1.258 ℎ .  
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Next, we use the relation: 

|𝑓(𝑥𝑗) |=| 𝑢𝑗 − ∫ 𝐾(𝑥𝑗, 𝑠)

1

0

𝑢(𝑠)𝑑𝑠| .  

 
Finally, we obtain the inequality: 

|𝑓(𝑥𝑗)|≥ (1 − 𝜌 𝑐)|𝑢𝑗| . 
 
Thus, we have the estimation 

|𝑢𝑗| ≤
1

1 − 𝜌 𝑐
  |𝑓(𝑥𝑗)|, 

where 𝑐 ≈ 0.731. 
 

Assume 𝑓 = (𝑓(𝑥0), 𝑓(𝑥1), … , 𝑓(𝑥𝑛)) and 
𝑓(𝑥𝑖) ∈ 𝐹, where 𝐹 is a linear normed space, 
∥ 𝑓  ∥𝐹= max

𝑖
|𝑓(𝑥𝑖)|. 

Assume 𝑈 = (𝑢0, 𝑢1, … , 𝑢𝑛), 𝑈 ∈ 𝑈̃, where 𝑈̃ is 
a linear normed space,  ∥ 𝑈 ∥𝑈̃= max

𝑘
|𝑢𝑘|.  

Now we have: 
∥ 𝑈 ∥𝑈̃= max

𝑘
|𝑢𝑘| = |𝑢𝑗| 

≤
1

1 − 𝜌 𝑐
  |𝑓(𝑥𝑗)| ≤

1

1 − 𝜌 𝑐
∥ 𝑓 ∥𝐹 . 

 
This inequality means the stability of the 

numerical method with the constant 𝐶 =
1

1−𝜌 𝑐
  

 
 
4 Application of the Splines to Solve 

 an Integral Equation with a Weak 

 Singularity 
Let  𝑛 ≥ 7. We represent the integral in the form: 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = ∑ ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=0

𝑏

𝑎

,  

 
where 𝐾(𝑥, 𝑠) = 𝐻(𝑥, 𝑠)𝑝(𝑥, 𝑠), 𝛼 ∈ (0,1), 
 𝑝(𝑥, 𝑠) =

1

|𝑥−𝑠|𝛼 . 
 

The function 𝑔(𝑥, 𝑠) = 𝐻(𝑥, 𝑠)𝑢(𝑠), 𝑠 ∈
[𝑠𝑘, 𝑠𝑘+1]  can be approximated with the expression: 
𝑔(𝑠) ≈ 𝑔̃(𝑥, 𝑠) = 𝐻(𝑥, 𝑠)𝑢̃(𝑠). Next, we have to 
solve the system of equations: 

𝑢𝑖 − ∑ ∑ 𝑢𝑗

𝑘+4

𝑗=𝑘

∫ 𝐾(𝑥𝑖, 𝑠)𝑤𝑗
𝑅(𝑠)𝑑𝑠 +

𝑠𝑘+1

𝑠𝑘

1

𝑘=0

  

∑ ∑ 𝑢

𝑘+2

𝑗=𝑘−2

∫ 𝐾(𝑥𝑖, 𝑠)𝑤𝑗
𝑀(𝑠)𝑑𝑠 +

𝑠𝑘+1

𝑠𝑘

𝑛−3

𝑘=2

 

∑ ∑ 𝑢𝑗

𝑘+1

𝑗=𝑘−3

∫ 𝐾(𝑥𝑖, 𝑠)𝑤𝑗
𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥𝑖),

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

 

𝑖 = 0, 1, … , 𝑛 − 1. 
 
Thus, the problem is reduced to calculating 
integrals:  

∫ 𝑝(𝑥𝑖, 𝑠) 𝑤𝑗
𝑀(𝑠)𝑑𝑠,

𝑠𝑘+1

𝑠𝑘

 

∫ 𝑝(𝑥𝑖, 𝑠)𝑤𝑗
𝑅(𝑠)𝑑𝑠,

𝑠𝑘+1

𝑠𝑘

 

∫ 𝑝(𝑥𝑖, 𝑠)𝑤𝑗
𝐿(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘

. 

using the Gaussian type of quadrature formulas. 
 

 

5  Numerical Experiments 
Using the method described above, we reduce the 
solution of a linear integral equation to the solution 
of a system of linear algebraic equations. As a result 
of solving this system, we obtain an approximate 
solution of the original integral equation in the form 
of a framework for constructing approximate 
solution, i.e. the values of the approximate solution 
at the nodes of the grid: 𝑈 = (𝑢0, 𝑢1, … , 𝑢𝑛). 
Suppose 𝑉 = (𝑣0, 𝑣1, … , 𝑣𝑛) is the vector of the 
exact solution, of the integral equation. Further, we 
use the following vector norms to calculate the 
solution errors: 

∥ 𝑈 − 𝑉 ∥1= max
𝑖

| 𝑢𝑖 − 𝑣𝑖  | , 

∥ 𝑈 − 𝑉 ∥2= √∑ |𝑢𝑖 −  𝑣𝑖 |2

𝑛

𝑖=0

 . 

 
Example 1. Consider the following integral 
equation, [11]: 
𝑢(𝑡) − ∫ |𝑡 − 𝑠|−

1

2𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡)
1

0
,  𝑡 ∈  [0, 1], 

with the exact solution 𝑢(𝑡)  = exp(𝑡). The function 
𝑓(𝑡) is continues function. 

In paper [11], an integration method was used 
for calculating the numerical solution.  

We construct the system of equations using the 
splines of the fifth, and second order of 
approximation and a uniform grid of nodes. 
Calculations were provided in MAPLE with 
Digits = 15.  Figure 1, Figure 2, Figure 3, Figure 4 
and Figure 5 show the errors of the solution in 
absolute value. 
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Fig. 1: The errors of the solution when second order 
spline approximation was used (𝑛 = 10 ) 
 

Note, that the numbers of the grid nodes are 
marked along the abscissa axis. Figure 1 and Figure 
2 show the errors when the second order spline 
approximation was used (𝑛 = 10, 55). Figure 3, 
Figure 4 and Figure 5 shows the errors when splines 
of the fifth order approximation were used (𝑛 =
10, 90). 

 

 
Fig. 2: The errors of the solution when second order 
spline approximation was used (𝑛 = 55 ) 

 

 
Fig. 3: The errors of the solution when we use the 
fifth order spline approximation (𝑛 =  10) 

 

 
Fig. 4: The errors of the solution when we  use the 
fifth order spline approximation (𝑛 =  90, Digits =
15) 

 

 
Fig. 5: The errors of the solution when we  use the 
fifth order spline approximation (𝑛 =  90, Digits =
17) 
 

Comparison of the results presented in Figure 2 
and Figure 3 shows that the use of fifth-order 
approximation splines for 𝑛 =  10 allows us to 
obtain a solution with approximately the same error 
as when using second-order approximation splines 
for 𝑛 =  55.  

If the number of digits in the mantissa is 
insufficient, instability in calculations may occur. 
Increasing the number of digits in the mantissa 
allows them to eliminate instability in calculations. 
Comparison of the results presented in Figure 4 and 
Figure 5 shows that instability occurs at n = 90, 
Digits = 15). With an increase in the Digits 
parameter, Digits = 17, instability disappears. 

Table 1 shows the maximum absolute errors of  
solution 𝑆5,  shown in the middle column, obtained 
by applying fifth-order splines of approximation 
with a number of grid nodes of 𝑛 = 16, 32.  

Table 1 also shows the maximum absolute 
errors (using ∥ 𝑈 − 𝑉 ∥1) of  solution  𝑄3 from 
paper [11], which is shown in the third column. 

 
Table 1. The maximum absolute errors of the 

solution 
𝑛 Errors of 

solution 𝑆5 
Errors of 

solution 𝑄3 
8 0.348 ∙ 10−4 0.182 ∙ 10−3 
16 0.678 ∙ 10−6 0.115 ∙ 10−4 

32 0.167 ∙ 10−7 0.939 ∙ 10−6 
 
Example 2. Consider the following integral 
equation, [11]: 
𝑢(𝑡) − ∫ sin (𝑠 − 𝑡)|𝑡 − 𝑠|−

1

2𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡)
𝜋

0
, 

𝑡 ∈ [0, 𝜋], with the exact solution  𝑢(𝑡)  =  cos(𝑡).  
 

The function 𝑓(𝑡) is continues function. We use 
a grid of nodes 𝑥𝑖 = 𝑖ℎ, when ℎ =

𝜋

𝑛
. Using splines 

of the fifth order of approximation, we construct the 
system of equations. Figure 6, Figure 7 and Figure 8 
show the result of application splines of the second 
order approximation (𝑛 = 32 , 𝑛 = 64 and 𝑛 = 16). 
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Figure 9 shows the errors when the fifth order 
approximation splines were applied (𝑛 = 32).  

 

 
Fig. 6: The plot of the errors of the solution  
obtained with the polynomial splines of the second 
order approximation (32 nodes) 
 

 
Fig. 7: The plot of the errors of the solution  
obtained with the polynomial splines of the second 
order approximation (64 nodes) 

 
Note that in numerical calculations of integrals 

with a weak singularity, we can use Gaussian-type 
formulas with three or four nodes over the grid 
interval [𝑠𝑘,𝑠𝑘+1], or composite Gaussian-type 
quadrature formulas.  

 

 
Fig. 8: The plot of the errors of the solution  
obtained with the polynomial splines of the second 
order (16 nodes) 

 

 
Fig. 9: The plot of the errors obtained with the 
polynomial splines of the fifth order (32 nodes) 

 
Table 2 presents the maximum absolute errors 

of the solution (𝑆5), middle column,  obtained by 

applying fifth-order splines of approximation with a 
number of grid nodes of 𝑛 = 16, 32. Table 2 also 
presents the maximum absolute errors  𝑄3, third 
column, of the solution from paper [11]. 
 

Table 2. The maximum absolute errors of the 
solution 

𝑛 Errors of 
solution 𝑆5 

 Errors of 
solution 𝑄3 

8 0.903 ∙ 10−3 0.507 ∙ 10−2 
16 0.144 ∙ 10−4 0.442 ∙ 10−3 

32 0.323 ∙ 10−6 0.425 ∙ 10−4 
 

Example 3. Consider the following Volterra 
integral equation, [13]: 

𝑢(𝑥) + ∫
𝑢(𝑠)

√𝑥 − 𝑠
𝑑𝑠 =

𝜋𝑥

2
+ √𝑥

𝑥

0

,   𝑥 ∈ [0, 𝑏],   

where the exact solution is 𝑢(𝑥) = √𝑥. Let 𝑏 = 0.6.  
 

In paper [13], the authors modified some vector-
matrix barycentric Lagrange interpolation formulas 
in order to interpolate the kernel. The authors also 
introduced some new ideas for selecting 
interpolation nodes that ensure isolation of the 
singularity of the kernel. The errors of the solutions 
are given in Table 3. 

We use the local splines to obtain the solution of 
the integral equation. On the interval [0, 0.6] we 
construct a uniform grid with a step ℎ = 0.1. We 
find an approximate solution of the integral equation 
at the grid nodes using fifth-order splines. Next, we 
perform the interpolation using the fifth-order 
splines, as was discussed in Section 2. Table 3 
shows the values of the approximate solution found 
using fifth-order splines approximation and the 
results obtained by the author of paper [13]. 
 
Table 3. The errors of the solution obtained with the 
splines of the fifth order of approximation and the 

errors from paper [13] 
𝑥𝑖 Errors given in 

paper [13] 
Errors obtained 
using splines of 
the fifth order 

0 - 0 
0.06 0.107 ⋅ 100 0.125 ⋅ 10−1 
0.12 0.977 ⋅ 10−1 0.498 ⋅ 10−2 
0.18 0.941 ⋅ 10−1 0.300 ⋅ 10−2 
0.24 0.853 ⋅ 10−1 0.655 ⋅ 10−3 
0.3 0.748 ⋅ 10−1 0.256 ⋅ 10−2 
0.36 0.717 ⋅ 10−1 0.192 ⋅ 10−2 
0.42 0.836 ⋅ 10−1 0.126 ⋅ 10−2 
0.48 0.110 ⋅ 10−1 0.105 ⋅ 10−2 
0.54 0.136 ⋅ 100 0.118 ⋅ 10−2 
0.6 0.112 ⋅ 10−1 0.819 ⋅ 10−3 
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Example 4. Consider the following Volterra - 
Fredholm integral equation, [15]: 

𝑢(𝑥) = 𝑞(𝑥) + ∫
𝑢(𝑡)𝑑𝑡

√|𝑥 − 𝑡|

𝑥

0

+ ∫
𝑢(𝑡)𝑑𝑡

√|𝑥 − 𝑡|

1

0

, 

where the exact solution is 𝑢(𝑥) = 𝑥2(1 − 𝑥). 
 

In paper [15] the authors obtain the solution 
using the quasiaffine biorthogonal collocation type 
method. Here we use splines of the fifth order of 
approximation and  splines of the second order of 
approximation. We construct an equidistant grid on 
the interval [0,1] with step ℎ, ℎ = 1/𝑛. The errors 
of the solution are given in Table 4. 
 
Table 4. The errors of the solution obtained with the 
splines of the fifth order of approximation, splines 
of the second order of approximation and the errors 

from paper [15] 
𝑛 Errors given in 

paper [15] 
Errors obtained 
using splines of 
the fifth order 

Errors obtained 
using splines of 
the second order 

8 0.544 ⋅  10−8 
 

0.21 ⋅ 10−14 
 

0.29 ⋅  10−2 
 

10 0.131 ⋅  10−10 0.23 10−14 
 

0.18 ⋅ 10−2 
 

 
Note that the small error of the solution 

obtained using fifth-order splines is due to the fact 
that these splines provide accuracy of approximation 
on fourth-degree polynomials. The calculations 
were performed with 15 Digits in the Maple 
package. 
 
Example 5. As noted in paper [16], the property of 
viscoelasticity implies that, starting from a non-zero 
moment of time, the body has pronounced elastic 
properties over short time intervals and pronounced 
viscous properties over longer time intervals. Over 
such long-time intervals 𝑇, viscoelastic media can 
be considered changing slowly. The fundamental 
law of nonlinear deformation is often written either 
in differential form through the rheological 
constants of the material, or in integral form. Let us 
consider the equation: 

𝐸𝜀(𝑥) = 𝜎(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑓(𝜎(𝑠))𝑑𝑠,
𝑥

0

 

𝑥 ∈ [0, 𝑇], 
here 𝐸 represents the instantaneous modulus of 
elasticity, and the kernel has the following form  

𝐾(𝑥, 𝑠) = 𝐴𝑒−𝛽(𝑥−𝑠)(𝑥 − 𝑠)𝛼−1, 
0 < 𝛼 < 1, 𝐴 > 0, 𝛽 > 0. 

 
Paper [16] is devoted to the numerical treatment 

of rheological models in the context of nonlinear 

heritable creep theory. An approximate method for 
nonlinear weak singular Volterra integral equations 
with Rzhanitsyn’s kernel used in rheological models 
of viscoelastic continuum is shown in paper [16]. 
 
Consider the following integral equation, [16]: 

𝜎(𝑥) + 𝐴 ∫
𝑎𝜎(𝜏)+𝑏𝜎2(𝜏)

√𝑥−𝜏

𝑥

0
𝑑𝜏 = 𝐹(𝑥), 𝑥 ∈ [0,1]. 

     
The exact solution of the integral equation is the 

function 𝜎(𝑥) = 1 −  √𝑥. We take 𝐴 = 1, 𝑎 =
0.015, 𝑏 = 0.399. 

We use the local fifth-order spline 
approximations to obtain the solution of the integral 
equation.  

Figure 10 shows the plots of the exact and 
approximate solutions. The red plot is the exact 
solution, the blue plot is the approximate solution.  

Figure 11 shows the plot of the errors of the 
solution of the integral equation (𝑛 = 7). 

 

 
Fig. 10: The exact solution (red) and the 
approximate solution (blue), (𝑛 = 7) 

 
Fig. 11: The plot of the errors of the solution (𝑛 =
7) 
 

The following example illustrates the 
dependence of the quality of an approximate 
solution on the number of digits retained in the 
mantissa of the numbers with which we perform 
calculations. 
 
Example 6. Consider the following integral 
equation: 

𝑢(𝑥) + ∫ exp(𝑥 + 𝑠) 𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥),
1

0

 

 
The exact solution of this integral equation is 
𝑢(𝑥) = exp(−𝑥). 
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To solve this integral equation we used splines 
of the fifth and seventh order of approximation with 
the following values of the parameter Digits: 
Digits=10 and Digits=20. Table 5 shows that for 
Digits=10 we obtain an approximate solution of the 
integral equation with only two significant digits 
after the decimal point only when the splines of the 
fifth order of approximation were used and the 
splines of the seventh order of approximation can’t 
be used. But for Digits=20 splines of the fifth order 
of approximation and splines of the seventh order of 
approximation can be used. The splines of the 
seventh order of approximation gives the lesser 
error of the solution. 
 
Table 5. The errors of the solution obtained with the 

splines of the fifth and the seventh order of 
approximation, (𝑛 = 16) 

Digits ∥ 𝑈 − 𝑉 ∥1 ∥ 𝑈 − 𝑉 ∥2 
 Splines of 

the fifth 
order 

Splines of 
the 
seventh 
order 

Splines 
of the 
fifth 
order 

Splines of 
the 
seventh 
order 

10 0.0019 7.82 0.0029 13.14 
20 0.85∙ 10−8 0.29∙ 10−9 0.23 10−7 0.47∙ 10−9 
 

Here vector 𝑈 = (𝑢0, 𝑢1, … , 𝑢𝑛), is the vector of 
the approximate solution, and 𝑉 = (𝑣0, 𝑣1, … , 𝑣𝑛) is 
the vector of the exact solution. 

Figure 12 shows the errors when the fifth order 
approximation splines were applied (Digits = 10,

𝑛 = 16).  
 

 
Fig. 12: The plot of the errors obtained with the 
polynomial splines of the fifth order 
 (Digits = 10, 𝑛 = 16) 
 
 
6  Conclusion 
This paper discusses a special method for solving 
weak singular integral equations based on the use of 
local interpolation splines. Our spline 
approximation method is based on replacing the 
unknown function under the integral sign with a 
spline approximation with unknown coefficients. 
We compared the errors of the solutions of integral 
equations obtained using splines of the second, fifth 

and seventh orders of approximation with the results 
obtained by solving the same integral equations with 
other methods. The methods based on the use of 
spline approximations, as a rule, give a smaller error 
than the use of other methods for solving integral 
equations. A comparison of the stability of 
numerical methods based on spline approximations 
of the fifth and seventh order of approximation 
shows that the method based on the fifth order of 
approximation has an advantage when the number 
of nodes is large. When using a method based on the 
splines of the seventh order of approximation, it is 
necessary to keep more digits in the mantissa of 
numbers when calculating. With a small number of 
grid nodes (10-20), the use of methods based on 
splines of the seventh order produces a smaller 
solution error. 

In the future, it is proposed to pay more 
attention to the construction of non-uniform grids 
and solving various problems on  adaptive grids. 
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