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Abstract: – The gain for the receding horizon (RH)H2 finite impulse response (FIR) filter is derived using linear
matrix inequality (LMI) under uncertainties, disturbances, initial, and measurement errors. The RHH2-FIR filter
is developed by minimizing the squared Frobenius norm of the weighted error-to-error transfer function, where
the weights are related to errors. The filter is tested by a harmonic model with an uncertain system matrix, and its
higher accuracy is shown against the OFIR, Kalman, maximum likelihood FIR, and unbiased FIR (UFIR) filters.
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1 Introduction
Receding horizon (RH) finite impulse response (FIR)
filtering was developed in [1], and generalized in [2],
for model predictive control, [3], to produce a
predicted estimate at the discrete time index k over
a finite horizon [m − 1, k − 1] of N points, where
m = k−N+1. The following advantages have been
noticed: 1) bounded input bounded output (BIBO)
stability, [4], 2) insensitivity to errors beyond [m −
1, k − 1], [5], 3) round-off errors reduction, [6], and
4) higher robustness, [7]. The H2 filter, [8], [9], has
attracted attention due to the ability to operate as the
robust H∞ and energy-to-peak filters, [10], Kalman
filter (KF) in white Gaussian environments, [11],
and optimal FIR (OFIR) filter, [12], [13]. The H2

filter minimizes the squared Frobenius norm of the
error-to-error transfer function T and has closed form
solutions, [14], [15]. The gain for the H2 filter can
also be computed numerically using a linear matrix
inequality (LMI), [16], [17], [18], [19], [20], [21],
[22].

First robust RH H2-FIR filters for disturbed
systems were developed in [23], [24], and other early
designs can be found in [25], [26], [27]. Later,
the RH H2-FIR approach has resulted in various
robust RH FIR structures, [28], [29], [30]. A
serious drawback of the early results is that the FIR
filter gain is obtained by minimizing the unweighted
T . A novel approach developed in [31], [32],
suggests minimizing the squared Frobenius norm of
the weighted transfer function T . For disturbed
systems, it gave the following efficient solutions:
RH bias constrained H2-FIR filter, [31], RH H2-FIR
predictor, [33], a posteriori optimal unbiasedH2-FIR

filter, [34], and a posteriori H2-FIR filter, [35]. In
this paper, we apply the approach, [31], to uncertain
systems under disturbances and other errors.

2 Model and Problem Formulation
Consider a linear system represented in discrete-time
state-space with the following equations,

xk+1 = (F +∆Fk)xk + (E +∆Ek)uk
+(B +∆Bk)wk , (1)

yk = (H +∆Hk)xk + (D +∆Dk)wk + vk ,(2)

where xk ∈ RK , uk ∈ RL, yk ∈ RP , F ∈ RK×K ,
H ∈ RP×K , E ∈ RK×L, B ∈ RK×M , and
D ∈ RP×M . The uncertain matrices ∆Fk, ∆Ek,
∆Bk,∆Hk, and∆Dk are zero mean, norm-bounded,
and mutually uncorrelated, [36]. The disturbance
wk ∈ RM and data error vk ∈ RP are zero mean
and mutually uncorrelated with norm-bounded error
matrices Q = E{wkw

T
k } and R = E{vkvTk }, where

E{z} means averaging of z. By reorganizing the
terms, we represent (1) and (2) as

xk+1 = Fxk + Euk + ξk , (3)
yk = Hxk + ζk , (4)

where the vectors ξk and ζk unite the uncertainties,
disturbances, and errors as

ξk = ∆Fkxk +∆Ekuk + (B +∆Bk)wk , (5)
ζk = ∆Hkxk + (D +∆Dk)wk + vk . (6)

To derive the RH H2-FIR filter, we will first
follow, [13], and extend (3) and (4) to the horizon
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[m, k] to have a prediction at k + 1. Then we will
change a time variable and arrive at the RH estimate
at k over [m− 1, k − 1].

Given the state space equations (3) and (4), their
extensions to [m, k] are the following,

Xm+1,k+1 = (FN + F̃m,k)xm

+(SN + S̃m,k)Um,k

+(DN + D̃m,k)Wm,k , (7)
Ym,k = (HN + H̃m,k)xm

+(Lk + L̃m,k)Um,k

+(TN + T̃m,k)Wm,k + Vm,k ,(8)

where all of the block vectors andmatrices are defined
in Appendix A.

To justify the above model, use the
forward-in-time solutions and extend (3) to [m, k] as

Xm+1,k+1 = FNxm + SNUm,k + F̂NΞm,k , (9)

and similarly extend the uncertain matrix Ξm,k as

Ξm,k = F∆
m,kxm+S∆

m,kUm,k +(B̄N +D∆
m,k)Wm,k .

(10)
Combine (9) and (10) and arrive at (7). Note that
setting the uncertain terms to zero makes (7) the
standard extended equation, [13].

Reasoning similarly, extend (4) to [m, k] as

Ym,k = HNxm +LkUm,k +MNΞm,k +Πm,k (11)

and represent the block vector Πm,k as

Πm,k = N∆
m,kxm + L∆

m,kUm,k +M∆
m,kΞm,k

(T̄N + T̄∆
m,k)Wm,k + Vm,k . (12)

Combine (11) and (12), obtain (8), and complete the
proof. Note that zero uncertainties makes (7) the
standard extended equation, [13].

From (9), extract the predicted state as

xk+1 = (FN + ¯̃Fm,k)xm + (S̄N + ¯̃Sm,k)Um,k

+(D̄N + ¯̃Dm,k)Wm,k , (13)

Having (8) and (13), we proceed with the one-step
H2-OFIR predictor and then will obtain the RH
H2-OFIR filter.

3 RHH2-FIR Filter
Using the definition given in [1], and taking into
account (8), we define the one-step ahead predicted

FIR estimate as

x̃k+1 = HNYm,k +Hf
NUm,k

= HN (HN + H̃m,k)xm

+HN (LN + L̃m,k)Um,k

+HN (GN + T̃m,k)Wm,k

+Hf
NUm,k +HNVm,k , (14)

where HN is the fundamental gain and Hf
N is the

forced gain.
The unbiasedness condition E{x̃k+1} =

E{xk+1} applied to (13) and (14) gives two
unbiasedness constraints,

FN = HNHN , (15)
Hf

N = S̄N −HNLN . (16)

The estimation error εk+1 = xk+1−x̃k+1 becomes

εk+1 = (FN −HNHN + ¯̃Fm,k −HNH̃m,k)xm

+(S̄N −HNLN −Hf
N + ¯̃Sm,k

−HN L̃m,k)Um,k + (D̄N −HNTN + ¯̃Dm,k

−HN T̃m,k)Wm,k −HNVm,k (17)

and can further be generalized as

εk+1 = (BN + B̃m,k)xm + Ũm,kUm,k

+(WN + W̃m,k)Wm,k − VNVm,k ,(18)

where the regular error residual matrices BN , WN ,
and VN are given by

BN = FN −HNHN , WN = D̄N −HNTN ,

VN = HN , (19)

and the uncertain error residual matrices as

B̃m,k = ¯̃Fm,k −HNH̃m,k ,

Ũm,k = ¯̃Sm,k −HN L̃m,k ,

W̃m,k = ¯̃Dm,k −HN T̃m,k . (20)

We next introduce the sub errors

ε̄x(k+1) = BNxm , ε̄w(k+1) = WNWm,k ,

ε̄v(k+1) = VNVm,k, ε̃x(k+1) = B̃m,kxm ,

ε̃w(k+1) = W̃m,kWm,k , ε̃u(k+1) = Ũm,kUm,k ,

(21)

and represent the error model as

εk+1 = ε̄x(k+1) + ε̄w(k+1) + ε̄v(k+1) + ε̃x(k+1)

+ε̃w(k+1) + ε̃u(k+1) , (22)

which will be further used to derive the H2-FIR
predictor.
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3.1 H2-FIR Predictor
To derive theH2-FIR predictor for uncertain systems,
we will need the following definitions.

Given a block column matrix Zm,k =

[ zTm zTm+1 . . . z
T
k ]T specified on [m, k]. Its recursive

form is [28],

Zm,k = AwZm−1,k−1 +Bwzk , (23)

where Aw and Bw are strictly sparse matrices,

Aw =


0 I 0 . . . 0
0 0 I . . . 0
...

...
... . . . ...

0 0 0 . . . I
0 0 0 . . . 0

 , Bw =


0
0
...
0
I

 . (24)

Given the system
[
Aw Bw

Cw 0

]
, where the sparse

matrices Aw and Bw are defined by (24) and Cw

is a real matrix, the transfer function T (z) =
Cw(Iz − Aw)

−1zBw, and a symmetric positive
definite weighting matrix Ξ. Then the squared
Frobenius norm of the weighted transfer function
T̄ (z) is [31],

∥T̄ (z)∥2F =
1

2π

∫ 2π

0
tr [T (ejωT )ΞT ∗(ejωT )] dωT

= tr(CwΞC
T
w ) . (25)

Using the above definitions, the trace of the error
matrix of the H2-FIR predictor can be written as

trP = E{(ε̄x(k+1) + ε̄w(k+1) + ε̄v(k+1) + ε̃x(k+1)

+ε̃w(k+1) + ε̃u(k+1))
T (. . . )}

= ∥T̄x̄(z)∥2F + ∥T̄w̄(z)∥2F + ∥T̄v̄(z)∥2F
+∥T̄x̃(z)∥2F + ∥T̄w̃(z)∥2F + ∥T̄ũ(z)∥2F ,

(26)

where (. . . ) means the term that is equal to the
relevant preceding term and the squared Frobenius
norms are defined by

∥T̄ (z)∥2F = trE{T ϖkϖ
T
k T T } . (27)

which gives

∥T̄x̄(z)∥2F = tr(BNχmBT
N ) , (28)

∥T̄w̄(z)∥2F = tr(WNQNWT
N ) , (29)

∥T̄v̄(z)∥2F = tr(VNRNVT
N ) . (30)

Using (25), the ∥T̄x̃(z)∥2F can be written as

∥T̄x̃(z)∥2F = trE{B̃m,kxmx
T
mB̃T

m,k}

= trE{( ¯̃Fm,k −HNH̃m,k)xmx
T
m

×( ¯̃Fm,k −HNH̃m,k)
T }

= tr(χ̃F
m − χ̃FH

m HT
N −HN χ̃

HF
m

+HN χ̃
H
mHT

N ) , (31)

where two uncertain matrices are given by

χ̃FH
m = E{ ¯̃Fm,kxmx

T
mH̃

T
m,k} , (32)

χ̃H
m = E{H̃m,kxmx

T
mH̃

T
m,k} , (33)

and two others, χ̃F
m and χ̃HF

m , are ignored by the filter
gain.

The ∥T̄w̃(z)∥2F can be transformed to

∥T̄w̃(z)∥2F = trE{W̃m,kWm,kW
T
m,kW̃T

m,k}

= trE{( ¯̃Dm,k −HN T̃m,k)Wm,kW
T
m,k

×( ¯̃Dm,k −HN T̃m,k)
T }

= tr(Q̃D
N − Q̃DT

N HT
N −HN Q̃

TD
N

+HN Q̃
T
NHT

N ) , (34)

where two uncertain matrices are taken into account

Q̃DT
N = E{ ¯̃Dm,kWm,kW

T
m,kT̃

T
m,k} , (35)

Q̃T
N = E{T̃m,kWm,kW

T
m,kT̃

T
m,k} , (36)

and Q̃D
N and Q̃TD

N are ignored by the filter gain.
The ∥T̄ũ(z)∥2F becomes

∥T̄ũ(z)∥2F = trE{Ũm,kUm,kU
T
m,kŨT

m,k}

= trE{( ¯̃Sm,k −HN L̃m,k)Um,kU
T
m,k

×( ¯̃Sm,k −HN L̃m,k)
T }

= tr(M̃S
N − M̃SL

N HT
N −HNM̃

LS
N

+HNM̃
L
NHT

N ) , (37)

where two uncertain error matrices have the value,

M̃SL
N = E{ ¯̃Sm,kUm,kU

T
m,kL̃

T
m,k} , (38)

M̃L
N = E{L̃m,kUm,kU

T
m,kL̃

T
m,k} . (39)

and M̃S
N and M̃LS

N are not used in the filter gain.

3.2 Gain for the RH H2-FIR Filter using
LMI

By changing the time variable, the batch RHH2-FIR
filter can now be defined by

x̃k = HNYm−1,k−1 + (S̄N −HNLN )Um−1,k−1 ,
(40)
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and the error covariance matrix can be written as

P = BNχmBT
N +WNQNWT

N + VNRNVT
N

+P̃x + P̃w + P̃u , (41)

where the uncertain error matrices are defined by

P̃x = E{B̃m,kxmx
T
mB̃T

m,k}
= χ̃F

m − χ̃FH
m HT

N −HN χ̃
HF
m

+HN χ̃
H
mHT

N , (42)
P̃w = E{W̃m,kWm,kW

T
m,kW̃T

m,k}
= Q̃D

N − Q̃DT
N HT

N −HN Q̃
TD
N

+HN Q̃
T
NHT

N , (43)
P̃u = E{Ũm,kUm,kU

T
m,kŨT

m,k}
= M̃S

N − M̃SL
N HT

N −HNM̃
LS
N

+HNM̃
L
NHT

N . (44)

The gain for the suboptimal bias-constrained RH
H2 FIR filter can also be computed numerically using
LMI. To this end, we introduce a positive definite
matrix Z such that

Z > WNQNWT
N + VNRNVT

N

+P̃x + P̃w + P̃u . (45)

Then, we substitute (19) and (20), transform (45) to

Z − (HNGN − D̄N )QN (HNGN − D̄N )T

−HNRNHT
N − χ̃F

m + χ̃FH
m HT

N +HN χ̃
HF
m

−HN χ̃
H
mHT

N − Q̃D
N + Q̃DT

N HT
N +HN Q̃

TD
N

−HN Q̃
T
NHT

N − M̃S
N + M̃SL

N HT
N

+HNM̃
LS
N −HNM̃

L
NHT

N > 0 ,

and generalize as

Z −A+ BHT
N +HNC −HNDHT

N > 0 , (46)

where auxiliary matrices are defined as A =
D̄NQND̄

T
N + χ̃F

m + Q̃D
N + M̃S

N , B = Gp
NQND̄

T
N +

χ̃FH
m +Q̃DT

N +M̃SL
N , C = D̄NQNG

pT

N +χ̃HF
m +Q̃TD

N +

M̃LS
N , and D = ΩN − χ̃H

m − Q̃T
N − M̃L

N . Using the
Schur complement, we further represent (46) in the
LMI form of[

Z −A+ BHT
N +HNC HN

HT
N D−1

]
> 0 . (47)

Finally, the gain for the suboptimal RH H2-FIR
filter can be determined numerically by solving the
minimization problem

HN = min
HN ,Z

trZ
subject to (47)

, (48)

where the minimization should be started with the
UFIR filter gain ĤN = (CT

NCN )−1CT
N . Next, we

consider an example of a quasi harmonic model.

4 Numerical Example
A quasi harmonic system is represented by the
following state space equations,

xk+1 =

[
0.6 0.4
−0.4 0.6 + δ

]
xk +

[
1
1

]
wk , (49)

yk = [1 1]xk + vk , (50)

where δ ⩾ 0 is the uncertain constant, [37]. We
represent the uncertain system matrix as F u = F +

∆F = F + δF̄ =

[
0.6 0.4
−0.4 0.6

]
+ δ

[
0 0
0 1

]
and

the uncertain vector (5) as ξk = δF̄ x̂k + Bwk.
The disturbance wk is assumed to be Gauss-Markov
wk+1 = ϕwk + ζk, where ζk ∈ N (0, 1), and the
colored measurement noise vk to be vk+1 = ψvk+ξk,
where ξk ∈ N (0, 1). The block error matrix QN of
wk and RN of vk are computed numerically. The
initial state is assumed to be known.

For the model (49) and (50), only the uncertain
matrices Q̃DT

N and Q̃T
N should be specified for the

filter gain. To transform matrix Q̃DT
N (35), we start

with D̃N = F̂ND
∆
N and represent matrix D∆

N as
D∆

N = δZN , where

ZN =


0 . . . 0 0
F̄B 0 . . . 0 0
...

... . . . ...
...

F̄FN−3B F̄FN−4B . . . 0 0
F̄FN−2B F̄FN−3B . . . F̄B 0

 .

Matrix ¯̃DN can now be written as ¯̃DN =
¯̂
FND

∆
N ,

where ¯̂
FN = [FN−1 FN−2 . . . F I ] is the last row

vector in F̂N . Next, matrix T̃N = H̄N F̂ND
∆
V gives

Q̃DT
N =

¯̂
FNQ∆

N F̂
T
N H̄

T
N , where Q∆

N is determined by
averaging as

Q∆
N = D∆

NE{Wm,kW
T
m,k}D∆T

N = δ2ZNQNZT
N .

Similarly, we obtain Q̃T
N = H̄N F̂NQ∆

N F̂
T
N H̄

T
N .

The RH H2-FIR filter gain can now be
determined numerically by solving the minimization
problem (48) and the estimate computed as
x̂k = HNYm−1,k−1. It is worth noting that the
gain HN is obtained by (48) for full block error
matrices QN and RN that makes it more accurate
than the Kalman-like recursive schemes when wk

and vk are not white and thus QN and RN are not
diagonal. We next assume that the uncertainty can
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Figure 1: Filtering errors produced by the filters for
uncertain system with δ = 0.4 under the heavy
disturbance with ϕ = 0.95.
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Figure 2: RMSEs produced by the filters as functions
of δ for uncertain system with δ = 0.4 under heavy
disturbance with ϕ = 0.95.

take values from δ ∈ [0 . . . 0.4] and investigate
filtering errors using the UFIR filter, [38], OFIR
filter, [13], ML-FIR filter, [39], and KF, [38], as
benchmarks.

In the first case, we set ψ = 0 and ϕ = 0.95, and
tune the filters to δ = 0.4. Typical filtering errors
are shown in Fig. 1, and we infer that the UFIR filter
(Nopt = 4) fails to give accurate estimates, while the
RHH2-FIR filter looks the best. The effect of δ on the
RMSEs is shown in Fig. 2, and we deduce that the
UFIR filter is the most robust and the less accurate.
The most accurate RH H2-FIR filter demonstrates a
sufficient robustness, and the remaining filters give
in-between estimates (Table 1).

Table 1: Case 1: RMSEs Produced by the filters for
various δ
Filter 0 0.1 0.2 0.3 0.4
UFIR 4.005 4.005 4.018 4.066 4.199
KF 1.302 1.331 1.452 1.752 2.390
OFIR 0.730 0.786 0.996 1.440 2.249
ML-FIR 0.735 0.737 1.026 1.486 2.316
H2-FIR 0.793 0.737 0.803 1.122 1.831
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Figure 3: RMSEs produced by the filters as functions
of δ for uncertain system with δ = 0.4 and system
disturbance with ϕ = 0.95.

Table 2: Case 2: RMSEs Produced by the filters for
various δ
Filter 0 0.1 0.2 0.3 0.4
UFIR 2.169 2.143 2.121 2.107 2.112
KF 2.790 2.789 2.796 2.818 2.871
OFIR 1.258 1.279 1.325 1.412 1.569
ML-FIR 1.280 1.304 1.348 1.426 1.565
H2-FIR 1.269 1.282 1.317 1.390 1.529

In the second extreme case we set ψ = 0.95
and ϕ = 0. The RMSEs are sketched in Fig. 3.
What we can see is that the KF is the worst here, the
UFIR filter (Nopt = 5) gives better estimates, and the
ML-FIR, OFIR, and RH H2-FIR filters produce the
smallest and consistent estimates, although the latter
still increases errors at a lower rate (Table 2).

5 Conclusions
The robust RH H2-FIR filter developed in this paper
for uncertain and disturbed systems operating under
initial errors and data errors has demonstrated a better
performance than other filters. This was achieved
by by minimizing the squared Frobenius norm of the
weighted error-to-error transfer function with weights
related to errors. An example of a harmonic model
has shown that the RH H2-FIR filter has a better
accuracy than the OFIR, ML-FIR, and Kalman filters
and is almost as robust as the UFIR filter.
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A Partitioned Vectors and Matrices
The block vectors are defined as

Xm,k =
[
xTm xTm+1 . . . xTk

]T
,

Ym,k =
[
yTm yTm+1 . . . yTk

]T
,

Um,k =
[
uTm uTm+1 . . . uTk

]T
,

Wm,k =
[
wT
m wT

m+1 . . . wT
k

]T
Vm,k =

[
vTm vTm+1 . . . vTk

]T
,

Ξm,k =
[
ξTm ξTm+1 . . . ξTk

]T
,

Πm,k =
[
ζTm ζTm+1 . . . ζTk

]T
,

and the block matrices as

FN =
[
F T F 2T

. . . FN−1T

FNT
]T
,

SN =


E 0 . . . 0 0
FE 0 . . . 0 0
...

... . . . ...
...

FN−2E FN−3E . . . E 0
FN−1E FN−2E . . . FE E

 ,
matrix DN becomes matrix SN if we replace E with
B, HN = H̄NF

−1FN , LN = H̄NSN , TN = GN +
T̄N , GN = H̄NDN , H̄N = diag(H ,H . . . H︸ ︷︷ ︸

N

),

T̄N = diag(D ,D . . . D︸ ︷︷ ︸
N

),

F∆
m,k =


∆Fm

∆Fm+1F
u
m

...
∆Fk−1F̃m

k−2

∆FkF̃m
k−1

 ,

F̃g
r =

 F u
r F

u
r−1 . . . F

u
g , g < r + 1 ,

I , g = r + 1
0 , g > r + 1

,

whereF u
j = F+∆Fj , j ∈ [g, r], matrixS∆

m,k is given
at the top of the next page, matrix D∆

m,k becomes
S∆
m,k if we replace ∆Ei with ∆Bi, i ∈ [m, k], and
E with B, F̃m,k = F̂NF

∆
m,k, S̃m,k = F̂NS

∆
m,k,

D̃m,k = F̂ND̃
∆
m,k,

F̂N =


I 0 . . . 0 0
F I . . . 0 0
...

... . . . ...
...

FN−2 FN−3 . . . I 0
FN−1 FN−2 . . . F I

 ,

¯̃Fm,k, ¯̃Sm,k, and ¯̃Dm,k are the last row vectors in F̃m,k,
S̃m,k, and D̃m,k, respectively, HN = H̄NF

−1FN ,
LN =MN ĒN ,

MN =


0 0 . . . 0 0
H 0 . . . 0 0
...

... . . . ...
...

HFN−3 HFN−4 . . . 0 0
HFN−2 HFN−3 . . . H 0

 ,

N∆
m,k =


∆Hm

∆Hm+1F
...

∆Hk−1F
N−2

∆HkF
N−1

 ,
L∆
m,k = M∆

m,kĒN , T̄∆
m,k =

diag(∆Dm ∆Dm−1 . . . ∆Dk ), and

H̃m,k = N∆
m,k + (MN +M∆

m,k)F
∆
m,k ,

L̃m,k = L∆
m,k + (MN +M∆

m,k)S
∆
m,k ,

T̃m,k = M∆
m,kB̄N + (MN +M∆

m,k)D
∆
m,k + T̄∆

m,k .
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