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Abstract: - As energy demand continues to grow and environmental problems become increasingly serious, 
optimizing the economic dispatch of the power system is crucial to ensuring the sustainability and economic 
benefits of energy supply. To ensure the safe operation of the power system, reduce power generation costs as 
much as possible, and develop a method that can adapt to the needs of different power systems, the experiment 
combines the differential evolution algorithm with the power economic dispatch problem and proposes a 
method based on improved differential evolution. Electric power economic dispatch method with particle 
swarm optimization algorithm. The experiment first introduces a moderate interference strategy to 
appropriately adjust the position of the particles; then combines the local mutation strategy to enhance the 
searchability of the differential evolution algorithm in the solution space and achieve good economic dispatch. 
The results show that when running on the F11 test set and F21 test set, when the system iterates to the 26th and 
32nd times respectively, the loss function of the method constructed in the experiment begins to have a 
minimum value and remains stable thereafter. In addition, on the F11 test set, when the number of iterations is 
150, this method has a minimum time of 0.153s. While running the loop for the first time on System 1, the total 
cost of this approach was only $1.01× 104. Through the actual operation of power generation equipment, under 
the operation of this method, the power system can ensure optimal operating power of each power generation 
equipment unit based on ensuring optimal cost. It can be seen from the above results that this method provides 
power system operators and decision-makers with a new tool to help them maximize cost-effectiveness while 
ensuring system stability and meeting power demand. In addition, the method's superior convergence and 
stability can effectively improve the solution's accuracy and speed and has strong practicality and promotion 
value. 
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1  Introduction 
In the operation of power systems, Economic 
Dispatch (ED) is a key optimization problem, whose 
goal is to minimize Power Generation Costs (PGCs) 
while satisfying load demands and system operation 
constraints. The complexity of this problem is 
increasing with the opening of the electricity market 
and the integration of renewable energy, [1], [2]. 
Traditional ED methods, such as linear 
programming, dynamic programming, etc., can no 
longer fully adapt to the requirements for 
optimization speed and quality under the new 
situation. Therefore, researchers have turned to 
heuristic algorithms to find more effective solutions. 
Differential Evolution (DE) algorithm and Particle 
Swarm Optimization (PSO) algorithm are two 
heuristic algorithms that are widely researched and 

applied, [3]. DE algorithm, with its simple logical 
structure, easy implementation, and powerful Global 
Search Capability (GSC), has demonstrated 
excellent performance in various complex 
optimization problems, [4]. The PSO algorithm is 
favored because of its fast convergence to the 
problem and less need for parameter adjustment. 
However, both algorithms have their limitations, 
[5]. For example, the DE algorithm may converge to 
the local optimal solution (OS) prematurely when 
dealing with multi-modal functions, while the PSO 
algorithm may fall into search stagnation in the late 
iteration, making it difficult to fine-tune the 
solution. To overcome these limitations, a new 
power ED method that integrates improved DE and 
PSO algorithms is proposed in the experiment. 
Through an in-depth analysis of the intrinsic 
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mechanisms of DE and PSO algorithms, the study 
proposes a new fusion strategy, which aims to 
combine the advantages of both and improve the 
performance of the algorithm in solving power 
economic dispatch problems. This method can not 
only adapt to dynamic changes in power system 
operation but also achieve multi-objective 
optimization of economic dispatch while ensuring 
system reliability. 

The article can be divided into four parts. The 
first part is a literature review, which mainly 
discusses and summarizes the current domestic and 
foreign DE algorithm and PSO algorithm as well as 
the development status of electric power ED. The 
second part is the research method, which proposes 
to combine the mutation strategy DE with the 
improved PSO and apply them together. In the ED 
of electric power. The third part analyzes the 
performance of the method proposed in the 
experiment is tested and its application effect is 
analyzed. The fourth part is the conclusion, which 
mainly summarizes the entire article. 
 

 

2  Related Works 
With the continuous development of the power 
market and the widespread access to renewable 
energy, traditional power ED methods are facing 
new challenges. In recent years, researchers have 
tried to integrate DE and PSO algorithms to 
combine the advantages of both to speed up the 
convergence of the algorithm. [6], proposed a multi-
objective DE algorithm based on enhancement to 
solve the dynamic environmental ED problem in 
power system dispatch. This algorithm effectively 
combines total constraint violations with penalty 
functions to handle multiple constraints. The 
simulation showed the algorithm's effectiveness in 
dealing with wind power system problems. [7], 
designed an improved particle swarm optimization 
(PSOCS) to deal with the dynamic economic 
emission dispatch problem of the power system. The 
constraint processing method is used to repair 
infeasible solutions, and the CS mechanism is 
introduced to overcome the particle swarm falling 
into local optimization. Numerical experiments 
show that PSOCS can quickly find existing 
problems and propose feasible solutions. To solve 
nonlinear optimization problems in power systems, 
[8] proposed a power system detection method 
based on swarm intelligence and PSO algorithms. In 
the process, starting from the basic concepts, the 
actual performance of the improved particle swarm 
method is analyzed through actual cases. It was 
found that the performance of this method was 

significantly superior. To control the parameters of 
the power system and reduce the related costs of 
power generation and transmission, [9] proposed an 
adaptive DE algorithm (ESHADE) based on 
continuous history. Compared with other 
algorithms, the fuel cost and active power loss of the 
constructed algorithm are significantly superior. To 
find the optimal configuration and dispatch of 
renewable energy in the power distribution system, 
[10] proposed an algorithm built on improved PSO. 
It was greatly better than other algorithms and could 
quickly find the OS. To intelligently adjust the 
output power of electric power economic load 
dispatch, researchers such as [11] proposed a power 
system dispatching method based on an improved 
differential evolution method. Through 
experimental verification, it was found that this 
method has a faster convergence speed and its 
performance is significantly superior to other 
models. 

At the same time, many scholars have analyzed 
the ED of power systems. To analyze and control 
the electrical and mechanical parameters of the 
permanent magnet synchronous motor (PMSM) 
controller, [12] proposed a PMSM control method 
that combines the quasi-oppositional learning 
algorithm and the PSO. This algorithm can find the 
OS value and has good performance and certain 
feasibility. To analyze the time, resources, and costs 
that affect the progress of construction projects, [13] 
proposed a non-dominated sorting DE algorithm 
based on reference points. The most appropriate 
schedule is developed through this algorithm. This 
algorithm was applied to actual construction 
projects and it was found that the algorithm has very 
superior applicability. To achieve the optimal 
combination of hybrid thermal and power isolation 
microgrids, two scholars, [14] proposed an optimal 
energy management method based on intelligent 
optimization technology. When this method was 
applied to actual microgrid operation, it was found 
that the optimal multi-objective solution obtained 
was significantly superior. To solve the virtual 
scheduling issue in dynamic cloud environments, 
[15] proposed a group-based metaheuristic 
algorithm. The DE strategy is utilized to replace the 
randomly generated solution of WOA. The 
completion time is shorter than other algorithms, 
and the cost trade-off is excellent. To keep the load 
demand of the standard microgrid system consistent 
with the actual demand, the teams of [16] proposed 
a hybrid CSAJAYA algorithm. The electricity price 
is calculated based on the user's electricity 
consumption time, and the total cost of electricity 
consumption is comprehensively calculated. By 
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utilizing this algorithm, the total PGC of the system 
is significantly reduced by 30% to 40%. To reduce 
the amount of pollutants and costs generated when 
thermal power plants produce electricity, scholars 
such as [17] proposed a power economic dispatch 
method based on the Crow search algorithm and 
differential evolution. This method was applied to 
different power systems for experiments, and it was 
found that the economic cost of this method is low, 
and the CPU time is also significantly superior. 

In summary, it can be seen that power economic 
dispatch, as one of the core issues of power system 
optimization management, has always received 
widespread attention from scholars and engineers. 
With the continuous opening of the power market 
and the increasing complexity of the energy 
structure, traditional power economic dispatch 
methods are facing new challenges. Various 
intelligent algorithms, such as PSO algorithm, GA 
algorithm, and DE algorithm, are widely cited in 
various fields and the field of power economic 
dispatch. However, a single optimization algorithm 
is often difficult to simultaneously meet the multi-
objective, nonlinear, and dynamic characteristics of 
economic dispatch problems in actual power 
systems; and it still faces challenges in improving 
the quality of solutions and maintaining the 
diversity of the search process. Given this, the 
experiment proposes a power economic dispatch 
method that combines improved differential 
evolution and particle de-optimization algorithms. 
This method includes a new algorithm framework 
that can not only deal with economic and reliability 
issues in the power system, but also It is able to 
adapt to changes in electricity markets and the 
volatility of renewable energy. It is expected that 
this method will maintain the stable operation of the 
power system while reducing the power generation 
cost of the power system. 

 
 
3 Power Economic Dispatch Method 

 Integrating Differential Evolution 

 and Improved PSO 
For ED problems in power systems, traditional 
optimization methods often face challenges such as 
high computational complexity and slow 
convergence speed. To solve these problems, the 
experiment proposes a hybrid optimization method 
that combines DE with mutation strategy and an 
improved PSO algorithm. This method, it aims to 
improve the efficiency and performance of the ED 
of the power system while ensuring the robustness 
and practicality of the algorithm. 

3.1  Electric Power Load Economic Dispatch 

 Method based on Moderate 

 Interference- PSO Algorithm 
In the operation management of modern power 
systems, the economic load dispatch (ELD) problem 
is crucial, [18]. The goal of ELD is to adjust the 
output power of the generator set to minimize the 
operating cost of the entire system while satisfying 
system stability and operating constraints. The 
power market and the gradual integration of 
renewable energy are developing, causing ELD 
problems have become increasingly complex and 
changeable, and traditional optimization methods 
have been unable to meet the high-efficiency and 
high-precision dispatch requirements. Therefore, 
researching and developing new optimization 
algorithms to improve the solution quality of ELD 
problems has become an important direction in 
power system research. The PSO algorithm has been 
widely utilized because of its simple principle and 
excellent parallel performance. The running process 
of the PSO algorithm is Figure 1 (Appendix). 

However, when dealing with the ELD problem 
of power systems, the traditional PSO algorithm 
may face premature convergence and insufficient 
exploration capabilities, which limits its application 
effect in complex power dispatch tasks. To 
overcome these limitations, the experiment 
proposed a particle swarm algorithm (Moderate 
Disturbance Particle Swarm Optimization, MDPSO) 
based on the moderate interference mechanism. This 
algorithm introduces a novel interference strategy 
based on traditional PSO, which moderately disturbs 
the position of particles to prevent the algorithm 
from prematurely converging on the local OS and 
enhance the GSC of the algorithm, [19]. Through 
this moderate interference, particles can fall into the 
local optimum and explore a broader solution space, 
thereby finding more economical and reliable 
solutions to the power load ED problem. First, to 
ensure that the system can always provide a large 
power to the particles during operation and support 
the particle swarm to maintain the probability of 
jumping out of the current local search area, the 
experiment proposes a moderate interference factor, 
which is defined in Equation (1). 

 
  0, 1 /abs normrnd rand             (1) 

 
In normrnd Equation (1), represents the random 

sequence of the composite Gaussian distribution; 
1 represents the standard deviation of the Gaussian 

distribution; rand represents the random function. 
Considering rand the characteristics of the function, 
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the experiment also proposes a moderate random 
search function  . The resulting particle swarm 
iterative calculation is shown in Equation (2). 

 
 ( 1) * ( )

id d id id
x t Q mbest x t             (2) 

 
In Equation (2), the first parameter 

d
Q provides 

a very effective direction for particle evolution; the 
second parameter  * ( )

id id
mbest x t   ensures the 

searchability of the entire particle. Which 
 represents the only control parameter in the 
MDPSO algorithm. The function of this parameter 
is similar to the inertia factor. The value has a direct 
impact on the individual's searchability. Based on 
the above, the experiment assumes that the power 
system grid connection framework is shown in 
Figure 2 (Appendix). 

The ED problem of the power system aims to 
reasonably allocate the active power output of 
different generating units to minimize the total PGC 
of the system under the premise of meeting specific 
technical and safety constraints. This problem is 
usually expressed through a mathematical model, 
and its goal is to minimize the PGC. The specific 
objective function is Equation (3). 

 
2

1 1
min ( )

g gn n

i i i i i i i
i i

F F p a p b p c
 

    
         

(3) 

 
In Equation (3), 

g
n represents the total number 

of generating units in the system; F represents the 
total PGC; 

i
p  is the output active power of the unit 

i ; ( )
i i

F p  is the power consumption characteristic 
curve of , ,

i i i
a b c the generating unit; i all are i the 

cost coefficients of the unit. In the actual operation 
of power systems, the impact of the valve point 
effect must be taken into consideration. Therefore, 
for the unit that takes the valve point effect into 
account i , the corresponding consumption 
characteristic function is calculated as shown in 
Equation (4). 

 
2

min

( )
*sin( *( ))

i i i i i i i

i i i i i

F p a p b p c V

V e f P P

    


               
(4) 

 
Equation (4), 

i
V represents the change in 

consumption characteristics caused by the valve 
point effect; ,

i i
e f represents the parameter; 

mini
P represents i the lower limit of the active power 
output of the first generating unit. When dispatching 
the power system, constraints such as unit operation 

limitations and power balance need to be taken into 
consideration. The power balance constraint needs 
to ensure that the total active power of the generator 
is equal to the total load of the system plus the 
network loss, where the network loss is generally 
calculated based on the generator power, 
transmission line parameters, and network structure. 
The overall conditional constraint processing 
operation is shown in Figure 3 (Appendix). 

Analyzing Figure 3 (Appendix), the constraints 
of power balance are defined in Equation (5). 

 

1

gn

i D L
i

p P P


 
                        

(5) 

 
In Equation (5), 

L
P  is the total network loss of 

the system; 
D

P represents the total load of the 
system. The upper and lower limit constraints of the 
unit output are shown in Equation (6). 

 
min maxi i i

p p p                         (6) 
 

Then the constraints of the unit’s operating 
restricted area are obtained, as shown in Equation 
(7). 

 
min ,1

, ,

max
,

2,3, , ; 1,2, ,

i

l

i i i

u l

i i j i i j i g

u

i m i i

p p p

p p p p j m i n

p p p

  


    


      

(7) 

 
In Equation (7), mini

p  and maxi
p  are the 

minimum and maximum technical output of the i  
unit. ,

l

i j
p  and ,

u

i j
p  are the lower and upper limit of 

the j  and i  unit's working restricted area. 
i

m  
represents the quantity of the i  unit's working 
restricted area. B  matrix is the loss coefficient. 
 

3.2  Electric Power Load Economic Dispatch 

Method based on Mutation Strategy-DE 

algorithm 
In the power system, since most power points and 
load centers are located in different regions and 
cannot be stored in large quantities, their 
production, transmission, distribution and 
consumption are all completed at the same time and 
organically form a whole in the same region. In the 
process of power system operation and production, 
multiple extreme values will be generated. For 
functions with multiple local extreme points, it is 
easy to fall into local extreme values when using the 
PSO algorithm to solve them, and we get Not 
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getting the correct result. Therefore, the experiment 
then introduced the DE to solve it. Different from 
the PSO, the DE mainly contains three steps of 
operations, namely mutation, crossover and 
selection. The position update of particles does not 
rely on speed, but implements learning and position 
update by performing differential operations on 
three randomly selected particles. This mechanism 
allows particles to learn from each other and move 
toward convergence together. In essence, DE is a 
search algorithm that adopts a greedy strategy and 
follows the principle of optimization and retention, 
[20]. The DE algorithm has strong GSC and is easy 
to understand and implement. Therefore, the 
algorithm has been widely used in many fields. The 
running steps of the DE algorithm are shown in 
Figure 4 (Appendix). 

During the DE operation, a set of original 
populations is first randomly produced. Assume that 
the particle size is NP and the corresponding 
dimension is D . The obtained initialization 
calculation is Equation (8). 

 
 1 2, , , Tt

i i i id
X x x x                    (8) 

 
In Equation (8),  represents D the feasible 

region of the optimization problem in dimensions; 
i represents the th i individual particle; t represents 
the current iteration as the th t generation; i the size 
and dimension of the population remain unchanged 
during the optimization process of particles. Then 
the particles enter the mutation process.  

For each mutated particle t

i
X , three different 

particles are randomly selected through the DE 
calculation process , ,a b c . The mutation vector is 
Equation (9). 

 
 *t t t t

id ad bd cd
V X F X X                (9) 

 
In Equation (9), d  means the current number of 

dimensions. F  is the crossover factor, which 
controls the amplification of the deviation vector 
between particles. In addition, to positively improve 
the diversity of particles, a crossover probability is 
introduced in the experiment CR . A new test vector 
is generated through Equation (10), and the 
calculation is Equation (10). 

 

1,2, ,

t

idt

id t

id

V rand CR or j randr
U

x rand CR or j randr j D

  
 

  

(10) 

 

In Equation (10), rand  is a random number 
with a value range between [0,1]; CR the value 
range of is also [0,1]. randr It represents a certain 
number of dimensions randomly selected between 
[1, D]. This parameter can ensure that the test vector 

i
V gets at least one dimension from it. Otherwise, 
there will be no crossover, that is, no new vector 
will be generated. Then the DE algorithm begins to 
enter the selection operation. If and only if the 
generated test vector t

i
U is better than the original 

vector, it will be saved in the next generation of 
particles, otherwise the particles will not be updated. 
Finally, in the DE process, when a certain 
dimension of the generated vector is not within the 
feasible region, it is determined that the vector 
exceeds the boundary range, and the dimension 
needs to be reinitialized. The optimal individual 
information copying mechanism in the DE is Figure 
5 (Appendix). 

In Figure 5 (Appendix), the execution process of 
the DE algorithm can be divided into two basic 
stages: the generation of the initial population and 
the iterative update of the population. In the initial 
stage, the algorithm constructs an initial population 
by randomly generating a series of initial solutions. 
Subsequently, in the iterative evolutionary update 
stage, the population is promoted to develop in a 
direction that satisfies the termination conditions. In 
the application and research of DE algorithms, how 
to properly balance the GSC and local search 
capabilities has always been a research hotspot.  

Improving the diversity of individuals in the 
population is crucial to enhancing the algorithm's 
optimization capabilities in the solution space and 
improving GSC performance and reliability. At the 
same time, ensuring that the population can search 
efficiently near the current OS is the key to 
enhancing local search capability., is also an 
effective means to improve search efficiency. 
However, how to find a balance between the two is 
a problem, [21], [22]. 

To this end, many scholars have proposed 
various improvement strategies. Based on the above 
background, and due to the slow convergence speed 
of the DE when solving complex functions, the 
experiment combined the characteristics of the 
existing improved DE and designed a new DE 
algorithm based on Local Mutation Differential 
Evolution Algorithm (LMDE). This algorithm aims 
to lift the algorithm's searchability in the solution 
space by introducing a local mutation strategy. In 
the LMDE algorithm, function optimization adopts 
the definition of state generator (see equation (11)). 

*x x v                            (11) 
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Equation (11),  represents the disturbance 
amplitude parameter; v represents random 
disturbance. Random perturbations in DE generally 
obey Gaussian, Cauchy distribution and different 
uniform distributions. The function value generated 
by the Cauchy mutation function is more accurate. 
Applying this function to the evolutionary algorithm 
can ensure that the group has more opportunities to 
search the local space. Therefore, the Cauchy 
function was selected as the variation factor of the 
particle swarm in the experiment. The Equation of 
the Cauchy function is equation (12). 

2

2

2 2

1( ) exp ,
22

1( ) * ,

x
f x x

t
f x x

t x





  
       

  



             

(12) 

 
Equation (12),  and t represent the variance of 

Gaussian and Cauchy distributions. In the Cauchy 
function distribution, the Cauchy function can 
produce smaller function values under the same 
conditions, which means that the Cauchy function 
has a greater probability of jumping out of the local 
search point. Based on the above equations, the flow 
of the improved LMDE algorithm can be obtained, 
as shown in Figure 6 (Appendix). 

As can be seen from Figure 6 (Appendix), the 
method constructed in the experiment first initializes 
the parameters and the population, then calculates 
the fitness values of the individuals in the 
population, and ascends, descends and sorts the 
individuals according to their fitness values to 
obtain the optimal fitness value. Then implement the 
optimal individual information copy mechanism to 
find the position of the optimal individual, and 
integrate the mutation operation of Cauchy 
perturbation to reduce the probability perturbation 
rate, thereby utilizing the intersection between the 
obtained central solution and the optimal solution 
improvement step operate. Then, based on the 
selection operation of the greedy strategy, the 
control parameters are adaptively adjusted to obtain 
the maximum number of evolution iterations. If the 
maximum number of iterations is not met, it is 
judged whether G is equal to G+1, and then the 
fitness value of the individual is calculated, and the 
cycle is repeated until the maximum number of 
iterations is met, and the optimal solution is finally 
output, and then the process ends. 

The data were analyzed and processed through 
SPSS 22.0 software. For quantitative data that meet 
the conditions of normal distribution, the 
independent sample t test method is used. Statistical 

significance is judged by P value less than 0.05. If 
P<0.05, it means that the difference between the 
data is statistically significant. 

 
 

4 Performance Testing and 

 Application Analysis of Improved 

 Power Economic Dispatch 

 Methods 
 
4.1  Performance Test 
To verify the superior performance of the method 
constructed in the experiment, a power system ED 
hybrid method that integrates gain sharing 
knowledge algorithm and differential evolution 
(GSK-DE), a wind power comprehensive ED 
system based on artificial bee colony algorithm and 
differential evolution (ABC- DE), industrial energy 
scheduling method based on reinforcement learning 
and differential evolution (RL-DE) are compared 
with the constructed method, [23], [24], [25]. The 
experiment was conducted in a professional 
laboratory in China. The study described the 
experimental data and results in detail, and ensured 
that all data were accurate and repeatable. Before 
conducting experiments, it is necessary to ensure 
that the simulation environment and parameters of 
all algorithms are consistent to ensure that the 
obtained data are not affected by accidental errors. 
See Table 1 for relevant parameter settings. 
 

Table 1. Settings of related parameters 
Project Parameter 

Network architecture Pytorch v1.2.0 
Experimental 
environment COREi7 

O perating system Windows 10 
Memory 8GB 

f 3.41GHz 
Main frequency 3.40GHz 

simulation software Matlab R2018b 
 
The experiment uses two benchmark test 

functions in CEC2017 to conduct simulation 
experiments on the four algorithms. The selected 
benchmark functions are F11 and F21 respectively. 
Among them, F11 is a hybrid function and F21 is a 
combination function. First, the loss function values 
of the four algorithms on two different functions are 
compared. The specific results are shown in Figure 
7 (Appendix). 

Figure 7(a) (Appendix) shows the changes in 
the loss function values of the four algorithms on 
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the F11 test set. It can be found that as the number 
of system iterations increases, the loss function 
values of all algorithms begin to decrease. When the 
system iteratively runs for the 26th time, the loss 
function of the IDE-PSO begins to have a minimum 
value, and the value becomes stable in subsequent 
runs. When the GSK-DE, ABC-DE, and RL-DE 
algorithms become stable, the system iterates to 31, 
40, and 48 times respectively. Figure 7(b) 
(Appendix) shows the changes in loss function 
values of different algorithms on the F21 test set. It 
can be observed that when the loss function value of 
the IDE-PSO tends to the target value of 0.00, the 
iteration coefficient of the system corresponds to 32 
times. In addition, when the number of iterations of 
the system is 40, 50, and 61 times respectively, the 
GSK-DE, ABC-DE and RL-DE algorithms begin to 
move toward the minimum loss function value. 
There is a certain gap between the loss function 
value of IDE-PSO algorithm and the loss function 
value of other algorithms (P>0.05). It can be run on 
different test sets and has superior robustness.  

To reduce the accidental error of the 
experimental results, the experiment began to 
compare the average time-consuming of the four 
algorithms running on different test sets. The 
specific results are shown in Figure 8 (Appendix). 

Figure 8(a) (Appendix) shows the running time 
on the F11 test set. As the number of iterations 
increases, the average running time of the four 
algorithms begins to change with different 
amplitudes. However, the run time of the IDE-PSO 
shows a significant reduction trend. When the 
iteration is 150, the mean time consumption of the 
IDE-PSO begins to tend to a stable value and has a 
minimum time of 0.153s. The average time taken by 
the GSK-DE, ABC-DE and RL-DE algorithms is 
significantly greater than that of the IDE-PSO, and 
during the entire iteration process, the average time 
taken has been increasing and is unstable. Figure 
8(b) (Appendix) shows the running time of the 
algorithm on the F21 test set. During the entire 
iteration process, when the system iterated 35 times, 
the average time consumption of the IDE-PSO was 
0.254s; it has been on a decreasing trend since then; 
when the number of iterations was 210, the IDE-
PSO had the minimum running cost. time, it is only 
0.117s. The other three methods are always more 
time-consuming than the IDE-PSO. In summary, the 
average running time of the IDE-PSO is 
significantly less than that of other algorithms, and 
it can reach a stable state in a very short time and 
respond quickly to power ED problems. Then four 
different algorithms were applied to two different 
power systems of a power company for testing. 

System 1 consists of 4 pure electric units, 2 
cogeneration units, and 1 pure thermal unit. The 
electrical load and thermal load of the system are 
600MW and 150MW respectively. This system only 
considers valve point effects and transmission 
losses. The population size is 100 and the maximum 
iteration is 500. System 2 consists of 13 pure 
electric units, 6 combined heat and power units, and 
5 pure thermal units. The electrical load and thermal 
load of the system are 2350MW and 1250MW 
respectively. This system only considers the valve 
point effect and does not consider transmission 
losses, with a population size of 100 and maximum 
iterations of 5000. The two systems were run 5 
times in cycles, and the changes in total costs are 
shown in Figure 9 (Appendix). 

Figure 9(a) (Appendix) shows the cost changes 
of different algorithms on System 1. When the 
system loop runs for the first time, the total cost of 
the IDE-PSO begins to approach the minimum 
value, which is only 1.01×10 4 US dollars; the cost 
value has tended to be stable since then. Figure 9(b) 
(Appendix) shows the total cost changes of different 
algorithms on system 2. When the IDE-PSO has the 
minimum total cost, the total cost at this time is 
5.80×10 4 US dollars, and the corresponding system 
loop runs for the second time. When the GSK-DE, 
ABC-DE, and RL-DE algorithms are run in the two 
systems, the cost is significantly greater than the 
IDE-PSO.  

 
4.2  Application Effect Analysis 
Combining the above analysis, the IDE-PSO has the 
superior optimization accuracy and convergence 
speed among the two systems. Then the pollutant 
emissions of the four algorithms after different 
iterations are compared. The specific results are 
shown in Figure 10 (Appendix). 

Figure 10(a) (Appendix) shows the changes in 
pollutant emissions when the four algorithms are 
iterated for 100 times. At the beginning of the 
iteration, the IDE-PSO was not significantly better 
than other algorithms; but at 25 iterations, the 
amount of pollutant emissions under the IDE-PSO 
was 33.8T/hour. This shows that the IDE-PSO is 
significantly better than other algorithms in reducing 
pollutant emissions. Figure 10(b) (Appendix) shows 
the change in pollutant emissions when iterating 200 
times. When the system iteratively runs for the 50th 
time, the amount of pollutant emissions under the 
IDE-PSO is 34.2T/hour. In the future, pollutant 
emissions will always be smaller than other 
algorithms. In summary, using the IDE-PSO can 
effectively reduce electricity costs and reduce the 
amount of pollutant emissions. Finally, the operating 
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power of each power generation equipment unit 
under optimal cost is analyzed. The specific results 
are shown in Figure 11 (Appendix). 

It can be found in Figure 11 (Appendix) that as 
time goes by, wind power generation power shows a 
trend of first increasing and then decreasing. Among 
them, the photovoltaic power generation increases 
rapidly between 8:00 and 19:00, has the maximum 
power generation between 13:00 and 14:00 at noon 
time, and then begins to show a decreasing trend. 
The load power has been fluctuating throughout the 
process; the battery begins to store electrical energy 
when power consumption is low, and sells power 
during peak power consumption, making full use of 
the peak-valley difference to reduce the operating 
cost of the system. Under the operation of the IDE-
PSO, the power system can ensure optimal 
operating power of each power generation 
equipment unit based on ensuring optimal cost. 

 
 

5  Discussion and Conclusion 
 

5.1  Discussion 
The study proposes an innovative power economic 
dispatch method by integrating the differential 
evolution algorithm (DE) and the particle swarm 
optimization algorithm (PSO). This method not only 
improves the efficiency of power dispatching and 
reduces operating costs, but also improves the 
stability and reliability of the power system through 
optimization algorithms. The specific contributions 
can be divided into two points: First, the fusion of 
two optimization algorithms was successfully 
realized, making full use of the advantages of DE in 
global search and the characteristics of PSO in local 
search efficiency. Second, to solve the problem of 
slow convergence speed of the differential 
algorithm, it is proposed to introduce gbest into the 
mutation strategy of DE, so that particles can learn 
from other particles while also learning from the 
current global optimal. This strategy effectively 
improves the convergence speed and has good 
testing results on the data set. 

Although the research has achieved certain 
results, there are still some limitations. For example, 
the performance of the algorithm may be affected by 
parameter settings, and further research is needed to 
determine the optimal parameter configuration. In 
addition, the study was tested on different data sets, 
but may require further adjustment and optimization 
under specific grid structures or specific electricity 
market environments. In response to the above 
limitations, future research work can further study 
the automatic adjustment mechanism of algorithm 

parameters to reduce the demand for computing 
resources and improve the adaptability and 
robustness of the algorithm; at the same time, 
consider incorporating more goals (such as 
environmental impact , integration of renewable 
energy, etc.) into the optimization framework of 
power economic dispatch, and the proposed method 
is tested in a wider range of actual grid 
environments to verify its applicability and stability 
under different conditions. 

 
5.2  Conclusion 
As the scale of power systems expands and the 
operating environment becomes more complex, 
traditional ED methods face challenges when 
solving high-dimensional, nonlinear, and multi-peak 
optimization problems, especially the contradiction 
between GSC and convergence speed. To address 
the above problems, a hybrid algorithm grounded on 
DE and PSO was proposed in the experiment to lift 
the efficiency and accuracy of power ED. The 
proposed hybrid algorithm cleverly integrated the 
powerful GSC of DE and the fast convergence 
characteristics of PSO to form a new iterative 
update strategy. The data shows that on the F11 test 
set and F21 test set, when the iterations are 150 and 
35 times, the mean run time of the IDE-PSO is 
0.153s and 0.254s respectively; while the average 
time-consuming of other algorithms is significantly 
is greater than 0.300s. When the total cost of the 
IDE-PSO on system 2 has a minimum value of 
5.80×10 4 US dollars, the corresponding system 
cycle runs to the second time. When the power 
generation equipment is running, under the 
operation of the IDE-PSO, the power system always 
maintains stable operation and the equipment has 
optimal operating power. In summary, the IDE-PSO 
not only improves the performance of the ED of the 
power system but also has strong practicability and 
promotion potential. However, the dynamics and 
uncertainty of power systems require dispatch 
methods to be more adaptable and robust, which is 
also a focus of future research. Future work can 
focus on optimizing the performance of the hybrid 
algorithm and exploring its application in more 
complex power system scenarios. 
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APPENDIX 
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Fig. 1: The running process of PSO 
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Fig. 2: Framework of power ED system 
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Fig. 3: Conditional constraint processing flow 
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Fig. 4: Running steps of DE algorithm 
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Fig. 5: Optimal individual information replication mechanism 
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Fig. 6: Electric power ED method based on IDE-PSO algorithm 
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Fig. 7: Comparison of loss function values of different algorithms on two test functions 
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Fig. 8: Changes in average running time 
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Fig. 9: Changes in the total cost of operating the two systems 
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Fig. 10: Comparison of pollutant emissions from different algorithms 
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Fig. 11: Operating curve of power generation equipment 
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