

Abstract: With the rapid development of computer technology, artificial intelligence is emerging. Hex chess became
popular because of its simple rules, but it also brought complex algorithms. Although the simple Monte Carlo tree
search can be applied to the Hex game system, the search process is slow due to a large number of calculations. This
paper proposes an improved Monte Carlo tree search algorithm based on the Upper Confidence Bound(UCB) formula
to optimize the Hex game system and reduce the randomness of the Monte Carlo algorithm. To improve the efficiency
of the search algorithm in the Hex game system, an effective system is adopted. Compared with the improved
algorithm, not only the searching time of the Monte Carlo algorithm tree is improved, but also the performance of the
algorithm is improved. At the same time, the system uses QT Creator to realize graphic interaction and complete the
design of each module.

Keywords: Hex chess; Monte Carlo algorithm; UCB formula; strategy system.
Received: September 10, 2019. Revised: August 21, 2022. Accepted: September 11, 2022. Published: September 21, 2022.

1. Introduction
With the rapid development of computer technology and the

improvement of hardware computing speed, people have a
strong interest in computer chess [1], so the board game is
gradually known to everyone. Since the 1950s, many famous
scholars in the world began to get involved in the field of the
game. John von Neumann, the father of the computer, proposed
the most famous minimax theorem for game tree search [2]; The
founder of artificial intelligence, John McCrthy, proposed the
concept of "artificial intelligence"; A.l. Samuei was defeated by
his program. Later, "Deep Blue", "Super Deep Blue", "Hand in
Hand", "Go King" and the defeat of the world Go champion
"AlphaGo" program represents the success of today's board
game technology [3].

 The core technology of computer games is to obtain the best
result of the game within a limited time [4]. When the evaluation
method is determined, there is little room for the optimization of
valuation. Therefore, search algorithm has become the main
research content of board games in the development of games
[5]. The fundamental reason why the game can develop so
quickly is that scholars are concerned about how to find a more
efficient search algorithm. For the research of the Monte Carlo
algorithm in recent years, the research has changed from the
Monte Carlo simulation decision tree to the Monte Carlo tree
search. In this paper, the UCB formula and Monte Carlo tree
search are applied to the Hex game system to improve the
performance and search speed of the algorithm [6]. At the same
time, the algorithm adds some winning skills, such as death
chess, hunting chess, and so on. The whole Hex game system
mainly includes the combat platform and game design. The
front-end display interface is combined with the back-end game

progression. Among them, game design is the core of the whole
game system. The specific design is shown in Figure 1.

Figure 1. The design system of Game

The rest of this paper is organized as follows. We introduce

the background in Section 2. Then, the UCT algorithm formed
by the UCB formula combined with Monte Carlo algorithm
random algorithm is applied to the hex chess game system in
Section 3. In Section 4, we introduce the system of the proposed
algorithm. In Section 5, the experiments are considered. The
main conclusions of this paper are given in Section 6. Finally,
section 7 is the future work.

Research on Hexchess Game System based Artificial Intelligence
 LINGLING WANG, YIYANG WEI, FENG LI*

School of management science and Engineering, Anhui University of Finance and Economics
Bengbu 233000, CHINA

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1643 Volume 19, 2022

2. Background
2.1 Hex
Hex, also known as Six Squares, first appeared in an article

published by The Danish newspaper Politicen, then known as
Ploygon [7]. It was independently invented by John Nasi again
in 1948, and fans immediately called it Nasho. The Parker
Brothers later released a version called Hex in 1952, after which
the name stuck. Because Hex is popular in recent years,
compared with chess, Go, gobang, and other ancient world
chess, scholars have less research on it, so Hex has greater
research potential and is more worthy of an in-depth study by
scholars.

The Hex board has a diamond shape and is usually composed
of 10×10, 11×11, and 14×14 hexagonal cells, while in
domestic Hex games, the board is composed of 11×11 boards.
The entire board has four boundaries, symmetric boundaries of
the same color. In addition, there are two additional functions,
restart and repent. Reopening is an essential feature of a match
so that the match can be restarted at the end. The purpose of
repentance is to prevent one side from making mistakes or
breaking rules when playing chess in Figure 2.

Figure 2. The board and pieces in Hex's chess game

2.2 The rules of the game
Hex is a relatively simple game. (1) Before the game starts,

both sides choose the corresponding color of the chess pieces,
corresponding to the boundary. After each side holds a colored
chess piece, carries on the successive hand selection. (2) After
the hand selection is complete, the game begins, the first hand
(the player who plays chess first) and the second hand (the
player who plays chess last) will take turns throwing the pieces
on the board. Only one piece can be played at a time. Each time,
take up space and put a piece of your color in the space. (3) The
last time a game is played, the side whose color is connected to
the line is the winner [8]. As shown in Figure 3, in the
chessboard, red is connected first and red wins. The red piece
goes first, so when the eleventh step piece falls, the piece that
represents its color is connected to the boundary.

Figure 3. Red victory

3. Algorithm design
3.1 UCT algorithm
The computer game algorithm is mainly divided into two

parts [9], the first part is game control, and the second part is
chess game evaluation. Game control can be divided into three
parts: game tree search, game tree expansion, and move
generation. In the process of the game, the core of the chess
layout lies the searching tree and the game evaluation.
Traditional search algorithms Including the minimax algorithm
in the most popular exhaustive search algorithm, alpha-beta
pruning algorithm in the clipping search algorithm, hash table
heuristic algorithm in the heuristic algorithm, etc. These
algorithms all have a common feature. When searching to a
certain depth, they evaluate the value of each branch to obtain
the branch with the greatest value.

The traditional Monte Carlo algorithm tree search algorithm
is a kind of tree search algorithm, called MCTS. It is itself a
heuristic search algorithm for some decision-making processes
and is more efficient in the process of large search space [10].
From a global perspective, the main goal of the Monte Carlo
algorithm tree search is to select the best next step given a game
state [11]. Alpha Go, as it is now known, uses Monte Carlo
algorithm tree search. Every time Alpha Go makes a move, it
runs thousands of these simulations using Monte Carlo
algorithm algorithms to determine which move has the best
chance of winning. But the actual implementation, there are still
a lot of difficulties.

UCT algorithm is a popular search algorithm, it is based on
the Monte Carlo algorithm. The Monte Carlo algorithm is
combined with the UCB algorithm to obtain the optimal node by
simulating a large number of nodes [12]. In the search process,
the search depth for different branches can be different, so the
search efficiency can be effectively improved [13]. The in-tree
selection calculation of the UCT algorithm is mainly
accomplished by the following formula:

where N is the number of visits of all nodes, and the value of C is
a constant, which can be arbitrarily chosen, but the best value of
C is generally obtained through the experimental process;

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1644 Volume 19, 2022

represents the average value of all simulation results with the
current node as the root node, reflecting the expectation of the
return value that can be provided by the node observed
according to the current simulation results; is the number of
times the current node was visited, which is the number of times
it was selected in the search tree.

Figure 4. Search tree search process

The realization process of the UCT algorithm is mainly

completed by four steps: node selection, expansion, simulation,
and backpropagation. As follows:

(1) Path selection. Starting from the root node, each child
node that can be selected is recursively selected and the Value
of the node is calculated. The node with the largest value is
selected as the beginning of the next recursive selection, until
the leaf node. The selection process is shown in the orange
arrow in Figure 4.

(2) Node expansion. The optimal node selected in the
previous step is added to the search tree as a new leaf node with
appropriate initial values for its V and N.

(3) simulation. An appropriate simulation strategy should be
able to accommodate all of the moves. So according to the new
game tree, the Monte Carlo algorithm is used to choose the next
action uniformly and randomly. Then all the leaf nodes are
evaluated, and the evaluation strategy can be simply set as 1 if
your side wins, 0 if your opponent wins. Through multiple
simulations, a better Value can be obtained.

(4) backtracking. As can be seen from the backtracking
section in Figure 4, when leaf nodes obtain new values and
access times through simulation, the UCT algorithm updates the
values of all V and access T on the search path through result
return. The calculation formula is:

That is, the number of visits N of the parent node is the sum of

the number of visits T of all leaf nodes, V is the weighted
average of all leaf nodes V under the current node, and the
weight is the ratio of the number of visits of child nodes [14].
The results are then sent back, starting at the leaf node and
updating the network along the search path to the root node. See
Figure 4.

When the recursion is complete, it means that the next piece
is selected and placed in the cell. At this point, the UCT search
process is in a new state, all the values in the previous recursive

process are newly initialized, and the UCT search process
restarts from the first expansion step.

When the recursion is complete, it means that the next piece
is selected and placed in the cell. At this point, the UCT search
process is in a new state, all the values in the previous recursive
process are newly initialized, and the UCT search process
restarts from the first expansion step.

3.2 Special type system
Compared with the traditional minimax algorithm and Monte

Carlo algorithm, the UCT algorithm is improved in the search
algorithm [15]. For some special moves that often appear in
chess games, we can directly respond to the situation. The
Special type system is mainly aimed at some Special chess types.
When these chess types appear, it can give priority to them
directly and give corresponding Special moves according to
their particularity, which can greatly reduce the algorithm
search time. In general, the Special type system mainly
considers the death type, hunting type, and must-win type [16].

（1）Death mode. At some point in the game, there will be a
situation where the current local move will not work for any
player. This means that neither side can influence the outcome
of the game. That is to say, no matter which side places the
pieces in these positions, it does not affect the outcome of the
game. See Figure 5.

Figure 5. Death pattern

（2）Hunting chess. When the following situation occurs in a

chess game, take red as an example. When the blue moves in
one of the two marked positions on the chart, the red moves
immediately to the other position to keep the surrounding pieces
connected. The red side doesn't have to play in either of these
positions, it can choose any position, and the blue side has to
play in one of these positions before it connects. This can be
interpreted as one side being closely watched by the other when
a hunting position is formed in Figure 6.

Figure 6. Hunting pattern

（3）Win pattern. In the course of the game, both sides of the

game must look for opportunities to deploy the board shown
below, as shown below. as shown in the picture below. When
one side deploys five similar pieces on a path, the other side is
bound to lose. It relates to what we were talking about in the
hunting game, where wherever the blue side is playing, the red
side is going to play on the other side to ensure connectivity.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1645 Volume 19, 2022

However, when the successive pieces are deployed, Red
Convenience is sure to win. in Figure 7.

Figure 7. Win pattern

The above three types of chess can be fundamentally

avoided. When one player finishes the game, the other should
watch closely to prevent it from forming the above three
situations. Conversely, it gives us a way to improve our winning
percentage. For example, when an arresting move occurs, when
we fill in any marker position, if the opponent does not fill in
another position, the piece is connected. At this point, we can
break its hunting pattern and change it from passive to active.
Not all Hex programs take into account particular shapes and
offer solutions. In addition, the first step is usually placed in the
middle of the board, and experiments can prove that the side that
places the first piece in the middle is easy to win.

4. System Implementation

4.1 The realization of everyone versus everyone
The game player's control of the chess pieces requires the

occurrence of mouse click events. Clicking on a free call with
the mouse to move a piece requires the piece and the board to
communicate information directly and interact. The signals and
slots mechanism in QT Creator solves this problem effectively.
The connect（） function is required to transport signals and
slots. Semaphores and slots are defined as signal（） and slot
（）, respectively. Each time a key is defined, a connect（） is
executed so that the clock signal triggers the defined slot
function to pass the parameters.

Signal and slot declaration:
void on_Click(int row,int col)；
void clickEmptyPoint(int row,int col)；

Send a signal:
QObject:connect(ui.canvas,SIGNAL(clickEmptyPoi

nt(int,int)),
this,SLOT(on_Click(int,int)))；

Receive a signal:
void app:on_Click(int row,int col)
{PlayerSetPiece(row,col);}

4.2 Realization of man-machine war
（1） Defined parameters: In terms of the preservation of

checkerboard data, we define the checkerboard as a
two-dimensional array of chess [11]. Everything in the array is
0; Because 0 means the current board is empty. Similarly, when
red plays, red is represented by an array of zeros; Blue is
represented as a 1 when blue plays. Specifically, the piece is
defined as a class, with Nexpnanded-access times of the
node; Children indicates the child node of the node. Index

Indicates basic parameters such as the index value of the current
node.

（2）Judge if it can play chess now: Judge whether the
current is the most advantageous: When the player drops a
piece, the whole board is searched as follows: First, the whole
board is searched for blank pieces to find the squares that can be
played. Second, after finding the position, through a random
function to obtain a position, and then check whether the current
position can play chess. If yes, select, expand, simulate, and
traceback from the current node. If not, continue to call a
random function to find another location.

（3）Judge if the current is the most advantageous:Computer
control of chess pieces mainly depends on the dynamic
establishment of game tree, with the help of UCT search
algorithm optimization completed. The following functions are
mainly used: selection function （）, expansion function （）,
simulation（） and back（）.

void selection(Node *& current, disjointset::IDisjointSet
 *uf);

void expand (Node *& current, disjointset::IDisjointSet
 *uf);

color::Color simulation(Node *& current,
 disjointset::IDisjointSet *uf);

void back(Node *& current, disjointset::IDisjointSet *uf,
 const color:: color winner);

The entire search process is mainly implemented through
these four functions. If the current node has the highest chance
of evaluation, it increments Win and Total and returns row
arguments. Notice that at the end of one search, the parameter is
reinitialized to zero on the next search.

5. Experiments
5.1 Experimental scheme
Nowadays, there are more and more chess algorithms. The

application of the UCT algorithm in the Hex chess game is
verified by comparing it with the Hex chess game system which
adopts the traditional Monte Carlo algorithm as the search
algorithm. To obtain clear experimental results, the experiment
times were set as 1, 10, 50, and 100 times respectively, and then
the experiment was carried out in sequence. In addition, the
experiment compares the winning rate of the first and last hand
of the UCT algorithm in chess. In this experiment, the
coefficient C in the UCT formula is 2.

5.2 Experimental results
As shown in Table 1, when the system uses the UCT

algorithm for firsthand, when the number of experiments is 1,
10, and 100, the success rate is 100%. When the number of trials
was 100, the success rate was 98 percent. The results show that
the UCT algorithm is superior to the traditional Monte Carlo
algorithm when the system uses the UCT algorithm and plays
chess first.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1646 Volume 19, 2022

Table 1. Experimental results of UCT algorithm(first)
Number UCT algorithm Monte Carlo

algorithm
Odds/%

1 1 0 100
10 10 0 100
50 49 1 98

100 100 0 100

As shown in Table 2, when the system uses the UCT

algorithm in the last chess game, the success rate is 100% when
the number of experiments is 1, 10, and 50. When the number of
trials was 100, the success rate was 99 percent. The results show
that the winning rate is significantly higher with the UCT
algorithm and the last set than with the Monte Carlo
algorithm. Combined with the experimental results in Table 1,
the UCT algorithm is significantly superior to the traditional
Monte Carlo algorithm in both primary and secondary chess.

Table 2. Experimental results of UCT algorithm(last)

Number UCT
algorithm

Monte Carlo
algorithm

Odds/%

1 1 0 100
10 10 0 100
50 50 0 100

100 99 1 99

As shown in Table 3, both sides of the game use the UCT

algorithm. When the number of tests is 1,10,50 and 100
respectively, the first-hand chess win rate fluctuates at
60%. Therefore, for the UCT algorithm game system, first-hand
chess is easier to win.

Table 3. Win percentage comparison between first hand and last
hand

Number First Last First odds/%
1 1 0 100

10 6 4 60
50 29 21 58

100 61 39 61

Experimental data show that the UCT algorithm has a higher

winning rate than the traditional Monte Carlo algorithm when
the parameter of the UCT algorithm is fixed c and the first hand
and the last hand are arbitrary. Compared with the traditional
Monte Carlo algorithm, the UCT algorithm is proved to be
relatively accurate and fast, and better than the original Monte
Carlo algorithm.

6. Conclusion
This paper mainly introduces the research and design of the

Hex game system. Based on the traditional Monte Carlo search
algorithm, a new UCT algorithm is proposed, which can control
the search depth under the controllable search time or search
times, and improve the search speed of the game tree

fundamentally. In addition, a strategy system is added to the
UCT algorithm to further improve the search time. At the same
time, the UCT algorithm can promote the development of the
Hex search algorithm and promote the further development of
computer games. It even is applied to other types of chess, such
as checkers, Ehrenstein, etc.

In future work, we will continue to optimize the UCT search
algorithm to further improve its search speed and time. In the
future, the improvement of the UCT algorithm mainly focuses
on the improvement of the node expansion method. For
example, the simulation times of fixed nodes are compared with
a certain factor to judge whether the nodes are expanded or
not. In addition, UCT algorithms can be compared not only to
traditional Monte Carlo trees but also to players and other
search algorithms.

CONFLICT OF INTEREST
The authors declare that they have no competing financial

interests or personal relationships that could have appeared to
influence the work reported in this paper.

AUTHOR CONTRIBUTIONS

Lingling Wang and Yiyang Wei designed the experiments,
implemented the models, performed the experiments, analyzed
the experiment results, and wrote the paper; Feng Li guided,
revised, and fine-tuned the paper.

ACKNOWLEDGMENT
This work was supported in part by the Natural Science

Foundation of the Higher Education Institutions of Anhui
Province under Grant No. KJ2020A0011, Innovation Support
Program for Returned Overseas Students in Anhui Province
under Grant No. 2021LCX032. the Science Research Project of
Anhui University of Finance and Economics under grant No.
ACKYC20085, the Research Project of Anhui Provincial
Education Department under Grant No. 2020jyxm0037, No.
2020zyrc020, and No. cxjhjyzda 1803.

References

[1] Cazenave, Tristan, Mark HM Winands, and Abdallah
Saffidine, eds. Computer games. Springer International
Publishing, 2018.

[2] S. Ben-David and E. Blais, A New Minimax Theorem for
Randomized Algorithms (Extended Abstract), 2020 IEEE
61st Annual Symposium on Foundations of Computer
Science (FOCS), 2020, pp. 403-411.

 [3] Zhang, D., Lindholm, G., & Ratnaweera, H. (2018). Use
long short-term memory to enhance Internet of Things for
combined sewer overflow monitoring. Journal of
Hydrology, 556, 409-418.

[4] Zhang, R., Jiang, X., & Li, R. (2017). Decomposition based
multiobjective spectrum allocation algorithm for cognitive
vehicular networks. Paper presented at the 17th IEEE

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1647 Volume 19, 2022

International Conference on Communication Technology,
ICCT 2017, October 27, 2017.

[5] G. Yıldızdan and Ö. K. Baykan, A Novel Artificial Jellyfish
Search Algorithm Improved with Detailed Local Search
Strategy, 2021 6th International Conference on Computer
Science and Engineering (UBMK), 2021, pp. 180-185.

[6] Enzenberger M, Müller M, Arneson B, Segal R. Fuego—an
open-source framework for board games and Go engine
based on Monte Carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games. 2010 Oct
14;2(4):259-70.

[7] Z. Li, H. Liu, Y. Wang, J. Zuo and Z. Liu, Application of
Monte Carlo Tree Optimization Algorithm on Hex Chess,
2020 Chinese Control And Decision Conference (CCDC),
2020, pp.3538-3542.

[8] M. Lu and X. Li, Deep reinforcement learning policy in Hex
game system, 2018 Chinese Control And Decision
Conference (CCDC), 2018, pp. 6623-6626.

[9] Q. Du, J. Zhao, L. Shi and L. Wang, Research on the
two-dimensional face image feature extraction method,
2012 3rd International Conference on System Science,
Engineering Design and Manufacturing Informatization,
2012, pp. 251-254.

[10] Alhejali, A. M., & Lucas, S. M. (2013). Using genetic
programming to evolve heuristics for a Monte Carlo
algorithm Tree Search Ms Pac-Man agent. Paper presented
at the 2013 IEEE Conference on Computational
Intelligence in Games, August 11, 2013, Niagara Falls,
Canada.

[11] Kato, H., & Takeuchi, I. (2010). Parallel Monte-Carlo tree
search with simulation servers. Paper presented at the
Proceedings - International Conference on Technologies
and Applications of Artificial Intelligence, TAAI 2010.

[12] Hou, F., He, H., Xiao, N., Liu, F., & Zhong, G. (2010).
Incremental hash tree for disk authentication. Paper
presented at the 15th IEEE Symposium on Computers and
Communications, ISCC 2010, June 22, 2010 - June 25,
2010, Riccione, Italy.

[13] De Temino, L. A. M. R., Berardinelli, G., Frattasi, S., &
Mogensen, P. (2008). Channel-aware scheduling
algorithms for SC-FDMA in LTE uplink. Paper presented
at the 2008 IEEE 19th International Symposium on
Personal, Indoor and Mobile Radio Communications,
PIMRC 2008, September 15, 2008 - September 18, 2008,
Poznan, Poland.

[14] Y. Fu, S. Li and Y. Qi, Amazon game system design and
realization based on staged UCT algorithm, 2018 Chinese
Control And Decision Conference (CCDC), 2018,
pp.5929-5932.

[15] Looney, C. G. (2006). Intelligent battle gaming pragmatics
with belief network trees. Paper presented at the 2006 IEEE
Symposium on Computational Intelligence and Games,
CIG'06, May 22, 2006 - May 24, 2006, Lake Tahoe, NV,
United states.

[16] Cai, H., Kulkarni, S. R., & Verdu, S. (2006). An algorithm
for universal lossless compression with side information.
IEEE Transactions on Information Theory, 52(9),
4008-4016.

Creative Commons Attribution License 4.0 (Attribution 4.0
International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.148 Lingling Wang, Yiyang Wei, Feng Li

E-ISSN: 2224-2899 1648 Volume 19, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US

