
 

Enhancement of Energy Harvesting Efficiency in Mobile Wireless 

Sensor Networks  
 

AMIN AL KA’BI 
Australian College of Kuwait, KUWAIT 

 
 

Abstract – Mobile wireless sensor networks suffer from the restricted availability of energy supplies. In this research 
work, a proposed method for extending the lifetime of energy-constrained mobile wireless sensor networks (MWSNs) 
is presented. This method is based on the fact that RF signal carries both information and energy at the same time. 
Hence, by increasing the efficiency of energy harvesting from radio frequency (RF) signals, the lifetime of the wireless 
network can be significantly extended. The Simultaneous Wireless Information and Power Transfer (SWIPT) technique 
enables harvesting of energy by relay nodes which in turn can be used for wireless data transmission. To enhance the 
lifetime of the mobile wireless network, the transmitted RF energy can be recycled at the receiver side. On the other 
hand, a balance between energy harvesting and wireless data transmission is required in to maximize the overall 
efficiency of the system. Particle Swarm Optimization (PSO) is employed to obtain the optimum resource allocation 
policy which maximizes the system energy efficiency. A cost function is framed for this purpose and PSO attains the 
maximum energy efficiency by improving the solution of the cost function at each iteration with respect to given 
constraints. 
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1. Introduction  

 
The wireless sensors (nodes), which are powered by 

cells with limited energy, have restricted the lifetime of a 
wireless sensor network. This is an existing basic issue 
being faced by sensor networks which are used for long-
haul tasks. Energy conservation techniques can only 
reduce the total energy consumption of the system but 
cannot compensate for the energy depletion. Deploying 
more nodes is undesirable as the deserted nodes may 
cause pollution to the surrounding environment. 
Replacing the cell or node is only applicable in cases in 
which the nodes can be located and physically accessed 
by humans or robots [1-4]. 

Wireless charging technology is a promising solution 
for addressing the energy limitations in sensor networks. 
The wireless charging technology, along with more cheap 
mobile robots, makes the power restoring process 
possible and controllable, and hence the power can be 
restored to satisfy energy requirements. Close alignment 
between the charger and nodes is not required when 
compared to the node or cell replacement techniques. 

Wireless charging technologies can be classified into 
two groups, which are Radio Frequency (RF) based 
wireless charging (radiative) and coupling-based wireless 
charging (non-radiative). RF waves are used as the 
medium for transferring energy in the case of radiative 
wireless charging. Here the transfer of energy is on the 
basis of the radiative electric field of the RF wave. Non-

radiative wireless charging is commonly utilized in 
appliances of daily use due to safety considerations [5-7]. 

As the RF signal consists of both information and 
energy, it is considered as a promising method for 
wireless energy transfer where it enables simultaneous 
wireless information transfer along with energy 
harvesting. To improve the lifetime of the sensor 
network, the transmitted RF energy can be recycled at the 
receiver side. This technique is referred to as 
Simultaneous Wireless Information and Power Transfer 
(SWIPT) [8].  

In this case, a data transmitting node transfers the 
energy together with the data to its cluster head. Based on 
Dynamic Power Splitting Scheme, the cluster head 
divides the received RF signals into two power streams 
with specific power splitting ratios for data forwarding 
and energy harvesting, respectively. This method has two 
merits: (a) harvesting energy from the RF transmitters, 
using the harvested energy in data forwarding, and hence 
avoiding the depletion of energy; (b) to improve the 
Quality-of-Service (QoS), energy may be harvested from 
either interference signals or RF signals of transmitters, 
and even antenna noises. 

This work focuses on implementing an efficient 
resource allocation using particle swarm optimization 
with the aim of maximizing energy efficiency. 
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2. System Model and Problem 

Formulation 

 
2.1 System Model 
 

The system model of the mobile WSN consists of a 
mobile collector and N nodes. The sensor network 
consists of antennas randomly distributed over the field 
under consideration. Periodically, a deployed mobile 
collector conducts an information gathering tour 
beginning from the sink node. At each tour in the field, it 
visits some previously determined anchor nodes, known 
as cluster heads for collecting information from the 
neighboring sensors through multiple hop transmission 
by staying near them for a specific period of time. On the 
basis of a clustering protocol known as Low Energy 
Adaptive Clustering Hierarchy (LEACH) [9-11], the 
sensor nodes are grouped as clusters before starting the 
information gathering tour. In this case, each cluster 
consists of a cluster head (CH) for collecting the 
information sensed by each sensor in its cluster through 
relays of other nodes. This collected information is then 
uploaded to the mobile collector, as illustrated in Figure 
1. The cluster heads also act as anchors for the data 
collector. The nodes transmit their sensed information to 
the CHs including the energy. The RF energy is also 
harvested from the data received by the CH and then the 
data is aggregated. A CH consists of a signal processing 
unit with a rechargeable cell, an energy harvesting unit, 
and a power splitting unit to maintain simultaneous data 
forwarding and energy harvesting, as depicted in Figure 
2. The circuit in the receiver designed for data forwarding 
cannot be used for energy harvesting because of hardware 
limitations [1]. Consequently, the energy harvesting unit 
and the data processing unit should have separate 
circuitries. 

 
 

Figure 1. SWIPT in a 3 cluster WSN. [1] 
 
At the transmitter side, time-slotted transmission is 

employed, and at the receiver side a dynamic power 
splitting scheme is employed, which enables the receiver 
to process the data and energy harvesting from the 
received signal at any instant. The basic principle behind 
this technique is illustrated in Fig. 2. The received signal 
from transmitter of the 𝑖𝑡ℎ  node is split dynamically by 
the receiver at the 𝑗𝑡ℎ  CH into two energy streams for 
data processing and energy harvesting in ratios 𝜌𝑖𝑗

𝐼 and 𝜌𝑖𝑗
𝐸  

respectively. 
The transmitting nodes are grouped into clusters such 

that the cluster heads lie within the effective coverage 
area of the transmitting antennas, then by using an 
efficient power management circuit, the received power 
is converted to DC using AC/DC converter, and then this 
power is transferred to the storage cell to power a sensor. 
The energy harvested in the cell helps in lowering the 
minimum power transfer requirement 𝑄𝑟𝑒𝑞 min 𝑖𝑗 , and 
hence further limits the power splitting ratio for 
harvesting energy, thereby enhancing the rate of data 
transmission in the wireless network. The power splitting 
unit is assumed as perfect [1], and hence, it will not lead 
to any power loss or noise. The power consumed by each 
node is fixed as 𝑃𝑐 Watts for processing a unit of data 
and does not depend on the amount of energy harvested. 
And hence, when the data processing rate of a sensor is 
R, the total power consumption of the circuit is 𝑃𝑐*R 
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Watts. Hence, powering the CHs by more than one 
energy source is practically desirable [12]. 

 

 
 

Figure 2. Model of a receiver with SWIPT [1] 
 

2.2 Communication Model 
 

The communication model of the wireless sensor 
network consists of clusters of sensors. Let us assume 
that one of these clusters consists of a CH and N−1 
sensors, represented as 𝑁 = {𝑁1 , 𝑁2 , … , 𝑁𝑁−1} , which 
are grouped using LEACH algorithm. The directed graph 
of this sensor network is then modelled as X = (M, C); M 
= N ∪ CH is the group of all nodes, and C corresponds to 
the group of all connected links between the sensors and 
the CH. The condition for a connected link (i, j) ∈ C to 
exist is that  𝑑𝑖𝑗   ≤  𝑟𝑡𝑥   where 𝑑𝑖𝑗  indicates the distance 
between 𝑖𝑡ℎ  node and 𝑗𝑡ℎ  node, 𝑟𝑡𝑥  denotes the 
transmission range of the sensors, which depends on the 
transmitted power and gain of the sensor. The channel 
between transmitter and the receiver is assumed to be that 
of a quasi-static block fading model. The channel gains 
are calculated by obtaining the receiver feedback. As 
depicted in Figure 2, the corruption of the received signal 
occurs due to an Additive White Gaussian Noise 
generated from the sensor at the receiver. Then the 
received RF signal is then deliverd to a power splitting 
unit, at which it is split and then separately fed to the 
energy harvesting unit and the information processing 
unit. 

The capacity of the channel across the 𝑖𝑡ℎ transmitter 
and 𝑗𝑡ℎ receiver can be calculated as 
 

𝐶 = 𝑊𝑙𝑜𝑔2(1 + 𝑃𝑖𝑗𝛾𝑖𝑗𝜌𝑖𝑗
𝐼 )                (1) 

 
where W denotes the band-width and 𝑃𝑖𝑗  denotes the 
transmitted power from the 𝑖𝑡ℎ  transmitter to 𝑗𝑡ℎ  
receiver, and 𝛾𝑖𝑗  denotes the channel path loss due to 
attenuation, shadowing, and other path losses. The 
maximum data rate 𝑅𝑖𝑗 that can be achieved in the case of 
reliable data forwarding from the 𝑖𝑡ℎ  transmitter to 𝑗𝑡ℎ 

receiver is always less than channel capacity 𝐶𝑖𝑗 between 
them, i.e., 

 
           𝑅𝑖𝑗 < 𝑊𝑙𝑜𝑔2(1 + 𝑃𝑖𝑗𝛾𝑖𝑗𝜌𝑖𝑗

𝐼 )                (2) 
 
In the case of transfer of energy, according to the rule 

of energy conservation, the energy received by the 
receiving antenna is always less than the harvested 
energy denoted by 𝑄𝐷𝑖𝑗  Joules. 

 
𝑄𝐷𝑖𝑗 ≤ 𝑃𝑖𝑗𝜉𝑖𝑗𝜌𝑖𝑗

𝐸 𝑛𝑖𝑗                          (3) 
 

where  0 < 𝜉𝑖𝑗 < 1 represents the coefficient for 
harvesting energy from 𝑖𝑡ℎ  transmitter by 𝑗𝑡ℎ  receiver 
which implies that the entire energy radiated by 𝑖𝑡ℎ 
transmitter is not harvested by 𝑗𝑡ℎ  receiver. 0 < 𝑛𝑖𝑗 < 1 
shows the efficiency of energy conversion of 𝑗𝑡ℎ receiver 
in conversion of the received RF signal into electrical 
energy for storing in the cell, which is dependent upon 
the process of rectification used and the circuit used for 
harvesting energy [3]. Maximum values are assumed to 
𝑅𝑖𝑗 and 𝑄𝐷𝑖𝑗  , i.e., the two sides of the inequalities in (2) 
and (3) become equal. 

 
3. Problem Formulation 

 
The resource allocation problem is formulated such 

that it maximizes the system energy efficiency (Bit/J). 
 
3.1 End-to-End Data Throughput 

 
The total number of bits conveyed to receivers 

successfully per second is known as the end-to-end data 
throughput. 

  
      𝐹(𝑃, 𝜌) = ∑ 𝛼𝑖𝑗𝑊𝑙𝑜𝑔2(1 + 𝑃𝑖𝑗𝛾𝑖𝑗𝜌𝑖𝑗

𝐼 )𝑁
𝑖,𝑗=1        (4) 

In which 𝑃 = { 𝑃𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑀} represents the 
policy for power allocation, 𝜌𝑖𝑗  is the policy for power 
splitting. To ensure a particular degree of fairness, the 
application layer fixes 𝛼𝑖𝑗  which is a positive weight 
accounting for the priorities of different receivers. To 
improve the system energy efficiency, the overall system 
energy consumption is considered. The weighted energy 
consumed by the system 𝐹𝐸𝐶(𝑅, 𝑃, 𝜌) needed for reliable 
communication is modelled as the total power 
dissipation, which is given by 

 
         𝐹𝐸𝐶(𝑅, 𝑃, 𝜌) = ∑ 𝑃𝑖𝑗𝑅𝑖𝑗 + ∑ 𝜀𝑃𝑖𝑗

𝑁
𝑖,𝑗=1

𝑁
𝑖,𝑗=1        (5)   

 
where, 𝜀 ≥ 1 is a constant accounting for the inefficiency 
of the transmitter, and 𝑅𝑖𝑗 represents the data rate. 
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3.2 Efficiency of Energy Harvesting 
 

The sum of the weighted number of bits delivered 
successfully to the receivers per one Joule of consumed 
energy is called as the weighted energy efficiency of the 
system and it can be expressed as 

 
𝐹𝑒𝑓𝑓(𝑅, 𝑃, 𝜌) = 𝐹(𝑃, 𝜌)/𝐹𝐸𝐶(𝑅, 𝑃, 𝜌)             (6)  

 
The resource allocation problem (ResAll) is then 

formulated into a nonlinear optimization problem: 
 

𝑚𝑎𝑥𝑅,𝑃,𝜌[𝐹𝑒𝑓𝑓(𝑅, 𝑃, 𝜌)]                     (7) 
 

which is subjected to 
 

C1: 𝑄𝐷𝑖𝑗 + 𝑄𝐼𝑖𝑗 ≥ 𝑄𝑚𝑖𝑛
𝑟𝑒𝑞      (8) 

 
    C2: 𝑅𝑚𝑖𝑛 𝑖𝑗 ≤ 𝑅𝑖𝑗 ≤ 𝐶𝑖𝑗      (9) 
 

C3: ∑ 𝛼𝑖𝑗𝑊𝑙𝑜𝑔2(1 + 𝑃𝑖𝑗𝛾𝑖𝑗𝜌𝑖𝑗
𝐼 )𝑁

𝑖,𝑗=1 ≥ 𝑅𝑚𝑖𝑛         (10)
  

C4: 𝑃𝑖𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗

𝑚𝑎𝑥                 (11) 
 
C5: 𝜌𝑚𝑖𝑛

𝐸 ≤ 𝜌𝑖𝑗
𝐸 ≤ 𝜌𝑚𝑎𝑥

𝐸                          (12) 
 

C6: 𝜌𝑚𝑖𝑛
𝐼 ≤ 𝜌𝑖𝑗

𝐼 ≤ 𝜌𝑚𝑎𝑥
𝐼                      (13) 

 
C7: 𝜌𝑖𝑗

𝐸 + 𝜌𝑖𝑗
𝐼 ≤ 1                  (14) 

 
in which C1 is the minimum power transfer requirement  
𝑄𝑟𝑒𝑞 𝑚𝑖𝑛 𝑖𝑗  for power transfer from 𝑗𝑡ℎ  receiver to 𝑖𝑡ℎ 
transmitter. It shows that the energy harvested is invalid 
in the case when the energy harvested is lesser than the 
energy consumed by the circuit for harvesting energy. C2 
shows the minimum individual data transfer rate 𝑅𝑚𝑖𝑛 𝑖𝑗  
from 𝑖𝑡ℎ  transmitter to 𝑗𝑡ℎ  receiver and it is always less 
than the channel capacity. C3 indicates the Quality-of-
Service constraint of the system, which specifies that the 
total end-to-end throughput must be greater than the 
minimum value of the data rate of the system, 𝑅𝑚𝑖𝑛 . C4 
specifies the constraint for a power transmission which 
shows that the harvesting energy circuit is capable of 
operating in the case when the RF incident power is 
greater than the threshold 𝑃𝑖𝑗

𝑚𝑖𝑛 , and less than the 
maximum transmitted power 𝑃𝑖𝑗

𝑚𝑎𝑥 , whose value is 
dependent on the hardware limitations of the power 
amplifier. A threshold is required for triggering the 
charge pump in the circuit for harvesting energy and is 
specified in C4. C5 - C7 represent the constraints for 
power splitting. C5 indicates that the ratio of power 
splitting for energy harvesting is bounded by the lower 
limit 𝜌𝑚𝑖𝑛

𝐸  and upper limit 𝜌𝑚𝑎𝑥
𝐸 . C6 represents the lower 

limit and upper limits of the power splitting ratio for data 
processing., i.e., 𝜌𝑚𝑖𝑛

𝐼  and 𝜌𝑚𝑎𝑥
𝐼  respectively, where 

𝜌𝑚𝑖𝑛
𝐸 + 𝜌𝑚𝑎𝑥

𝐼 = 1, and 𝜌𝑚𝑎𝑥
𝐸 + 𝜌𝑚𝑖𝑛

𝐼 = 1. Power splitting 
constraint is specified in C7, which shows the 
passiveness of the power splitting unit, and hence no 
power gain can be attained by this process of power 
splitting. 

The theoretical model is practically suitable for 
optimization for any node, including the CH node, in the 
case when 2 nodes which are inter-connected and are able 
to transmit data. Additionally, on the basis of Quality-of-
Service requirements of each node and the system 𝑅𝑚𝑖𝑛 𝑖𝑗 
and 𝑅𝑚𝑖𝑛  are selected in such a way that helps in 
attaining a trade-off between system energy efficiency 
and the total system capacity. As the value of 𝑅𝑚𝑖𝑛     
increases, the transmit power has to be increased to 
satisfy the requirement of greater data rate by reducing 
the energy efficiency of the system. Then, based on the 
ability of the receiver in dividing the received power, the 
values of 𝜌𝑚𝑖𝑛

𝐸  and upper limit 𝜌𝑚𝑎𝑥
𝐸  are selected. 

To maximize the aggregated energy efficiency of all 
sensor nodes, the objective function (7) is used. By using 
this function, the policy for data rate control 𝑅∗, policy 
for power splitting 𝜌∗, and policy for power allocation 𝑃∗ 
is obtained. 
 

4. Solution of the Optimization 

Problem 
 
The resource allocation problem is solved using two 
methods, i.e., Resource Allocation Algorithm (ResAll) 
[1] and Particle Swarm Optimization (PSO) [2]. 
 
4.1 ResAll Algorithm 
 
The ResAll algorithm is based on the iterative 
Dinkelback method [13]. Using this algorithm, resource 
allocation policies are determined. 
 
Input: 

i - index of iteration; 
𝐼𝑚𝑎𝑥 - maximum number of iterations; 
n - system energy efficiency;  
e - an infinitesimal number; 
 

Output: 

𝑛∗- maximum energy efficiency; 
{𝑅∗, 𝑃∗, 𝜌∗} - resource allocation policies; 
 
i = 1, n = 0; 
for ( 𝑖 ≤ 𝐼𝑚𝑎𝑥) 
{ 
if (𝐹(𝑃, 𝜌) − 𝑛𝐹𝐸𝐶(𝑅, 𝑃, 𝜌)) < 𝑒  
return {𝑅∗, 𝑃∗, 𝜌∗} = {𝑅, 𝑃, 𝜌} 
𝑛∗ = 𝐹(𝑃, 𝜌)/𝐹𝐸𝐶(𝑅, 𝑃, 𝜌)  
else 
Set 𝑛 = 𝐹(𝑃, 𝜌)/𝐹𝐸𝐶(𝑅, 𝑃, 𝜌) 
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𝑖 = 𝑖 + 1 

} 
end 
 
This algorithm provides resource allocation policy which 
maximizes the energy efficiency This efficiency is further 
increased by solving the optimization problem using 
Particle swarm optimization (PSO) [2]. Optimum 
resource allocation policies are obtained using PSO. 
 

4.2 Particle Swarm Optimization 
 

Particle swarm optimization (PSO) is a computational 
method in which optimization is done by trying to 
improve a candidate solution problem at each iteration 
with respect to a given measure of quality. It is a 
population-based method. Here the population of 
candidate solutions are known as particles. The objective 
of PSO is to find a solution for a constrained 
minimization problem based on a particular cost function. 
Here the state of the algorithm is represented by a 
population, which varies in each iteration until some 
criterion is met. Here, the population 𝑃 = {𝑝1, 𝑝1 , … , 𝑝𝑛}        
is the set of feasible solutions and is referred to as swarm. 
These feasible solutions 𝑝1, 𝑝1, … , 𝑝𝑛  are referred to as 
particles, given by 𝑝𝑖 = (𝑃𝑖 , 𝑅𝑖, 𝜌𝑖); 𝑖 = {1, 2, … , 𝑛}. A set 
of feasible solutions is considered as the search space in 
which these particles move. The number of particles 
generally selected is between 10 and 50 in practical for 
solving optimization problems. 
       The population is not changed from generation to 
generation in PSOs, instead, the same population is 
maintained by updating the particle positions at each. In 
PSOs, the particles “interact” or “influence” each other. 
 
𝑥𝑖(𝑡) … the position vector. 
𝑝𝑖(𝑡) … the ‘historical’ best position. 
𝑙𝑖(𝑡) … the historical best position of the 𝑖𝑡ℎ neighboring 
particle; it represents the historical best-known position 
of the entire swarm in the case of fully connected 
topology. 
𝑣𝑖(𝑡) … the velocity; i.e., the step size across 𝑥𝑖(𝑡) and 
𝑥𝑖(𝑡 + 1). 
      When the algorithm starts, the initial velocities are set 
to 0, or to some small random values, and the initial 
particle positions are selected in a random manner. 
 
PSO parameters: 

 

In this algorithm, 𝑤(𝑡)  represents the damping factor 
known as inertia weight whose value decreases from 
around 0.9 to around 0.4 during computation. 
𝑐1, 𝑐2 represent the acceleration coefficients. In general, 
they have values between 0 and 4.  
The velocity of the particle is updated as per the equation 
 

𝑣𝑖(𝑡 + 1) = 𝑐1𝑢1(𝑝𝑖(𝑡)−𝑥𝑖(𝑡)) + 𝑐2𝑢2(𝑙𝑖(𝑡) − 𝑥𝑖(𝑡)) +

𝑤(𝑡)𝑣𝑖(𝑡)                                          (15) 
 
where 𝑢1 and 𝑢2 represent random variables according to 
the uniform distribution U(0,1). The first term of Eq. (15) 
is known as the personal component, the middle term 
represents the mutual component, and the last one 
represents the inertia term. 
The 𝑖𝑡ℎ particle position is updated based on the equation: 
 

    𝑥𝑖(𝑡 + 1) = ∫[𝑣𝑖(𝑡 + 1) + 𝑣𝑖(𝑡)]𝑑𝑡         (16) 
 
The termination of this algorithm either occurs once the 
fitness value of the particles in the population become 
close enough, or when a maximum number of iterations 
is reached based on a given cost function. The cost 
function Z can be expressed as  
 

𝑍 = 1/𝐹𝑒𝑓𝑓(𝑅, 𝑃, 𝜌)               (17)
   

Subjected to constraints C1 to C7. 
By using this cost function, the optimization problem can 
be solved by using PSO to find the optimum resource 
allocation policies (𝑅∗, 𝑃∗, 𝜌∗), and hence maximizing the 
energy efficiency. 
 

5. Simulation Results 

 
The simulation results using MATLAB v2018b are 

discussed here. The simulation settings for ResAll and 
PSO are shown in Table I and Table II, respectively. 
 

TABLE I.  SIMULATION SETTINGS FOR RESALL 

 

TABLE II.  SIMULATION SETTINGS FOR PSO 

 
 

Nodes are clustered using LEACH (Low Energy 
Adaptive Clustering Hierarchy) algorithm, where one 
hundred nodes are randomly selected and deployed in an 
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100m×100m area. Position of the sink node is fixed at 
(50,50). Each node has an initial energy 𝐸0 of 0.5J.  

Figure 3 shows a comparison of the energy 
efficiency vs. the number of iterations of ResAll and PSO 
algorithms. It can be seen in Figure 3 that PSO provides 
more average energy efficiency compared to ResALL for 
a specified number of iterations. This is due to the 
improved solution of the cost function Z at each iteration 
with respect to the given constraints. 

It can be seen that maximum energy efficiency of 
12Mb/J is obtained by using PSO while 8M/J is obtained 
by using ResAll algorithm. 

 

 
 
Figure 3. Energy efficiency vs. number of iterations. 

6. Conclusions 

 
     The ever-increasing ubiquitous applications of 
wireless sensor networks lead to energy scarcity in the 
network, which is a serious threat to the lifetime of the 
network. To solve this issue, here, Simultaneous Wireless 
Information and Power Transfer (SWIPT) technique is 
applied to a MWSN. The nodes were clustered using 
LEACH algorithm. A resource allocation algorithm is 
designed by considering the power splitting capabilities 
of relay nodes and cluster heads. Optimal Resource 
allocation policies are found out using particle swarm 
optimization.  
      In the proposed method, the received power is split 
into two sets of power streams using arbitrary power 
splitting ratios. By considering the various power 
splitting capabilities of receivers, a Resource Allocation 
(ResAll) algorithm is used to find the resource allocation 
policies.  
       In ResAll algorithm, system energy efficiency is 
achieved by balancing data rate, energy efficiency, power 
splitting ratio, and transmit power. Maximum system 
energy efficiency is achieved by balancing transmit 
power, data rate, power splitting ratio, and energy 
efficiency. This is achieved by framing a cost function 

and then improving the solution to the cost function at 
each iteration with respect to the constraints. Simulation 
result show that the energy efficiency is further increased 
by solving the resource allocation problem using particle 
swarm optimization. 
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