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Abstract: In this paper, a cyclic predator-prey system with Sigmoidal type functional response is considered. The
stability of the positive equilibrium and existence of Hopf bifurcation is studied by analyzing the distribution of
the roots of associated characteristic equation. It is shown that the positive equilibrium is locally asymptotically
stable when the time delay is small enough, while change of stability of the positive equilibrium will cause a
bifurcating periodic solution as the time delay passes through a sequence of critical values. An explicit formula
for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf
bifurcations is derived, using the normal form theory and center manifold argument. Finally, numerical simulations
supporting the theoretical results are carried out.
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1 Introduction

In recent years, the interest in study of the dynami-
cal properties occurring in the predator-prey system
with delay has been growing rapidly. For example,
Liu [2] had made discussion about the global asymp-
totic stability and uniqueness of periodic solutions of a
cyclic and predator-prey system of three species with
Holling,s type II functional response. Liu et al. [3]
analyze the permanence, almost periodic phenomena
and the global asymptotically stability of the unique
positive periodic solution for a three species clock-
wise chain predator-prey model with Holling IV func-
tional response. Tang et al.[4] investigated the per-
manence, the global asymptotically stability of the
unique positive periodic solution in a three species
clockwise chain predator-prey model with Holling IV
functional response. Yu [7] studied the existence
and uniqueness of uniformly asymptotically stable al-
most periodic solution for a cyclic predator-prey sys-
tem with Functional Response. For more investiga-
tion about predator-prey, one can see [5-6,8-16]. Re-
cently, by using comparison theory and Lyapunov
functional methods, Ma and Jia [1] investigated the
global asymptotic stability and uniqueness of periodic
solutions of the following cyclic predator-prey system

with Sigmoidal type functional response































































































ẋ1(t) = x1(t)
[

r1(t) − a1(t)x1(t)

− d1(t)x1(t)x2(t)
c1(t)+b1(t)x1(t)+x2

1
(t)

+
k3(t)d3(t)x2

3
(t)

c3(t)+b3(t)x3(t)+x2

3
(t)

]

,

ẋ2(t) = x2(t)
[

r2(t) − a2(t)x2(t)

− d2(t)x2(t)x3(t)
c2(t)+b2(t)x2(t)+x2

2

+
k1(t)d1(t)x2

1
(t)

c1(t)+b1(t)x1(t)+x2

1
(t)

]

,

ẋ3(t) = x3(t)
[

r3(t) − a3(t)x3(t)

− d3(t)x1(t)x3(t)
c3(t)+b3(t)x3(t)+x2

3
(t)

+
k2(t)d2(t)x2

2
(t)

c2(t)+b2(t)x2(t)+x2

2
(t)

]

,

(1)

wherex2 is the predator ofx1, x3 is the predator
of x2 and x1 is the predator ofx3, they have de-
pendent density and Sigmoidal functional response.
ai(t), bi(t), ci(t), di(t), ki(t), ri(t)(i = 1, 2, 3) are
continuous nonnegative and bounded function within
[0,+∞). Moreover, ai(t), ci(t)(i = 1, 2, 3) >
0. It is well known that in the implementation of
predator-prey systems, time delays are inevitably en-
countered because of the finite development speed
of predators and preys. Motivated by the viewpoint,
in the following, we assume that time delay occurs
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in the Sigmoidal Functional Response, i.e., the Sig-
moidal Functional Response takes the formf(x) =

x2(t−τ)
c(t)+b(t)x(t−τ)+x2(t−τ) . Furthermore, the parameters
of system (1) keep unchange in time, then we have
the following predator-prey system which delays are
introduced:































































































ẋ1(t) = x1(t)
[

r1 − a1x1(t)

− d1x1(t)x2(t)
c1+b1x1(t)+x2

1
(t)

+
k3d3x

2

3
(t−τ)

c3+b3x3(t−τ)+x2

3
(t−τ)

]

,

ẋ2(t) = x2(t)
[

r2 − a2x2(t)

− d2x2(t)x3(t)
c2+b2x2(t)+x2

2
(t)

+
k1d1x

2

1
(t−τ)

c1+b1x1(t−τ)+x2

1
(t−τ)

]

,

ẋ3(t) = x3(t)
[

r3 − a3x3(t)

− d3x1(t)x3(t)
c3+b3x3(t)+x2

3
(t)

+
k2d2x

2

2
(t−τ)

c2+b2x2(t−τ)+x2

2
(t−τ)

]

.

(2)

In particular, the appearance of a cycle bifurcating
from an equilibrium of an ordinary or a delayed
predator-prey with a single parameter, which is known
as a Hopf bifurcation, has attracted much attention
(see [8-16]). We all know that time delays that oc-
curred in the predator-prey will affect the stability of a
systemn by creating instability, oscillation and chaos
phenomena. The purpose of this paper is to discuss
the stability and the properties of Hopf bifurcation of
model (2). To the best of our knowledge, it is the first
to deal with the stability and Hopf bifurcation of sys-
tem (2).

This paper is organized as follows. In Section 2,
linearizing the system at the positive constant steady-
state solution and the analyzing the corresponding
characteristic equation, the stability of the positive
constant steady-state solution and the existence of
Hopf bifurcation are studied. In Section 3, the di-
rection of Hopf bifurcation and the stability and peri-
odic of bifurcating periodic solutions are investigated
by using the normal form theory and center manifold
theorem presented in Hassard et al.[17]. In Section
4, we illustrate the procedure with a particular exam-
ple, in which numerical simulations support our re-
sults. Some main conclusions are drawn in Section
5.

2 Stability of the Equilibrium and
Local Hopf Bifurcations

Throughout this paper, we assume that system (2) has
a unique positive equilibriumE∗(x

∗

1, x
∗

2, x
∗

3).

Linearized system of (2) nearE∗(x
∗

1, x
∗

2, x
∗

3) takes the
form:










ẋ1(t) = m1x1(t) +m2x2(t) +m3x3(t− τ),
ẋ2(t) = n1x2(t) + n2x3(t) + n3x1(t− τ),
ẋ3(t) = p1x1(t) + p2x3(t) + p3x2(t− τ),

(3)
wheremi, ni, pi(i = 1, 2, 3) are defined by Appendix
A.

The associated characteristic equation of (3) is

λ3+ρ2λ
2+ρ1λ+ρ0+ε0e

−3λτ+(θ1λ+θ0)e
−λτ = 0,

(4)
where ρ0 = −m1n1p2, ρ1 = m1n1 + m1p2 +
n1p2, ρ2 = −(m1 + n1 + p2), ε0 = −m3n3p3, θ0 =
m3n1p1+m2n3p2+m1n2p3, θ1 = −(m3p1+m2n3+
n2p3).

In order to investigate the distribution of roots of
the transcendental equation (4), the following Lemma
that is stated in [15] is useful.

Lemma 1 [15] For the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm) =

λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ+ p(0)

n

+
[

p
(1)
1 λn−1 + · · · + p

(1)
n−1λ+ p(1)

n

]

e−λτ1 + · · ·

+
[

p
(m)
1 λn−1 + · · · + p

(m)
n−1λ+ p(m)

n

]

e−λτm = 0,

as (τ1, τ2, τ3, · · · , τm) vary, the sum of orders of the
zeros ofP (λ, e−λτ1 , · · · , e−λτm) in the open right half
plane can change, and only a zero appears on or
crosses the imaginary axis.

Now we make the following assumption:

(H1) ρ0 + ε0 + θ0 > 0, ρ2(ρ1 + θ1) > ρ0 + ε0 + θ0.

Lemma 2 If (H1) holds, then we have the following :
(i) When

τ = τk
def
=

1

2ω0

[

arccos θ∗ − ψ + 2kπ
]

, (5)

where θ∗ =
(ρ0−ρ2ω2

0
)2+(ω3

0
−ρ1ω0)2−ε2

0

2
√
θ2
0
ε2
0
+ε2

0
θ2
1

, k =

0, 1, 2, · · · ,. Eq.(4) has a simple pair of imaginary
roots ±iω0, where ω0 is the positive root of Eq.
(15)andψ satisfies (16).
(ii) For τ ∈ [0, τ0), all roots of Eq. (4) have strictly
negative real parts.
(iii) When τ = τk, Eq. (4) has a pair of imaginary
roots ±iω0 and all other roots have strictly negative
real parts.
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Proof: Obviously, by the assumption (H1),λ = 0 is
not the root of Eq. (4). Whenτ = 0, then Eq. (4)
becomes

λ3 + ρ2λ
2 + (ρ1 + θ1)λ+ ρ0 + ε0 + θ0 = 0. (6)

It is easy to see from condition (H1) that all roots of
Eq. (7) have negative real parts.

Multiplying eλτ on both sides of the two equa-
tions of (4), it is obvious to obtain

(λ3 + ρ2λ
2 + ρ1λ+ ρ0)e

λτ + ε0e
−2λτ

+θ1λ+ θ0 = 0. (7)

±iω0 (ω0 > 0) is a pair of purely imaginary roots of
(4) if and only ifω satisfies

(−iω3
0 − iρ2ω

2
0 + iρ1ω0 + ρ0)e

iω0τ + ε0e
−2iω0τ

+iθ1ω0 + θ0 = 0.

Separating the real and imaginary parts, we get


















(ρ0 − ρ2ω
2
0) cos ωτ + (ω3

0 − ρ1ω0) sinωτ
= ε0 cos 2ωτ − θ0,
(ρ0 − ρ2ω

2
0) sinωτ − (ω3

0 − ρ1ω0) cosωτ
= ε0 sin 2ωτ − θ1ω0.

(8)

Taking square on the both sides of the equation in (8)
and summing up, we get

(ρ0 − ρ2ω
2
0)

2 + (ω3
0 − ρ1ω0)

2 =

ε20 + 2θ0ε0 cos 2ω0τ + 2ε0θ1 sin 2ω0τ. (9)

According tosin 2ωτ = ±
√

1 − cos2 2ωτ , it follows
that

(ρ0 − ρ2ω
2
0)

2 + (ω3
0 − ρ1ω0)

2 = ε20 + 2θ0ε0

× cos 2ω0τ ± 2
√

1 − cos2 2ωτε0θ1. (10)

It is easy to see that (10) is equivalent to

q1 cos2 2ωτ + q2 cos 2ωτ + q3 = 0, (11)

where

q1 = 4(θ2
0 + θ2

1)ε
2
0,

q2 = −4θ0ε0[(ρ0 − ρ2ω
2
0)

2

+ (ω3
0 − ρ1ω0)

2 − ε20],

q3 = [(ρ0 − ρ2ω
2
0)

2 + (ω3
0 − ρ1ω0)

2 − ε20]
2

− 4ε20θ
2
1.

It follows from (11) that

cos 2ωτ =
−q2 ±

√

q22 − 4q1q3

2q1
:= f1(ω), (12)

wheref1(ω) is a function with respect toω. Substitute
(12) into (9), we get

sin 2ωτ =
χ∗

4ε0θ1q1
:= f2(ω), (13)

whereχ∗ = 2q1[(ρ0−ρ2ω
2
0)

2 +(ω3
0 −ρ1ω0)

2−ε20]−
2θ0ε0(−q2 ±

√

q22 − 4q1q3), f2(ω) is a function with

respect toω. According tosin2 2ωτ + cos2 2ωτ = 1,
it follows from (12) and (13) that

f1
2(ω) + f2

2(ω) = 1. (14)

If ai, bi, ci, di, ki(i = 1, 2, 3) of the system (2) are
given, it is easy to use computer to calculate the roots
of (14).

We assume that (14) has at least one positive real
root. From (9), we derive

(ρ0 − ρ2ω
2
0)

2 + (ω3
0 − ρ1ω0)

2 =

ε20 + 2
√

θ2
0ε

2
0 + ε20θ

2
1 cos(2ω0τ + ψ), (15)

whereψ satisfies

tanψ =
θ1ω0

ε0θ0
. (16)

From (15), it is easy to obtain

τk =
1

2ω0

[

arccos θ∗ − ψ + 2kπ
]

, (17)

where θ∗ =
(ρ0−ρ2ω2

0
)2+(ω3

0
−ρ1ω0)2−ε2

0

2
√
θ2
0
ε2
0
+ε2

0
θ2
1

, k =

0, 1, 2, · · · ,.
From (7), we know that Eq. (4) withτ = τk(k =

0, 1, 2, · · ·) has a pair of imaginary roots±iω0, which
aresimple.

According the discussion and applying the
Lemma 1 and Cooke and Grossman [18], we obtain
the conclusion (ii) and (iii). This completes the proof.

Let λ(τ) = α(τ) + iω(τ) be a root of (4) near
τ = τk, andα(τk) = 0, and ω(τk) = ω0, (k =
0, 1, 2, · · ·). Due to functional differential equation
theory, for everyτk, k = 0, 1, 2, · · · there existsε > 0
such thatλ(τ) is continuously differentiable inτ for
|τ − τk| < ε. Substitutingλ(τ) into the left hand of
(4) and taking derivative with respect toτ , we have
[

dλ

dτ

]

−1

= − (3λ2 + 2ρ2λ+ ρ1)e
−λτ + θ1

λ[λ3 + ρ2λ2 + ρ1λ+ ρ0)eλτ − ε0e−2λτ ]

−τ
λ
,

which leads to

Re
[

dλ

dτ

]

−1

τ=τk

=
A1B1 −A2B2

A2
1 +A2

2

,
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where

A1 = [(ρ0 − ρ2ω
2
0 + ε0) sinω0τk

+ (ρ1ω0 − ω3
0) cosω0τk]ω0,

A2 = [(ρ0 − ρ2ω
2
0 + ε0) cosω0τk

− (ρ1ω0 − ω3
0) sinω0τk]ω0,

B1 = (ρ1 − 3ω2
0) cos ω0τk − 2ρ2ω0 sinω0τk + θ1,

B2 = (ρ1 − 3ω2
0) sinω0τk + 2ρ2ω0 cosω0τk + θ1.

We assume that

(H2) A1B1 6= A2B2.

Lemma 3 Let τ = τk, then the following transversal-
ity condition

dRe[λ(τ)]

dτ

∣

∣

∣

τ=τk
6= 0

is satisfied.

From Lemma 2-3, we have the following results on
the local stability and Hopf bifurcation for system (2).

Theorem 4 For system (2), letτk be defined by (17)
andassume that (H1) and (H2) hold.
(i) If τ ∈ [0, τ0), then the equilibrium point of sys-
tem (2) is asymptotically stable andτ = τk(k =
0, 1, 2, · · ·) are Hopf bifurcation values for system (2).

3 Direction and stability of the Hopf
bifurcation

In the previous section, we have obtained some con-
ditions which guarantee that the two-neuron networks
with resonant bilinear terms undergoes the Hopf bi-
furcation at some values ofτ = τk(k = 0, 1, 2, · · ·).
In this section, we shall derive the explicit formu-
lae determining the direction, stability, and period of
these periodic solutions bifurcating from the positive
equilibrium E∗(x

∗

1, x
∗

2, x
∗

3) at these critical value of
τ , by using techniques from normal form and center
manifold theory [17], Throughout this section, we al-
ways assume that system (3) undergoes Hopf bifur-
cation at the positive equilibriumE∗(x

∗

1, x
∗

2, x
∗

3) for
τ = τk, and then±iω0 are corresponding purely
imaginary roots of the characteristic equation at the
positive equilibriumE∗(x

∗

1, x
∗

2, x
∗

3).
For convenience, letτ = τk + µ, µ ∈ R. Then

µ = 0 is the Hopf bifurcation value of (2). Thus,
we shall study Hopf bifurcation of small amplitude
periodic solutions of (2) from the equilibrium point
for µ close to 0. We can consider the fixed phase space
C = C([−1, 0], R3).

For (φ1, φ2, φ3) ∈ C, define

Lµφ = τkAφ(0) + τkBφ(−1), (18)

where

A =







m1 m2 0
0 n1 n2

p1 0 p2






, B =







0 0 m3

n3 0 0
0 p3 0






.

We expand the nonlinear part of system (2) and derive
the following expression

f(µ, φ) =







f1(µ, φ)
f2(µ, φ)
f3(µ, φ)






, (19)

where

f1(µ, φ) = (τk + µ)[l1x
2
1(t) + l2x1(t)x2(t)

+ l3x
2
3(t− τ) + l4x1(t)x3(t− τ)

+ l5x
3
1(t) + l6x

3
3(t− τ) + l7x

2
1(t)x2(t)

+ l8x1(t)x
2
3(t− τ) + h.o.t.],

f2(µ, φ) = (τk + µ)[s1x
2
1(t) + s2x1(t)x2(t)

+ s3x
2
3(t− τ) + s4x1(t)x3(t− τ)

+ s5x
3
1(t) + s6x

3
3(t− τ) + s7x

2
1(t)x2(t)

+ s8x1(t)x
2
3(t− τ) + h.o.t.],

f3(µ, φ) = (τk + µ)[v1x
2
1(t) + v2x1(t)x2(t)

+ v3x
2
3(t− τ) + v4x1(t)x3(t− τ)

+ v5x
3
1(t) + v6x

3
3(t− τ)

+ v7x
2
1(t)x2(t) + v8x1(t)x

2
3(t− τ)

+ h.o.t.],

where li, si, vi(i = 1, 2, 3, 4, 5, 6, 7) are defined by
Appendix B.

By the representation theorem, there is a ma-
trix function with bounded variation components
η(θ, µ), θ ∈ [−1, 0] such that

Lµφ =

∫ 0

−1
dη(θ, µ)φ(θ) for φ ∈ C. (20)

In fact, we can choose

η(θ, µ) = (τk + µ)







m1 m2 0
0 n1 n2

p1 0 p2






δ(θ)

−(τk + µ)







0 0 m3

n3 0 0
0 p3 0






δ(θ + 1), (21)

whereδ is the Dirac delta function.
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Forφ ∈ C([−1, 0], R3), define

A(µ)φ =

{

dφ(θ)
dθ

, −1 ≤ θ < 0,
∫ 0
−1 dη(s, µ)φ(s), θ = 0

(22)
and

R(µ)φ =

{

0, −1 ≤ θ < 0,
f(µ, φ), θ = 0.

(23)

Then (2) is equivalent to the abstract differential equa-
tion

ẋt = A(µ)xt +R(µ)xt, (24)

where x = (x1, x2, x3)
T , xt(θ) = x(t + θ), θ ∈

[−1, 0].
Forψ ∈ C([0, 1], (R3)∗), define

A∗ψ(s) =

{

−dψ(s)
ds

, s ∈ (0, 1],
∫ 0
−1 dη

T (t, 0)ψ(−t), s = 0.
(25)

For φ ∈ C([−1, 0], R3) and ψ ∈
C([0, 1], (R3)∗), define the bilinear form

< ψ,φ >= ψ(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ−θ)dη(θ)φ(ξ)dξ,

(26)
whereη(θ) = η(θ, 0). We have the following result
on the relation between the operatorsA = A(0) and
A∗.

Lemma 5 A = A(0) andA∗ are adjoint operators.

Proof: Let φ ∈ C1([−1, 0], R3) and ψ ∈
C1([0, 1], (R3)∗). It follows from (26) and the defi-
nitions ofA = A(0) andA∗ that

< ψ(s), A(0)φ(θ) >= ψ̄(0)A(0)φ(0)

−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)A(0)φ(ξ)dξ

+ψ̄(0)

∫ 0

−1
dη(θ)φ(θ)

−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)A(0)φ(ξ)dξ

= ψ̄(0)

∫ 0

−1
dη(θ)φ(θ)

−
∫ 0

−1
[ψ̄(ξ − θ)dη(θ)φ(ξ)]θξ=0

+

∫ 0

−1

∫ θ

ξ=0

dψ̄(ξ − θ)

dξ
dη(θ)φ(ξ)dξ

=

∫ 0

−1
ψ̄(−θ)dη(θ)φ(0)

−
∫ 0

−1

∫ θ

ξ=0

[

−dψ̄(ξ − θ)

dξ

]

dη(θ)φ(ξ)dξ

= A ∗ ψ̄(0)φ(0)

−
∫ 0

−1

∫ θ

ξ=0
A∗ψ̄(ξ − θ)dη(θ)φ(ξ)dξ

=< A∗ψ(s), φ(θ) > .

This shows thatA = A(0) andA∗ are adjoint opera-
tors and the proof is complete.

By the discussions in Section 2, we know that
±iω0τk are eigenvalues ofA(0), and they are also
eigenvalues ofA∗ corresponding toiω0 and −iω0τk,
respectively. We have the following result.

Lemma 6 The vector

q(θ) = (1, α, β)T eiω0τkθ, θ ∈ [−1, 0],

is the eigenvector ofA(0) corresponding to the eigen-
valueiω0τk and

q∗(s) = D(1, α∗, β∗)eiω0τks, s ∈ [0, 1],

is the eigenvector ofA∗ corresponding to the eigen-
value−iω0τk, moreover,< q∗(s), q(θ) >= 1, where

α =
n2(iω0 −m1) +m3n3e

−2iω0τk

m2n2 + (iω0 − n1)m3e−iω0τk
,

β =
(iω0 −m1)(iω0 − n1) −m2n3e

−iω0τk

m2n2 + (iω0 − n1)m3e−iω0τk
,

α∗ =
p1m2 − (iω0 +m1)p3e

−iω0τk

n3p3e−2iω0τk − p1(iω0 + n1)
,

β∗ =
(iω0 +m1)(iω0 + n1) −m2n3e

−iω0τk

n3p3e−2iω0τk − p1(iω0 + n1)
,

D = 1 + ᾱα∗ + β̄β∗ + (n3α
∗ + ᾱβ∗p3 + β̄m3)

× τke
iω0τk

Proof: Let q(θ) be the eigenvector ofA(0) corre-
sponding to the eigenvalueiω0 andq∗(s) be the eigen-
vector ofA∗ corresponding to the eigenvalue−iω0τk,
namely, A(0)q(θ) = iω0τkq(θ) and A∗q∗T (s) =
−iω0τkq

∗T (s). From the definitions ofA(0) andA∗,
we have A(0)q(θ) = dq(θ)/dθ and A∗q∗T (s) =
−dq∗T (s)/ds. Thus,q(θ) = q(0)eiω0τkθ andq∗(s) =
q∗(0)eiω0τks. In addition,

∫ 0

−1
dη(θ)q(θ) = τkAq(0) + τkBq(−1)

= A(0)q(0) = iω0τkq(0). (27)

That is






iω0 −m1 −m2 −m3e
−iω0τk

−n3e
−iω0τk iω0 − n1 −n2

−p1 −p3e
−iω0τk iω0 − p2






q(0)
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=







0
0
0






. (28)

Therefore, we can easily obtain

α =
n2(iω0 −m1) +m3n3e

−2iω0τk

m2n2 + (iω0 − n1)m3e−iω0τk
,

β =
(iω0 −m1)(iω0 − n1) −m2n3e

−iω0τk

m2n2 + (iω0 − n1)m3e−iω0τk
.

Onthe other hand,
∫ 0

−1
q∗(−t)dη(t) = τkA

T q∗T (0) + τkB
T q∗T (−1)

= A∗q∗T (0) = −iω0τkq
∗T (0). (29)

Namely,






−iω0 −m1 −n3e
−iω0τk −p1

−m2 −iω0 − n1 −p3e
−iω0τk

−m3e
−iω0τk −n2 −iω0 − p2






q∗(0)

=







0
0
0






. (30)

Therefore, we can easily obtain

α∗ =
p1m2 − (iω0 +m1)p3e

−iω0τk

n3p3e−2iω0τk − p1(iω0 + n1)
,

β∗ =
(iω0 +m1)(iω0 + n1) −m2n3e

−iω0τk

n3p3e−2iω0τk − p1(iω0 + n1)
.

In the sequel, we shall verify that< q∗(s), q(θ) >= 1.
In fact, from (26), we have

< q∗(s), q(θ) >= D̄(1, ᾱ∗, β̄∗)(1, α, β)T

−
∫ 0

−1

∫ θ

ξ=0
D̄(1, ᾱ∗, β̄∗)e−iω0(ξ−θ)dη(θ)

(1, α, β)T eiω0τkξdξ

= D̄
[

1 + αᾱ∗ + ββ̄∗

−
∫ 0

−1
(1, ᾱ∗, β̄∗)θeiω0τkθdη(θ)(1, α, β)T

]

= D̄
{

1 + αᾱ∗ + ββ̄∗ + (1, ᾱ∗, β̄∗)
[

Be−iω0τk
]

(1, α, β)T
}

= D̄
[

1 + αᾱ∗ + ββ̄∗ + (n3ᾱ
∗ + αβ̄∗p3 +m3β)

τ0e
−iω0τk

]

= 1.

Next, we use the same notations as those in Has-
sard, Kazarinoff and Wan [17], and we first compute

the coordinates to describe the center manifoldC0 at
µ = 0. Letxt be the solution of Eq. (2) whenµ = 0.

Define

z(t) =< q∗, xt >,W (t, θ) = xt(θ)−2Re{z(t)q(θ)}.
(31)

on the center manifoldC0, and we have

W (t, θ) = W (z(t), z̄(t), θ), (32)

where

W (z(t), z̄(t), θ) = W (z, z̄) = W20
z2

2

+W11zz̄ +W02
z̄2

2
+ · · · (33)

andz andz̄ are local coordinates for center manifold
C0 in the direction ofq∗ andq̄∗. Noting thatW is also
real if xt is real, we consider only real solutions. For
solutionsxt ∈ C0 of (2),

ż(t) = < q∗(s), ẋt >=< q∗(s), A(0)xt +R(0)xt >

= < q∗(s), A(0)xt > + < q∗(s), R(0)xt >

= < A∗q∗(s), xt > +q̄∗(0)R(0)xt

−
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ − θ)dη(θ)A(0)R(0)xt(ξ)dξ

= < iω0τkq
∗(s), xt > +q̄∗(0)f(0, xt(θ)

def
= iω0τkz(t) + q̄∗(0)f0(z(t), z̄(t)). (34)

That is
ż(t) = iω0τkz + g(z, z̄), (35)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

(36)
Hence, we have

g(z, z̄) = q̄∗(0)f0(z, z̄)

= f(0, xt) = D̄τk(1, α
∗, β∗)

(f1(0, xt), f2(0, xt), f3(0, xt))
T , (37)

where

f1(0, xt) = τk[l1x
2
1t(0) + l2x1t(0)x2(0)

+l3x
2
3t(−1) + l4x1t(0)x3t(−1)

+ l5x
3
1t(0) + l6x

3
3t(−1)

+l7x
2
1t(0)x2t(0) + l8x1t(0)x

2
3t(−1)

+h.o.t.],

f2(0, xt) = τk[s1x
2
1t(0) + s2x1(0)x2t(0)

+s3x
2
3t(−1) + s4x1t(0)x3t(−1)

+ s5tx
3
1t(0) + s6x

3
3t(−1)
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+ s7x
2
1t(0)x2t(0) + s8x1t(0)x

2
3t(−1)

+ h.o.t.],

f3(0, xt) = τk[v1x
2
1t(0) + v2x1t(0)x2t(0)

+ v3x
2
3t(−1) + v4x1t(0)x3t(−1)

+ v5x
3
1t(0) + v6x

3
3t(−1)

+ v7x
2
1t(0)x2t(0) + v8x1t(0)x

2
3t(−1)

+ h.o.t.].

Noticing xt(θ) = (x1t(θ), x2t(θ), x3t(θ))
T =

W (t, θ) + zq(θ) + z̄q̄(θ) and q(θ) = (1, γ)T eiω0θ,
we have

x1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄

+W
(1)
02 (0)

z̄2

2
+ · · · ,

x2t(0) = γz + γ̄z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄

+W
(2)
02 (0)

z̄2

2
+ · · · ,

x3t(−1) = βe−iω02τkz + β̄eiω0τk z̄

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄

+W
(1)
02 (−1)

z̄2

2
+ · · · .

From (36) and (37), we have

g(z, z̄) = q̄∗(0)f0(z, z̄)

= D̄τk
[

f1(0, xt) + ᾱ∗f2(0, xt) + β̄∗f3(0, xt)
]

= D̄τk(K11 + ᾱ∗K12 + β̄∗K13)z
2

+2D̄τk(K21 + ᾱ∗K22 + β̄∗K23)zz̄

+D̄τk(K31 + ᾱ∗K32 + β̄∗K33)z̄
2

+D̄τk(K41 + ᾱ∗K42 + β̄∗K43)z
2z̄ + h.o.t.,

whereKij(i, j = 1, 2, 3) are defined by Appendix C.
Then we obtain

g20 = 2D̄τk(K11 + ᾱ∗K12 + β̄∗K13),

g11 = 2D̄τk(K21 + ᾱ∗K22 + β̄∗K23),

g02 = 2D̄τk(K31 + ᾱ∗K32 + β̄∗K33),

g21 = 2D̄τk(K31 + ᾱ∗K32 + β̄∗K33)z̄
2

+D̄τ0(K41 + ᾱ∗K42 + β̄∗K43).

ForunknownW (1)
20 (0),W

(2)
20 (0),W

(3)
20 (−1),W

(1)
11 (0),

W
(3)
11 (−1),W

(2)
11 (0) in g21, we still need to compute

them. From (24) and (35), we have

W
′

=

{

AW − 2Re{q̄∗(0)fq(θ)}, −τ0
1 ≤ θ < 0,

AW − 2Re{q̄∗(0)fq(θ)} + f, θ = 0.

def
= AW+H(z, z̄, θ), (38)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · · .

(39)
Comparing the coefficients, we obtain

(A− 2iω0)W20 = −H20(θ), (40)

AW11(θ) = −H11(θ). (41)

We know that forθ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (42)

Comparing the coefficients of (39) with (42) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ), (43)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (44)

From (3.23),(3.26) and the definition ofA , we get

Ẇ20(θ) = 2iω0τkW20(θ)+ g20q(θ)+ ḡ02q̄(θ). (45)

Noting thatq(θ) = q(0)eiω0τkθ, we have

W20(θ) =
ig20
ω0τk

q(0)eiω0τkθ +

iḡ02
3ω0τk

q̄(0)e−iω0τkθ + E1e
2iω0τkθ, (46)

whereE1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 )T is a constant vector.

Similarly, from (41), (44) and the definition ofA, we
have

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ), (47)

W11(θ) = − ig11
ω0τk

q(0)eiω0τkθ

+
iḡ11
ω0τk

q̄(0)e−iω0τkθ + E2. (48)

whereE2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 )T is a constant vector.

In what follows, we shall seek appropriateE1,E2

in (46), (48), respectively. It follows from the defini-
tion ofA and (43), (44) that

∫ 0

−1
dη(θ)W20(θ) = 2iω0τkW20(0) −H20(0) (49)

and
∫ 0

−1
dη(θ)W11(θ) = −H11(0), (50)
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whereη(θ) = η(0, θ).
From (40), we have

H20(0) = −g20q(0) − ḡ02q̄(0)

+2τk(K11,K12,K13)
T , (51)

From (41), we have

H11(0) = −g11q(0) − ḡ11(0)q̄(0)

+2τk(K21,K22,K23)
T , (52)

Noting that

(

iω0τkI −
∫ 0

−1
eiω0τkθdη(θ)

)

q(0) = 0, (53)

(

−iω0τkI −
∫ 0

−1
e−iω0τkθdη(θ)

)

q̄(0) = 0 (54)

and substituting (46) and (51) into (49), we have

(

2iω0τkI −
∫ 0

−1
e2iω0τkθdη(θ)

)

E1

= 2τk(K11,K12,K13)
T . (55)

That is
(

2iω0τkI − τkA− τkBe
−2iω0τk

)

E1

= 2τk(K11,K12,K13)
T , (56)

then






2iω0 −m1 −m2 −m3e
−2iω0τk

−n3e
−2iω0τk 2iω0 − n1 −n2

−p1 −p3e
−2iω0τk 2iω0 − p2















E
(1)
1

E
(2)
1

E
(3)
1









= 2







K11

K12

K13






. (57)

Hence

E
(1)
1 =

∆11

∆1
, E

(2)
1 =

∆12

∆1
, E

(3)
1 =

∆13

∆1
,

where

∆1 = det






2iω0 −m1 −m2 −m3e
−2iω0τk

−n3e
−2iω0τk 2iω0 − n1 −n2

−p1 −p3e
−2iω0τk 2iω0 − p2






,

∆11 = 2det






K11 −m2 −m3e
−2iω0τk

K12 2iω0 − n1 −n2

K13 −p3e
−2iω0τk 2iω0 − p2






,

∆12 = 2det






2iω0 −m1 K11 −m3e
−2iω0τk

−n3e
−2iω0τk K12 −n2

−p1 K13 2iω0 − p2






,

∆13 = 2det






2iω0 −m1 −m2 K11

−n3e
−2iω0τk 2iω0 − n1 K12

−p1 −p3e
−2iω0τk K13






.

Similarly, substituting (47) and (52) into (50), we have
(∫ 0

−1
dη(θ)

)

E2 = (K21,K22,K23)
T . (58)

Then,

(A+B)E2 = (−K21,−K22,−K23)
T . (59)

That is






m1 m2 m3

n3 n1 n2

p1 p3 p2















E
(1)
2

E
(2)
2

E
(3)
2









=







−K21

−K22

−K23






.

(60)
Hence

E
(1)
2 =

∆21

∆2
, E

(2)
2 =

∆22

∆2
, E

(3)
2 =

∆23

∆2
,

where

∆2 = det







m1 m2 m3

n3 n1 n2

p1 p3 p2






,

∆21 = det







−K21 m2 m3

−K22 n1 n2

−K23 p3 p2






,

∆22 = det







m1 −K21 m3

n3 −K22 n2

p1 −K23 p2






,

∆23 = det







m1 m2 −K21

n3 n1 −K22

p1 p3 −K23






.

From (46),(48), we can calculateg21 and derive the
following values:

c1(0) =
i

2ω0τk

(

g20g11 − 2|g11|2 −
|g02|2

3

)

+
g21
2
,

µ2 = − Re{c1(0)}
Re{λ′(τk)}

,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)} + µ2Im{λ′

(τk)}
ω0τk

.
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These formulaes give a description of the Hopf bifur-
cation periodic solutions of (2) atτ = τk on the center
manifold. From the discussion above, we have the fol-
lowing result:

Theorem 7 The periodic solution is supercritical
(subcritical) ifµ2 > 0 (µ2 < 0); The bifurcating peri-
odic solutions are orbitally asymptotically stable with
asymptotical phase (unstable) ifβ2 < 0 (β2 > 0);
The periods of the bifurcating periodic solutions in-
crease (decrease) ifT2 > 0 (T2 < 0).

4 Numerical Examples

We have derived analytical understanding of possible
dynamics of a cyclic predator-prey system with Sig-
moidal type functional response to some extent. In
this section, we now perform some numerical simula-
tions work(using MATLAB dde23) to verify the an-
alytical predictions obtained in the previous section.
As an example, we consider the following special case
of system (2) with the parametersr1 = 0.5, r2 =
0.4, r3 = 0.6, a1 = 0.6, a2 = 0.7, a3 = 0.2, b1 =
0.5, b2 = 0.6, b3 = 0.3, c1 = 0.3, c2 = 0.4, c3 =
0.2, d3 = 0.6, d2 = 0.5, d3 = 0.7, k1 = 14

3 , k2 =

4.8, k3 = 24
35 , then system (2) becomes























































































ẋ1(t) = x1(t) [0.5 − 0.6x1(t)

− 0.6x1(t)x2(t)
0.3+0.5x1(t)+x2

1
(t)

+
0.48x2

3
(t−τ)

0.3+0.5x3(t−τ)+x2

3
(t−τ)

]

,

ẋ2(t) = x2(t) [0.4 − 0.7x2(t)

− 0.5x2(t)x3(t)
0.4+0.6x2(t)+x2

2
(t)

+
0.28x2

1
(t−τ)

0.4+0.6x1(t−τ)+x2

1
(t−τ)

]

,

ẋ3(t) = x3(t) [0.6 − 0.2x3(t)

− 0.7x1(t)x3(t)
0.2+0.3x3(t)+x2

3
(t)

+
0.24x2

2
(t−τ)

0.2+0.5x2(t−τ)+x2

2
(t−τ)

]

,

(61)

which has a positive equilibrium
E∗(1.0082, 0.4395, 0.9091). By some compli-
cated computation by means of Matlab 7.0, we get
ω0 ≈ 2.0653, τ0 ≈ 4.5, λ

′

(τ0) ≈ 1.2247 − 2.2556i.
Thus we getc1(0) ≈ −1.6138 − 9.1355i, µ2 ≈
1.3177, β2 ≈ −3.2276, T2 ≈ 0.5625. We obtain the
conditions stated in Theorem 4 are fulfilled. Fur-
thermore, it follows thatµ2 > 0 andβ2 < 0. Thus,
the positive equilibriumE∗(1.0082, 0.4395, 0.9091)
is stable whenτ < τ0 which is illustrated by the
computer simulations (see Figs.1-7). Whenτ passes
through the critical valueτ0, the positive equilibrium
E∗(1.0082, 0.4395, 0.9091) loses its stability and a
Hopf bifurcation occurs, i.e., a family of periodic

solutions bifurcate from the positive equilibrium
E∗(1.0082, 0.4395, 0.9091). Since µ2 > 0 and
β2 < 0, the direction of the Hopf bifurcation is
τ > τ0, and these bifurcating periodic solutions from
E∗(1.0082, 0.4395, 0.9091) at τ0 are stable, which
aredepicted in Figs.8-14.
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Figs.1-7. Trajectories graphs of system (61) with
τ = 4.3 < τ0 ≈ 4.5. The positive equilibrium
E∗(1.0082, 0.4395, 0.9091) is asymptotically stable.
The initial value is (1,0.5,0.6).
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Figs.8-14. Trajectories graphs of system (61) with
τ = 5 > τ0 ≈ 4.5. Hopf bifurcation occurs from
the positive equilibriumE∗(1.0082, 0.4395, 0.9091).
The initial value is (1,0.5,0.6).

5 Conclusions

In this paper, we have analyzed a cyclic predator-
prey system with Sigmoidal type functional response.
We studied the effect of time delays on its dynamics.
Firstly, we obtained the sufficient conditions to en-
sure local stability of the equilibriumE∗(x

∗

1, x
∗

2, x
∗

3).
Taking the delay as parameter, we investigate the ex-
istence of local Hopf bifurcation. Applying normal
form theory and center manifold reduction, the stabil-
ity and direction of the Hopf bifurcation induced by
time delay are determined.
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Appendix A The expressions ofmi, ni, pi(i, j =
1, 2, 3) are as follows:

m1 = x∗1

[

b1d1x
∗

1x
∗

2

(c1 + 2b1x∗1 + 4x∗21 )2

− d1x
∗

2

c1 + b1x
∗

1 + x∗21
− a1

]

,

m2 = − d1x
∗2
1

c1 + b1x∗1 + x∗21
,

m3 = x∗1

[

2k3d3

c3 + b3x∗3 + x∗23

− k3b3d3x
∗

3

(c3 + 2b3x∗3 + 4x∗23 )2

]

,

n1 = − d2x
∗2
2

c2 + b2x∗2 + x∗22
,

n2 = x∗2

[

b2d2x
∗

1x
∗

2

(c2 + 2b2x
∗

1 + 4x∗22 )2

− d2x
∗

1

c2 + b2x∗2 + x∗21
− a2

]

,

n3 = x∗2

[

2k1d1

c1 + b1x
∗

1 + x∗21

− k1b1d1x
∗

1

(c1 + 2b1x∗1 + 4x∗21 )2

]

,

p1 = x∗1

[

b1d1x
∗

1x
∗

3

(c1 + 2b1x∗1 + 4x∗21 )2

− d1x
∗

3

c1 + b1x
∗

1 + x∗21
− a3

]

,

p2 = − d1x
∗2
1

c1 + b1x∗1 + x∗21
,

p3 = x∗3

[

2k2d2

c2 + b2x
∗

2 + x∗22

− k2b2d2x
∗

2

(c2 + 2b2x∗2 + 4x∗22 )2

]

.

Appendix B The expressions ofli, si, vi(i, j =
1, 2, 3) are as follows:

l1 =
2b1x

∗

1(b1 + 4x∗1)

(c1 + 2b1x∗1 + 4x∗21 )3
− d1x

∗

2

c1 + b1x∗1 + x∗21

− d1x
∗

1x
∗

2

c1 + 2b1x∗1 + 4x∗21
− a1, l2 = −2d1x

∗

1,

l3 = x∗1

[

k3d3

c3 + b3x∗3 + x∗23
+

2b3k3d3x
∗2
3 (b3 + 4x∗3)

(c3 + 2b3x∗3 + 4x∗23 )3

− 2b3k3d3

(c1 + 2b1x
∗

1 + 4x∗21 )2

]

,

l4 =
k3d3

c3 + b3x∗3 + x∗23
− 2b3k3d3x

∗2
3

(c3 + 2b3x∗1 + 4x∗23 )3
,

l5 = − 8b1x
∗2
1 (b1 + 4x∗21

(c1 + 2b1x∗1 + 4x∗21 )4
,

l6 = −8b3k3d3x
∗

1x
∗2
3 (b3 + 4x∗23

(c1 + 2b1x
∗

1 + 4x∗21 )4
,

l7 = −d1, l8 =
k3d3

c3 + b3x∗3 + x∗23
,

s1 =
2b2x

∗

2(b2 + 4x∗2)

(c2 + 2b21x∗2 + 4x∗22 )3
− d2x

∗

3

c2 + b2x∗2 + x∗22

− d2x
∗

2x
∗

3

c2 + 2b2x∗2 + 4x∗22
− a2, s2 = −2d2x

∗

2,

s3 = x∗2

[

k1d1

c1 + b1x
∗

1 + x∗21
+

2b1k1d1x
∗2
1 (b1 + 4x∗1)

(c1 + 2b1x
∗

1 + 4x∗21 )3

− 2b1k1d1

(c1 + 2b1x∗1 + 4x∗21 )2

]

,

s4 =
k1d1

c1 + b1x
∗

1 + x∗21
− 2b1k1d1x

∗2
1

(c1 + 2b1x
∗

1 + 4x∗21 )3
,

s5 = − 8b2x
∗2
2 (b2 + 4x∗22

(c2 + 2b2x∗2 + 4x∗22 )4
,

s6 = −8b1k1d1x
∗

3x
∗2
1 (b1 + 4x∗23

(c3 + 2b3x∗3 + 4x∗23 )4
,

s7 = −d3, s8 =
k1d1

c1 + b1x∗1 + x∗21
,

v1 =
2b3x

∗

3(b3 + 4x∗3)

(c3 + 2b3x
∗

3 + 4x∗23 )3
− d3x

∗

1

c3 + b3x
∗

3 + x∗23

− d3x
∗

3x
∗

1

c3 + 2b31x∗3 + 4x∗23
− a3, v2 = −2d3x

∗

3,

v3 = x∗3

[

k2d2

c2 + b2x∗2 + x∗22
+

2b2k2d2x
∗2
2 (b2 + 4x∗2)

(c2 + 2b2x23∗ + 4x∗22 )3

− 2b2k2d3

(c3 + 2b3x
∗

3 + 4x∗23 )2

]

,

v4 =
k2d2

c2 + b2x∗2 + x∗22
− 2b2k2d2x

∗2
2

(c2 + 2b2x∗3 + 4x∗22 )3
,

v5 = − 8b3x
∗2
3 (b3 + 4x∗23

(c3 + 2b3x∗3 + 4x∗23 )4
,

v6 = −8b2k2d2x
∗

3x
∗2
2 (b2 + 4x∗22

(c3 + 2b3x
∗

3 + 4x∗23 )4
,

v7 = −d3, v8 =
k2d2

c2 + b2x∗2 + x∗22
.

Appendix C The expressions ofKij(i, j = 1, 2, 3)
are as follows:

K11 = l1 + l2α+ l3β
2e−2iω0τk + l4βe

−iω0τk ,

K12 = s1 + s2α+ s3β
2e−2iω0τk + s4βe

−iω0τk ,

K13 = v1 + v2α+ v3β
2e−2iω0τk + v4βe

−iω0τk ,

K21 = 2(l1 + l2Re{α} + l3|β| + l4Re{βe−iω0τk}),
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K22 = 2(s1 + s2Re{α} + s3|β| + s4Re{βe−iω0τk}),
K23 = 2(v1 + v2Re{α} + v3|β| + v4Re{βe−iω0τk}),
K31 = l1 + l2ᾱ+ l3β̄

2e2iω0τk + l4β̄e
iω0τk ,

K32 = s1 + s2ᾱ+ s3β̄
2e2iω0τk + s4β̄e

iω0τk ,

K33 = v1 + v2ᾱ+ v3β̄
2e2iω0τk + v4β̄e

iω0τk ,

K41 = l1(W
(1)
20 (0) + 2W

(1)
11 (0)) + l2(

1

2
ᾱW

(2)
20 (0)

+
1

2
W

(2)
20 (0) + αW

(1)
11 (0) +W

(2)
11 (0))

+l3(W
(3)
20 (−1)eiω0τkRe{β} + 2βW

(3)
11 (−1))

+l4(
1

2
β̄W

(1)
20 (0)eiω0τk +

1

2
W

(3)
20 (−1)

+βW
(1)
11 (0)e−iω0τk +W

(3)
11 (−1))

+3l5 + 3l6β
2β̄e−iω0τk + l7(2α + ᾱ)

+l8(β
2e−2iω0τk + 2|β|2),

K42 = s1(W
(1)
20 (0) + 2W

(1)
11 (0))

+s2(
1

2
ᾱW

(2)
20 (0) +

1

2
W

(2)
20 (0)

+αW
(1)
11 (0) +W

(2)
11 (0))

+s3(W
(3)
20 (−1)eiω0τkRe{β} + 2βW

(3)
11 (−1))

+s4(
1

2
β̄W

(1)
20 (0)eiω0τ0 +

1

2
W

(3)
20 (−1)

+βW
(1)
11 (0)e−iω0τk +W

(3)
11 (−1))

+3s5 + 3s6β
2β̄e−iω0τk + s7(2α+ ᾱ)

+s8(β
2e−2iω0τk + 2|β|2),

K43 = v1(W
(1)
20 (0) + 2W

(1)
11 (0))

+v2(
1

2
ᾱW

(2)
20 (0) +

1

2
W

(2)
20 (0)

+αW
(1)
11 (0) +W

(2)
11 (0))

+v3(W
(3)
20 (−1)eiω0τ0Re{β} + 2βW

(3)
11 (−1))

+v4(
1

2
β̄W

(1)
20 (0)eiω0τk +

1

2
W

(3)
20 (−1)

+βW
(1)
11 (0)e−iω0τk +W

(3)
11 (−1)) + 3v5

+3v6β
2β̄e−iω0τk + v7(2α + ᾱ)

+v8(β
2e−2iω0τk + 2|β|2).
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