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Abstract: - This paper presents a comprehensive analysis of the Kardar-Parisi-Zhang (KPZ) equation's behavior 

under various noise conditions and investigates the efficiency of different discretization methods, particularly 

focusing on the exponential decreasing method and Leapfrog-hopscotch methods. By implementing a series of 

numerical experiments on a standard computing system, this study evaluates the performance of these 

numerical approaches in terms of computation speed, accuracy, and stability. Our findings reveal that the 

Leapfrog-hopscotch method, especially in the absence of noise and under Brownian conditions, exhibits 

significantly faster computation speeds while maintaining high precision in the simulation of stochastic 

differential equations (SDEs). Furthermore, the sensitivity of simulation outcomes to changes in both nonlinear 

(𝜆) and linear (𝐷) parameters of noise are investigated, which offers new insights into the KPZ equation's 

response to stochastic influences. These results enhance our understanding of the behavior of complex systems 

and guide the selection of appropriate numerical methods for practical applications in computational physics, 

mathematical biology, financial modeling, and stochastic control. 
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1  Introduction 
The description of random interface evaluation or 

surface in a noise environment can be presented by 

the Kardar-Parisi-Zhang (KPZ) equation, which is a 

nonlinear stochastic partial differential equation, [1]. 

By a generalization of the Edwards-Wilkinson (EW) 

equation, we obtain the KPZ equation [2], which is 

a linear stochastic equation for surface growth. 

Many researchers paid attention to the KPZ 

equation in mathematics and physics due to its rich 

and universal behavior [3], as well as its 

connections to various phenomena such as directed 

polymers [4], random matrices [5], turbulence [6], 

and fluid dynamics [7]. 

The most important point of the KPZ equation 

is the existence of a noise component [8], which 

presents the random oscillations of the contact or 

surface [9]. Considering the nature and strength of 

the noise, the KPZ equation can show various 

scaling features and asymptotic behavior. 

Particularly, existence of a noise component, has the 

potential to influence the roughness exponent, 

which measures how uneven the contact or surface 

is, as well as the growth exponent, by measuring 

how quickly it increases. These exponents are 

connected by a scaling relation that depends on the 

system's dimension, [10]. 

In this paper, we will compare the discretized 

KPZ equation in the presence of numerous noise 

components. In detail, we study the performance of 

the Heun [11] and Leapfrog-Hopscotch [12] 

methods on partial differential equations (PDEs) 

including various forms of noise, such as white 

noise [13], Gaussian noise [14], random noise [15], 

Brownian noise [16] and pink noise [17]. Various 

statistical features of the underlying stochastic 

processes can be obtained by these noise factors and 

have unique consequences on the system dynamics. 

In order to solve ordinary differential equations 

(ODEs) and SDEs, we used a numerical approach, 

such as the Heun method [11] mostly known as the 

modified Euler method, [18]. The method is a 

second-order accurate technique that uses a 

predictor-corrector strategy to increase accuracy 

while being as simple as the Euler method. On the 

other hand, the Leapfrog HopScotch method [12] is 

a recently created discretization scheme that is built 

for SDEs. This method provides benefits in terms of 

stability and computing efficiency.  

We will simulate and concentrate on a full 

comparison of numerical experiments on a laptop 

computer (ASUS, Taiwan) with a 2.6 GHz Intel i7-

10750H CPU, 8.0 GB RAM with the MATLAB 

R2022b software (The MathWorks, Inc., Portola 
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Valley, CA, USA) with various noise terms. All 

discretization method's performances will be 

evaluated in terms of computation speed, accuracy, 

and stability. Our investigation will be on the 

sensitivity of the results to adjustments in the 

parameters of the noise terms such as Gaussian, 

white, brown, pink, and random noises. 

Furthermore, in order to further investigate, we will 

perform parameter analysis of the nonlinear (𝜆) and 

linear terms (𝐷).  B  

Our research intends to contribute to a better 

understanding of the behavior of different 

discretization methods with different parameters of 

linear and nonlinear terms in the setting of SDEs 

with varying noise components, by offering insights 

that can help guide the selection of appropriate 

numerical approaches for specific applications. The 

conclusions of this study have ramifications for 

computational physics, mathematical biology, 

financial modeling, and stochastic control. 

 

 

2  KPZ Equation and Methods 
The KPZ equation presents the local growth rate of 

a profile ℎ(𝑥, 𝑡) at a substrate position 𝑥 and time 𝑡 

[1]:  
𝜕ℎ(𝑥,𝑡)

𝜕𝑡
= 𝐷∇2ℎ +

𝜆

2
(∇ℎ)2 + 𝑘(𝑥, 𝑡), (1) 

where variations in parameters 𝐷 (diffusion 

coefficient) and 𝜆 (nonlinear parameter). In this 

study, we will address the KPZ equation and we will 

examine the impact of two distinct noise terms, 

denoted as 𝑘(𝑥, 𝑡) specifically, Gaussian noise, 

Brownian noise, pink noise, and random noise. The 

detailed analysis of these noise terms will be 

elaborated upon in section 3.3. 

 

In our research, we continue our previous 

research results verification [19] which applied the 

traditional discretized method and new numerical 

methods to the time-integration of the spatially 

discretized KPZ equation. However, we will present 

brief information about verification using an 

analyticalanalytical solution and comparison result 

of the Gaussian noise effect for parameters of 

diffusion coefficient (𝐷) and nonlinear parameter 

(𝜆). 

 

2.1 The Adaptation of the Forward Time-

 Centered Space (FTCS) Scheme 
In their paper [20], researchers proposed a method 

to incorporate spatial derivatives into the right-hand 

side of the KPZ equation (1). This approach 

involved discretizing the equation using standard 

forward-backward differences on a cubic grid with a 

lattice constant ∆𝑥, commonly referred to as the 

forward time centered space (FTCS) scheme, [21]. 

 

where ∆𝑡 is the step size and 𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡,  𝑟 =
𝜐∆𝑡

∆𝑥2  and 𝜇 =
𝜆∆𝑡

8∆𝑥2  are the appropriate mesh ratios. 

In the computational process delineated for 

evaluating the right-hand side of Equation (2), an 

iterative procedure is employed, traversing each 

node within the system through a `for` loop. This 

approach necessitates the exclusive use of a singular 

array designated for the variable (ℎ), comprising a 

number of elements equivalent to the node count. 

The computation of (ℎ𝑖+1
𝑛 ) requires the preceding 

value (ℎ𝑖−1
𝑛 ), compelling the introduction of a 

provisional auxiliary array to retain these computed 

values. Subsequently, only upon the iterative loop's 

completion are the updated values (ℎ𝑖+1
𝑛 ) transferred 

to the primary array. This methodological outline 

explicates the rationale behind the potential for 

optimization of this ostensibly straightforward 

algorithm, a hypothesis that will be substantiated 

through further analysis in the ensuing sections. 
 

2.2  Leapfrog-hopscotch Method 
The innovative leapfrog-hopscotch (LH) framework 

was initially introduced and delineated in recently 

published paper, [12]. This methodology draws 

parallels to the foundational odd-even hopscotch 

(OEH) algorithm, a concept that emerged five 

decades prior through the seminal works [22] and 

[23]. The essence of this approach necessitates the 

segregation of the computational grid into two 

distinct subsets of nodes, classified as odd and even 

(illustrated as light blue and dark red dots in Figure 

1), ensuring that each odd node is surrounded by 

even nodes and vice versa. The computational 

process commences with the application of a 

reduced time step for the odd nodes, leveraging the 

initial values, as depicted by green arrows in Figure 

1. Subsequently, the algorithm alternates between 

full time step calculations for even and odd nodes 

(represented by light blue and dark red arrows), 

culminating in a final time step where the size is 

similarly reduced for the odd nodes, indicated by 

purple arrows.  

ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 + 𝑟(ℎ𝑖+1
𝑛 + ℎ𝑖−1

𝑛 −
2ℎ𝑖

𝑛)+ 

+𝜇(ℎ𝑖+1
𝑛 − ℎ𝑖−1

𝑛 )2 + ∆𝑡 𝑘(𝑥, 𝑡), 

(

(2) 

ℎ𝑖
𝑛+1 =

2ℎ𝑖
𝑛 + 𝑟(ℎ𝑖−1

𝑟𝑒𝑐𝑒𝑛𝑡 + ℎ𝑖+1
𝑟𝑒𝑐𝑒𝑛𝑡)

2(1 + 𝑟)
+ 

+
𝜇 (ℎ𝑖−1

𝑟𝑒𝑐𝑒𝑛𝑡 − ℎ𝑖+1
𝑟𝑒𝑐𝑒𝑛𝑡)2 + 𝑘 (𝑥, 𝑡𝑛 +

∆𝑡

2
) ∆𝑡

2(1 + 𝑟)
 

(3) 
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This procedure employs the most recent ℎ 

values of the neighboring nodes (ℎ𝑖+1
𝑟𝑒𝑐𝑒𝑛𝑡), thereby 

categorizing the method as explicit. Our detailed 

examination of this LH structure, specifically 

applied to the diffusion equation, was presented in 

[12]. Through extensive numerical analysis, we 

determined that the UPFD formula exhibits optimal 

performance at the zeroth time step, while the 𝜃 =
1

2
 

formula proves efficacious in successive steps. 

Consequently, this tailored approach, incorporating 

both the LH time-space structure and the specified 

formulas, is hereby designated as "the LH method." 

Our comprehensive analysis in [12] analytically and 

numerically affirmed the unconditional stability of 

this method when applied to the diffusion equation, 

also noting its comparative accuracy to Heun’s 

method. As such, we proposed the adaptation of the 

LH method [19] for application to the KPZ 

equation. 

 
Fig. 1: The new leapfrog-hopscotch structure 

 

In the context of the one-dimensional KPZ 

equation, as detailed in references [24], [25], we 

communicate the revised valuation of the ℎ variable 

throughout the initial iteration phase.:  

and at all other steps (denoted by 1 and 2 in Figure 

1): 

ℎ𝑖
𝑛+1 =

(1 − 𝑟)ℎ𝑖
𝑛 + 𝑟(ℎ𝑖−1

𝑟𝑒𝑐𝑒𝑛𝑡 + ℎ𝑖+1
𝑟𝑒𝑐𝑒𝑛𝑡)

1 + 𝑟
+ 

+
𝜇 (ℎ𝑖−1

𝑟𝑒𝑐𝑒𝑛𝑡 − ℎ𝑖+1
𝑟𝑒𝑐𝑒𝑛𝑡)

2
+ 𝑘(𝑥, 𝑡𝑛 + ∆𝑡/2)∆𝑡

1 + 𝑟
 

(4) 

excluding the final iteration with a half timestep, 

equation (7) requires the substitution ∆𝑡 →
∆𝑡

2
, 𝑟 →

𝑟

2
, 𝜇 →

𝜇

2
. Setting 𝜇 and 𝑘 to zero returns the LH 

technique to its original form, which was designed 

for the diffusion equation. The intrinsic time-space 

layout of the LH technique eliminates the need for 

auxiliary arrays to hold intermediate ℎ values, 

decreasing memory requirements. As a result, this 

property makes the LH approach somewhat more 

efficient in terms of computing speed when 

compared to the core FTCS method. Taking into 

account this information, we have done verification 

using an analitical solution and found out that the 

stable and accurate method is LH approach, [19]. 
 
2.3  Exponential Decreasing Method 
In the computational simulations conducted, the 

discretized form of the temporally correlated 

Kardar-Parisi-Zhang (KPZ) equation is found to 

exhibit numerical instabilities within the effective 

lambda parameter regime, as delineated in [8]. This 

instability precludes the observation of system 

evolution in scenarios characterized by singular 

growth phenomena extending beyond the 

established temporal bounds. To circumvent these 

numerical instabilities, the study adopts a 

modification strategy predicated on the replacement 

of the nonlinear term with an exponentially 

decaying function. This proposed approach [15], 

demonstrates efficacy in stabilizing the numerical 

simulations and allowing for continued observation 

of the system's evolution within the specified 

parameter space. 

 
𝑓(𝑥) ≡

1 − 𝑒−𝑐𝑥

𝑐
, (5) 

where, the variable 𝑐 is introduced as an adjustable 

parameter. Previous research indicated by reference 

[15] suggests that the multiscaling phenomena 

observed within the context of growth models 

exhibit a non-universal and transient nature. This 

characteristic prevails across all magnitudes of the 

control parameter 𝑐, contingent upon 𝑐 being 

sufficiently large to sustain a power-law scaling in 

the surface width 𝑊. Under these conditions, the 

scaling exponents are well-defined. Given the 

parameter 𝑐 is set to unity, complexities arise in 

determining the values of the coefficient 𝜆 

associated with the nonlinear term. Consequently, 

the ensuing form of the modified temporally 

correlated Kardar-Parisi-Zhang (KPZ) equation in a 

(1+1)-dimensional framework is delineated as 

follows: 
 

ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 + 𝑣
∆𝑡

(∆𝑥)2
[ℎ𝑖+1

𝑛 − 2ℎ𝑖
𝑛 + ℎ𝑖−1

𝑛 ] 

+∆𝑡
𝜆

2𝑐
[1 − 𝑒

−𝑐[
ℎ𝑖+1

𝑛 −ℎ𝑖−1
𝑛

2∆𝑥
]

2

] + 𝜂𝑖
𝑛, 

(6) 

odd 

0 1 

2 

1 

even 
t=0 

2half 

h 
h/2 

1 

fint t
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𝜂𝑖
𝑛 =  √

2𝐷

∆𝑥𝑑 √12∆𝑡 ∙ 𝑅(𝑡). 

 
 

3  Numerical Solution 
Initially, we have numerically simulated only 

Gaussian noise to observe the dynamics of a system 

with varying intensities denoted by parameter D. 

The system is characterized by parameters 𝜆 =
0.01, 𝑐 = 1.18, 𝑎 = 0.1, 𝐿 = 64, and 𝛥𝑡 = 10−5, 

which govern the behavior of the system over a 

spatial domain and a discrete time-step. 

The Figure 2 appears to depict a succession of 

waveforms, each showing a distinct value of the 

noise intensity 𝐷. As 𝐷 grows, the amplitude of the 

waveforms shows different fluctuations, indicating 

that noise has an impact on the system's stability and 

propagation properties. 

 

 
Fig. 2: Numerical simulation of Gaussian noise for 

different 𝐷 while 𝜆 = 0.01, 𝑐 = 1.18, 𝑎 = 0.1, 

L=64, and 𝛥𝑡 = 10−5 

 

 
Fig. 3: Numerical simulation of Gaussian noise 

effect for different value of 𝜆 while 𝐷 = 0.01, 𝑐 =
1.18, 𝑎 = 0.1, L=64, 𝛥𝑡 = 10−5 

 

The simulation results presented in the Figure 3 

illustrate the influence of the parameter of linear 

term on a system subjected to Gaussian noise which 

varies between 𝐷 = 0.01 and 5.0. Other parameters 

remain fixed with 𝜆 = 0.01, 𝑐 = 1.18, 𝑎 = 0.1, 𝐿 =
64, and 𝛥𝑡 = 10−5. The parameter 𝜆 is typically 

associated with a rate or a scale in the system, and 

the simulations demonstrate how its variation affects 

the system's behavior. The increase of D decrease 

the surface hight ℎ(𝑡, 𝑥) that makes the surface 

smoother. 

 

3.1  The Noise Terms  
One can see in Figure 3 that the curves are 

indistinguishable, which means that each method is 

accurate. The (global) numerical difference is the 

absolute difference of the numerical solutions ℎ𝑖
𝑛𝑢𝑚 

produced by the examined methods at final time 𝑡fin 

for KPZ equation: the FTCS scheme, the Heun 

method, and the LH method for 10-5 and 10-4 time 

step size.  For brevity, we denote this latter case, the 

LH method with 10-4 time step size as LH*. 

In order to find the individual difference 

between the nodes or cells, we calculate the 

maximum and average differences in following 

ways: 

𝐷𝑖
𝐹𝑇𝐶𝑆,𝐿𝐻 = |ℎ𝑖

𝐹𝑇𝐶𝑆 − ℎ𝑖
𝐿𝐻|,  

𝐷𝑖
𝐹𝑇𝐶𝑆,𝐷𝐺 = |ℎ𝑖

𝐹𝑇𝐶𝑆 − ℎ𝑖
𝐷𝐺|, 

 𝐷𝑖
𝐷𝐺,𝐿𝐻 = |ℎ𝑖

𝐷𝐺 − ℎ𝑖
𝐿𝐻| 

 (7) 

Average differences (L1 errors) 

𝐿1
𝐹𝑇𝐶𝑆,𝐿𝐻 = ∑

𝐷𝑖
𝐹𝑇𝐶𝑆,𝐿𝐻

𝑁𝑥
,   

𝑖

 

𝐿1
𝐿𝐻,𝐷𝐺∗ = ∑

𝐷𝑖
𝐿𝐻,𝐿𝐻∗

𝑁𝑥
,𝑖  etc 

(8) 

Maximum differences (L∞ errors) 

𝐿∞
𝐹𝑇𝐶𝑆,𝐿𝐻 = max

𝑖
{𝐷𝑖

𝐹𝑇𝐶𝑆,𝐿𝐻} ,   

𝐿∞
𝐿𝐻,𝐷𝐺 = max

𝑖
{𝐷𝑖

𝐿𝐻,𝐷𝐺} ,       etc  
(9) 

 

3.2  Investigating the Impact of Varied Noise 

Terms on System Dynamics: A 

Comprehensive Analysis  
In order to establish a comparison with prior studies 

conducted in a one-dimensional framework [17], 

[26], we examine a range of analytic noise terms to 

determine their capacity to yield analytic solutions. 

This examination is critical for validating the 

consistency of the results across different 

dimensional configurations and for extending the 

applicability of the findings derived from our 

previous investigations, [19].  

 

𝜀 =  𝑎𝜔𝑛 colored noises 𝑛 =  −2. − 1 are brown 

and pink, respectivelly 

𝜀 =  𝑎𝑒−𝑏𝜔2
 Gaussian noise 

𝑅(𝑡) = 𝑎 + (𝑏 − 𝑎) ∙ 𝑟𝑎𝑛𝑑(∆𝑡, ∆𝑥), where 

𝑟𝑎𝑛𝑑(𝑡1, 𝑥1) returns a t1 by x1 array of random 

numbers where 𝑡1, . . . , 𝑥1 indicate the size of each 

dimension. 
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3.3  Comparison of Different Noise Terms 

for Certain Values of 𝑫 and 𝝀 
In an experiment, the numerical values of 𝐷 and 𝜆 

depend on the specific system being studied. 

Numerous studies have been carried out on the KPZ 

equation in different physical systems [27], [28] and 

the values of these parameters can vary widely 

depending on the experimental conditions . 

Previous investigations of the growth 

mechanisms of a component are based on the 

Kardar-Parisi-Zhang universality class. The scaling 

exponents of metals in previous studies were found 

to be between 0.22 and 0.56. Studies using thermal 

evaporation sources gave consistent scaling 

exponents of around 0.25 for iron [29] and silver 

[30], [31]. In the present study, a scaling exponent 

of 0.3 was found, which coincides with the scaling 

exponents of gold and molybdenum films deposited 

by sputtering. However, these values are greater 

than 0.25, predicted by the KPZ equation for the 

2+1 system, [30], [31]. 

Other studies have found different values of 𝐷 

and 𝜆 in different systems. For example, in a study 

of bacterial colonies, the roughness exponent was 

found to be around 0.5, while the growth exponent 

was around 1.25. In an electrodeposition study, the 

roughness exponent was found to be around 0.8, 

while the growth exponent was around 1.5, [32]. 

In general, the values of 𝐷 and 𝜆 in real 

experiments depend on the specific physical system 

studied and the experimental conditions. The KPZ 

equation has been proven to be a useful tool for 

describing the behavior of growing surfaces in a 

wide range of systems, [33], [34].  

The Figure 4 presents the maximum difference 

error (9) as a function of the control parameter 𝜆, 

investigated over a range of values including 

0.01, 0.1, 0.5, 1, 2, and 5. The analysis delineates the 

behavior under different noise conditions compared 

to the noise-free scenario. In the absence of noise, 

denoted by the red line, the error remains relatively 

constant, exhibiting minimal variation across the 

spectrum of lambda values. In contrast, the 

introduction of Gaussian noise, illustrated by the 

blue line, indicates a gradual increase in error with 

rising lambda values, suggesting a noise-dependent 

deviation from the noise-free case. The Brownian 

noise, depicted by the black line, and pink noise, 

indicated by the pink line, both demonstrate 

intermediate behavior with a modest increment in 

error as lambda increases, albeit at a lower rate than 

the Gaussian noise. Notably, the yellow line 

representing random noise shows a marked increase, 

particularly beyond the lambda value of 1, 

signifying a pronounced sensitivity to this form of 

noise. The data exhibits a sharp upward trend in the 

error for lambda values greater than 1, reaching a 

peak at lambda equal to 5 for the random noise 

scenario. This pronounced error escalation in the 

presence of random noise underscores the 

significant impact of stochastic fluctuations on the 

system's dynamics, particularly at higher values of 

the control parameter lambda. 

 

 
Fig. 4: Calculation of Error to different values of L 

with various noise terms 

 

The graph depicts the variation of the maximum 

difference error (9) as a function of the linear term 

D, evaluated across a discrete set of values: 0.01, 

0.1, 0.5, 1, 2, and 5. The investigation was 

conducted under multiple noise conditions to 

ascertain the influence of stochastic factors on error 

magnitude. 

In Figure 5 the red line, representing the system 

without noise, maintains a relatively stable error 

value across lower D values, with a notable peak at 

𝐷 = 1, before decreasing as D increases further. 

The Gaussian noise, shown in blue, reveals a 

consistently moderate error across the D values, 

with a slight increase peaking around 𝐷 = 0.5 

before a gradual descent. The black line, indicating 

Brownian noise, and the pink line, denoting pink 

noise, both display a non-monotonic relationship 

with the linear term D, with a prominent trough at 

𝐷 = 1, suggesting a minimum error at this point, 

followed by an increase in error at higher values of 

D. 

The yellow line, illustrating random noise, 

demonstrates a starkly contrasting behavior, 

characterized by a significant descent into negative 

error values, reaching a nadir at 𝐷 = 1, and 

subsequently inverting this trend beyond 𝐷 = 1. 

This pronounced dip into negative error values 

indicates an inverse relationship between the linear 

term D and the system's stability under random 

noise conditions, up to the point of 𝐷 = 1, after 

which the error ascends with increasing values of D. 
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These results show that the nature of noise within a 

system can significantly affect the error dynamics, 

especially in relation to the value of the linear term 

D. The random noise, in particular, introduces a 

distinct pattern of error behavior, underscoring the 

critical role of stochastic influences in determining 

system performance. 

 

 
Fig. 5: Calculation of Error to different values of D 

with various noise terms 

 

Figure 6 represents the outcomes of an 

empirical investigation into the computation time 

required by the Leapfrog-hopscotch method, under 

the influence of various noise terms. The 

computation time 𝑡 has been measured across an 

array of values for the non-linear term 𝜆, 

specifically 0.01, 0.1, 0.5, 1, 2, and 5. 

The data reveals that in the absence of any 

noise, indicated by the red line, the simulation time 

remains relatively invariant regardless of the lambda 

value, suggesting that the noise-free Leapfrog-

hopscotch method's performance is robust to 

changes in the non-linearity parameter. 

Upon the introduction of Gaussian noise, 

represented by the blue line, there is a discernible 

oscillation in simulation time, with peaks at lambda 

values of 0.1 and 5, and a notable valley at lambda 

equals 1. This indicates that Gaussian perturbations 

can lead to an increased computational demand at 

certain levels of non-linearity. 

For Brownian noise, marked by the black line, 

the simulation time exhibits a significant peak at 

lambda equals 0.5, followed by a decrease as 

lambda increases, eventually stabilizing. This 

pattern suggests a complex interplay between the 

non-linear dynamics and the memory-dependent 

characteristics of Brownian motion. 

The system under the influence of pink noise, 

shown in pink, demonstrates a steady increase in 

simulation time up to lambda equals 2, after which it 

plateaus. This suggests a threshold in the noise's 

effect on computation time. 

Contrastingly, random noise, depicted by the 

yellow line, leads to a fluctuating computation time 

with the largest variability across the studied range, 

especially notable for lambda values greater than 1, 

where the computation time sharply rises, peaking at 

lambda equals 5. 

These results underscore the critical influence of 

stochastic variations on the computational efficiency 

of numerical methods. Specifically, they 

demonstrate that the nature of noise can 

significantly affect the simulation time required by 

the Leapfrog-hopscotch algorithm, which is a 

crucial consideration for computational modeling 

practices. 

 

Fig. 6: Assessment of simulation time across 

different noise terms using the Leapfrog-hopscotch 

method 

 

The investigation assesses the computational 

duration required for simulations applying the 

Leapfrog-hopscotch method across varying values 

of the linear term D. The values of D under 

consideration are 0.01, 0.1, 0.5, 1, 2, and 5. 

Simulation time is a critical metric, indicative of 

algorithm efficiency under different stochastic 

conditions. 

In Figure 7 the baseline case, denoted by the red 

line, where no noise term is included, demonstrates 

a consistent simulation time across all values of D, 

establishing a reference point for noise-impacted 

scenarios. The simulation time for the Gaussian 

noise, represented by the blue line, initially displays 

a significant decrease at lower values of D, 

stabilizing to a relatively invariant duration as D 

increases. This suggests that Gaussian noise has a 

diminishing impact on simulation time beyond a 

certain threshold of D. 
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In contrast, Brownian noise, represented by the 

black line, shows an insignificant decrease in 

simulation time with increasing D, maintaining a 

moderate and relatively stable duration throughout 

the range. The pink noise, shown in pink, exhibits a 

more nuanced pattern, with simulation time 

increasing until 𝐷 = 1 before decreasing; this could 

indicate an optimal efficiency point at 𝐷 = 1 for 

this type of noise. It can be seen that the most 

significant pattern is observed with random noise, 

represented by the yellow line. Here, simulation 

time increases with D until reaching a plateau at 

approximately 𝐷 = 1, after which it remains 

relatively steady. The plateau reached indicates that 

there may be a nonlinear response of the simulation 

time to the linear 𝐷 term only in the presence of 

random noise, indicating a possible dependence on 

the type of noise and the simulation method used. 

To summarize, all these results may mean that 

the 𝐷 term is a linear factor that interacts with each 

noise term in its own unique way, thus affecting the 

simulation time taken by the Leapfrog-hopscotch 

method. The Gaussian and Brownian noise factors 

appear to contribute less and less to the simulation 

time as 𝐷 increases, while pink noise appears to be 

most effective at 𝐷 = 1. On the other hand, random 

noise increases the simulation time, although it 

eventually reaches a plateau, suggesting more 

complex boundaries that need to be optimized in 

terms of computational resources used. 

 

 
Fig. 7: Simulation time analysis using the Leapfrog-

hopscotch method across different noise terms and 

D values 

 

 

4  Conclusion 
The study has shown a new frontier in 

understanding and connection between noise terms 

and discretization methods which are FTCS, DG, 

Leapfrog-hopscotch on the KPZ equation at 

nonlinear 𝜆 and linear parameters 𝐷. From the 

computations we have performed, we can see that 

multiple noise components such as Gaussian, 

Brownian, pink and even random noise significantly 

affect the stability and error function metrics of the 

system. It is also interesting that the presence of 

Gaussian and the absence of noise affects the 

behavior of the system, especially at higher values 

of 𝜆. Their modeling of noise characteristics is 

crucial in computation. 

In addition, this study reveals new details about 

computational efficiency, showing that the 

Leapfrog-hopscotch method outperforms all other 

methods in solving problems with different noise 

levels and a range of parameters in terms of speed 

and accuracy. Modeling with Brownian noise and 

modeling without noise proved to be the fastest. 

With Brownian noise and without noise, the speed 

of computation was the fastest with accuracy, which 

is a huge step in the numerical modeling of 

stochastic differential equations. The fastest 

computation with added noise was achieved without 

other methods. Such results point to the possibility 

of developing algorithms that are much more 

sophisticated and perform better in fields ranging 

from physics to financial modeling, where systems 

behave in complex ways. This research greatly 

improves the understanding of the best approaches 

to numerical methods that can be used to model 

real-world situations filled with noise. 
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