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Abstract: A multi-parameter system of ordinary differential equations, modelling genetic networks, is
considered. Attractors of this system correspond to future states of a network. Sufficient conditions for
the non-existence of stable critical points are given. Due to the special structure of the system, attractors
must exist. Therefore the existence of more complicated attractors was expected. Several examples are
considered, confirming this conclusion.
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1 Introduction
We consider systems of ordinary differential equa-
tions of the form





dx

dt
=

1
1 + e−µ1(w11x+w12y+w13z−θ1)

− v1x,

dy

dt
=

1
1 + e−µ2(w21x+w22y+w23z−θ2)

− v2y,

dz

dt
=

1
1 + e−µ3(w31x+w32y+w33z−θ3)

− v3z

(1)
Such systems arise in the theory of complex net-
works, such as telecommunication ones [4], ge-
netic networks [3], [2], [7], [1], [6], [11], [12], neu-
ronal networks [9], [5]. More information can be
found in the review papers [3], [8] and others. In
models of genetic regulatory networks (GRN in
short) nonlinear functions on the right side de-
scribe interrelation between genes. They commu-
nicate by protein expression, sending messages to
each other. In such a way a collective reaction of
a network is formed. In the system (1) the func-
tion f(z) = 1

1+e−µz is sigmoidal. Sigmoidal func-
tions are monotonically increasing from zero to
unity. These functions are most suitable for mod-
eling purposes. The parameters µi are positive.
The linear part in (1) describes the natural decay
of a network if there are no connections between

genes. The parameters θ can be any numbers and
in many cases they are adjustable. The coeffi-
cients wij are the entries of the regulatory matrix
W that describes links between genes. A positive
element wij means activation the i-th gene by j-
th one. Negative coefficient means repression (in-
hibition), zero means no relation. The change of
one entry of matrix W leads to rearrangement
of the whole network. The collective response of
GRN to changes in environment can be developed
quickly. The current state of GRN is represented
by the state vector X(t) = (x1, . . . , xn(t)). The
dimension n in system (1) is three. Mathemat-
ically X(t) is the solution vector of system (1).
Properties of system (1) are such that it has an
invariant set in the phase space R3. This set is a
parallelepiped Q3 = {0 < xi < 1/vi, i = 1, 2, 3}.
Due to the properties of sigmoidal functions the
vector field defined by system (1), is directed in-
wards of the region Q3. The trajectories X(t) are
therefore trapped in Q3. The attractors of system
(1) must exist in Q3. Future states of a network
are heavily dependent on the number, location
and properties of attractors. The structure and
properties of attractors for system (1) are to be
studied.

Equilibria of system (1) always exist and are
located in the domain Q3. Equilibria are solutions

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2022.10.6 O. Kozlovska, F. Sadyrbaev

E-ISSN: 2415-1521 43 Volume 10, 2022



of the system





v1x =
1

1 + e−µ1(w11x+w12y+w13z−θ1)
,

v2y =
1

1 + e−µ2(w21x+w22y+w23z−θ2)
,

v3z =
1

1 + e−µ3(w31x+w32y+w33z−θ3)
.

(2)

The system (2) consist of three equations which
define the nullclines. Three nullclines can inter-
sect only in Q3. Indeed, suppose that the critical
point (x∗, y∗, z∗) locates outside Q3. Then some
coordinate, say x∗, either is negative or greater
than 1/v1. This contradicts the properties of the
sigmoidal function in the right side (recall that
the range of values of a sigmoidal function is
(0, 1)). The number of intersections is finite, but
cannot be zero. A unique cross-point is possible,
as examples show.

Our intent in this paper is to clarify the follow-
ing situation. Imagine that there is a unique crit-
ical point (an equilibrium), which is not attrac-
tive. The sufficient condition for non-attractivity
is positivity of a real part of at least one char-
acteristic number λ. The characteristic numbers
can be computed for any equilibrium using the
standard analysis of the linearized equation. We
will provide the necessary information in the next
section. If a unique critical point is not attractive,
there are other attractors.

We pass to description of our results in this
direction. We provide the sufficient conditions,
in terms of the coefficients of W and parame-
ters of the system (1), for a critical point to be
non-attractive. We construct then the examples,
where our conditions are applicable. In these ex-
amples the critical point is unique. Therefore an
attractor of more complicated structure should
exist. We have discovered them. To be more spe-
cific, our intent is to provide conditions for ex-
istence of equilibria with the characteristic num-
bers λ1 ∈ R, λ2,3 = α±βi, where α > 0, i =

√−1.

2 Problem Formulation

Consider system (1), where v1 = v2 = v3 = 1, for
simplicity.

The critical points are solutions of the system





x =
1

1 + e−µ1(w11x+w12y+w13z−θ1)

y =
1

1 + e−µ2(w21x+w22y+w23z−θ2)
,

z =
1

1 + e−µ3(w31x+w32y+w33z−θ3)
.

(3)

The linearized system at a critical point
(x∗, y∗, z∗) is





u′1 = −u1 + µ1w11g1u1

+µ1w12g1u2 + µ1w13g1u3,
u′2 = −u2 + µ2w21g2u1

+µ2w22g2u2 + µ2w23g2u3,
u′3 = −u3 + µ3w31g3u1

+µ3w32g3u2 + µ3w33g3u3,

(4)

where

g1 =
e−µ1(w11x∗+w12y∗+w13z∗−θ1)

[1 + e−µ1(w11x∗+w12y∗+w13z∗−θ1)]2
,

g2 =
e−µ2(w21x∗+w22y∗+w23z∗−θ2)

[1 + e−µ2(w21x∗+w22y∗+w23z∗−θ2)]2
,

g3 =
e−µ3(wn1x∗+wn2y∗+w33z∗−θ3)

[1 + e−µ3(w31x∗+w32y∗+w33z∗−θ3)]2
.

Properties of a critical point (x∗, y∗, z∗) are de-
scribed by the three numbers (they are called the
characteristic numbers) λ1, λ2, λ3, which can be
found from the chracteristic equation. One has

det(A− λI) = 0, (5)

where A is 3× 3 matrix of the coefficients of the
system (4), I is the unity 3× 3 matrix.

The equation (5) is complicated, since it re-
quires computation of the partial derivatives gi

at the critical point (x∗, y∗, z∗). It can be sim-
plified, however, in this way. Observe, from (3),
that

e−µ1(w11x∗+w12y∗+w13z∗−θ1) = 1
x∗ − 1,

e−µ2(w21x∗+w22y∗+w23z∗−θ2) = 1
y∗ − 1,

e−µ3(w31x∗+w32y∗+w33z∗−θ3) = 1
z∗ − 1.

(6)

Then g1 =
1
x∗ − 1

1
x∗2

= (1 − x∗)x∗ and, similarly,

g2 = (1− y∗)y∗, g3 = (1− z∗)z∗.
The entries aij of the matrix A−λI, needed for

construction of the characteristic equation, are:
a11 = µ1w11(1− x∗)x∗ − 1− λ,
a12 = µ1w12(1− x∗)x∗,
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a13 = µ1w13(1− x∗)x∗,
a21 = µ2w21(1− y∗)y∗,
a22 = µ2w22(1− y∗)y∗ − 1− λ,
a23 = µ2w23(1− y∗)y∗,
a31 = µ3w31(1− z∗)z∗,
a32 = µ3w32(1− z∗)z∗,
a33 = µ3w33(1− z∗)z∗ − 1− λ.

Choice of θ-s. The coordinates of a critical
point (x∗, y∗, z∗) are solutions of the system (3).
Observe, that if x∗ = y∗ = z∗ = 0.5, then for θi

such that
w11 + w12 + w13 = 2 θ1,
w21 + w22 + w23 = 2 θ2,
w31 + w32 + w33 = 2 θ3,

(7)

the numbers x∗ = y∗ = z∗ = 0.5 solve the system
(3).

Assumption θ. We assume that θi satisfy
(7).

Conclusion Θ. The entries aij of the matrix
A− λI, needed for construction of the character-
istic equation, become:
a11 = µ1w110.25− 1− λ,
a12 = µ1w120.25,
a13 = µ1w130.25,
a21 = µ2w210.25,
a22 = µ2w220.25− 1− λ,
a23 = µ2w230.25,
a31 = µ3w310.25,
a32 = µ3w320.25,
a33 = µ3w330.25− 1− λ.

Choice of µ-s. For easier calculations, we
would like to make the products µi0.25 in the
above elements equal to unity. Therefore we
choose µi = 4 for i = 1, 2, 3.

Assumption µ. We assume that µi = 4 for
i = 1, 2, 3.

Conclusion µ. The entries aij of the matrix
A− λI, needed for construction of the character-
istic equation, become:
a11 = w11 − 1− λ,
a12 = w12,
a13 = w13,
a21 = w21,
a22 = w22 − 1− λ,
a23 = w23,
a31 = w31,
a32 = w32,
a33 = w33 − 1− λ.

2.1 Characteristic equation
We are now in a position to construct the
characteristic equation for the critical point

(0.5, 0.5, 0.5) assuming that Assumption θ and
Assumption µ hold. Computing the determinant
of the matrix A− λI, we obtain the equation

Λ3 − (w11 + w22 + w33)Λ2

−(w21w12 − w11w22 + w31w13

+w32w23 − w11w33 − w22w33)Λ
−(−w31w22w13 + w21w32w13

+w31w12w23 − w11w32w23

−w21w12w33 + w11w22w33) = 0,

(8)

Λ = λ + 1. (9)

Rewrite (8) in a compact form

Λ3 + PΛ2 + QΛ + R = 0, (10)

where
P = −(w11 + w22 + w33), (11)

Q = −(w21w12 − w11w22 + w31w13

+w32w23 − w11w33 − w22w33),
(12)

R = −(−w31w22w13 + w21w32w13 + w31w12w23

−w11w32w23 − w21w12w33 + w11w22w33).
(13)

Equation (10) for the variable λ is

λ3+(3+P )λ2+(3+2P +Q)λ+(1+P +Q+R) = 0.
(14)

2.2 Problem
We can now formulate the problem. Up to now
we have made the choice of the parameters vi, θi

and µi. The critical point under consideration is
placed to the location (0.5, 0.5, 0.5) by the choice
of θi.

Our plan is the following:

1) we make the point (0.5, 0.5, 0.5) non-
attractive by the appropriate choice of the
entries in the matrix W ;

2) under the assumption that this point is
unique we are led to the conclusion, that there
are no attractive equilibria in the cube Q3;

3) Then there must exist other attractors.

3 Problem Solution
We assume that there is a single critical point and
it is placed in the middle point by an appropri-
ate choice of the parameters θ. We wish to make
this point non-attractive by the choice of other
parameters and matrix W.
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3.1 Routh - Gurwitz criterion and
related material

Let us recall the Routh-Gurwitz conditions for
the third order equations. Consider

a3s
3 + a2s

2 + a1s + a0 = 0. (15)

Our trusted source of information is [10].
Consider the Table:

s3 a3 a1

s2 a2 a0

s a2a1−a0a3
a2

s0 a0

(16)

This table is called Routh array.

Proposition 3.1. The number of roots in the
open right half-plane is equal to the number of
sign changes in the first column of Routh array.

Proposition 3.2. If 0 appears in the first col-
umn in nonzero row in Routh array, replace it
with a small positive number. In this case, poly-
nomial has some roots in the open right half-plane
(RHP).

Proposition 3.3. If zero row appears in Routh
array, polynomial has roots either on the imagi-
nary axis or in RHP.

Proposition 3.4. If all zeros are in the left half
plane (LHP), then all ak are of the same sign.

Corollary 1. If there is sign change in ak then
some zero is not in the LHP.

Theorem 1. If (3 + P ) or (3 + 2P + Q) or (1 +
P + Q + R) is negative in (14), then some λ is
not in the LHP.

Example 1. 3 + P < 0.
Take µi = 4, 3 − (w11 + w22 + w33) < 0. All

others wij are taken randomly. To be specific, let
w11 = 1, w22 = 2, w33 = 3. Let wij = +1 for i+ j
even, wij = −1 for i + j odd. So the matrix

W =

( 1 −1 1
−1 2 −1
1 −1 3

)
. (17)

is suitable. Choose θi as recommended, so θ1 =
0.5, θ2 = 0.0, θ3 = 1.5. The characteristic equa-
tions is

λ3 + (3 + P )λ2 + (3 + 2P + Q)λ + (1 + P + Q
+R) = λ3 − 3λ2 − λ + 1 = 0.

(18)

The Routh array is

s3 1 −1
s2 −3 1
s 4

3
s0 1

(19)

There are two sign changes in the first column of
the Routh array.

Solving (18) with respect to λ, obtain

λ1 = −0.675131, λ2 = 0.460811, λ3 = 3.21432.

The type of the equilibrium at (0.5, 0.5, 0.5) is a
3D saddle point. There are other critical points,
so the existence of attractors other than the sta-
ble equilibria is not observed.

Example 2. 3 + 2P + Q < 0.
Let the matrix be

W =

( 3 5 2
−1 1 0
0 1 −2

)
. (20)

The parameters µi and θi are chosen as usu-
ally. After simple calculations obtain 3 + P = 1,
3 + 2P + Q = −1, 1 + P + Q + R = 17. The
characteristic numbers are λ1 = −3.1, λ2,3 =
1.05 ± 2.1i. The critical point at (0.5, 0.5, 0.5) is
non-attractive.

Example 3. 1 + P + Q + R < 0.
Choose six entries in the regulatory matrix and

let the remaining three be arbitrary. Suppose
wii = 0 for i = 1, 2, 3. Let w13 = −1, w21 = −1,
w32 = −1. So the matrix W is of the form

W =

( 0 w12 −1
−1 0 w23

w31 −1 0

)
. (21)

Then

P = 0, Q = w12 +w31 +w23, R = 1−w31w12w23,

1+P +Q+R = 1+w12+w31+w23+1−w31w12w23

and the condition 1 + P + Q + R < 0 takes the
form

w12 + w31 + w23 < w31w12w23 − 2. (22)

The region is visualized in two pictures Fig. 1
and Fig. 2.

The elements w12 = −2, w23 = −2, w31 = 1
are admissible.

For the matrix

W =

( 0 −2 −1
−1 0 −2
1 −1 0

)
, (23)
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Figure 1: First view.

Figure 2: Second view.

parameter µi = 4, θi = (wi1 + wi2 + wi3)/2
the characteristic equation for the central point
(0.5, 0.5, 0.5) is

λ3 + 3λ2 − 0λ− 5 = 0. (24)

The Routh array is

s3 1 0
s2 3 −5
s 5

3
s0 −5

(25)

There is one sign change in the first column.
The characteristic numbers for the point

(0.5, 0.5, 0.5) are

λ1 = 1.1038, λ2,3 = −2.0519± 0.565236i.

The type of this critical point is an attractive
focus and repelling in the remaining dimension.
The point is not attractive, but there are other
critical points and the existence of an attractor
other than a stable equilibrium, cannot be guar-
anteed.

In the above examples we succeded in assign-
ing the critical point (0.5, 0.5, 0.5) the status of

non-attracting point. There are, however, other
critical points and some of them (or all of them)
are attractive. In the next section we provide ex-
amples, where assumtions 1 and 2 of subsection
2.2 together are satisfied.

4 More examples
I. Consider system (1), where µi = 4, vi = 1, and
the regulatory matrix

W =

( 1 −a −1
−1 1 −a
−a −1 1

)
. (26)

Suppose a ≥ 0. If a = 0, the matrix becomes

W =

( 1 0 −1
−1 1 0
0 −1 1

)
. (27)

and it contains inhibitory cycle (three −1) and
self-activation (three 1). The corresponding sys-
tem (1) is known to have periodic solutions.

Consider system (1) with the matrix (28).
Suppose that the parameters θi are chosen ap-
proprietly.

Computational experiments show that for a =
0.1, 0.2, 0.3, 0.4, ..., 0.8 there exists a periodic so-
lution. There exists a single critical point at
(0.5, 0.5, 0.5).

For a = 0.8 the values (3 + P ), (3 + 2P +
Q), (1 + P + Q + R), mentioned in Theorem 1,
respectively are 0,−2.4, 1.512. Therefore a single
critical point has the real part in RHP.

The periodic solution exists also, depicted in
the Figure 3.

0.0
0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

Figure 3: Stable periodic solution for a = 0.8

II. Consider Example 2 in the previous sec-
tion. We have shown that the critical point at
the center is not attractive. Visual inspection of
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nullclines confirm that this point is unique. It has
the following characteristic numbers λ1 = −3.10,
λ2,3 = 1.05± 2.10i.

Figure 4: The nullclines in Example II.

Therefore another attractor is expected. It ex-
ists in the form of stable periodic solution.

0.0

0.5

1.0
x

0.0

0.5

1.0
y

0.0

0.5

1.0

z

Figure 5: Stable periodic solution in Example
II.

III. Consider system (1) with the previous
choice of parameters and the regulatory matrix

W =

( 3 5 2
−1 1 0
0 1 1

)
. (28)

The values (3+P ), (3+2P +Q), (1+P +Q+R),
mentioned in Theorem 1, are −2, 5, 2. Therefore a
single critical point has the real part in RHP. The
craracteristic numbers are λ1 = −0.34, λ2,3 =
1.17± 2.11i. An attractor exists.

Figure 6: Stable periodic solution in Example
III.

5 Conclusion
Using mathematical models can make the process
of studying GRN easier and more effective. Given
experimental data of some particular GRN, the
mathematical model should be adjusted by the
appropriate change of parameters. Afterward,
the model can be studied using standard math-
ematical analysis tools. An inverse problem is
to take an existed model and try to predict the
properties of a real network, studying its model.
In our research, we did something in this spirit.
We try to select the characteristics of a network
(respectively, the elements of the regulatory ma-
trix W ) in such a way, that the existence of sta-
ble equilibria is not allowed. This can reveal
more complicated attractive sets on the phase
space. We have obtained such conditions and
tested them. In our examples, which were con-
structed, following the recommendations of The-
orem 1, no stable equilibria can appear. Instead,
we got stable periodic attractors. In perspective,
considering models with several critical points of
non-attractive nature, we hope to get attractors
of the next level of complicacy. Recall, that the
popular Lorenz attractor is based on three equi-
libria, two of them are non-attractive saddle fo-
cuses and one is a saddle point.
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