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Abstract: - In this study, we discuss aspects of success in the implementation and sustainability of an EMS in 
air pollution monitoring, such as the utilization of Internet of Things technology, location choice, sensor 
installation, support structures, and the capacity for future addition. It therefore is designed to plot the temporal 
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changes of environmental factors such as contaminants and weather using synthetic data generation and 
assessments. This paper proves that air pollution is rather variable over the course of the defined time and 
highly depends on population density, industrial output, and green zone coverage. The paper deals with the 
quantitative and qualitative sensor deployment as well as sound engineering for data acquisition and 
transmitting; therefore the issues of scalability, modularity, and low cost are considered relevant to enhance 
more efficient and inexpensive sensing systems. In fact, data acquisition, as well as data communication and 
storage qualities, measurements of sensors, and analysis of their specifications such as their accuracy 
calibration, and coverage are also captured in the study. It complements and imposes the notion of sensitivity, 
accuracy, and requirement for maintenance during the organization’s information exchange, cloud storage and 
data dependability, and measures of data superiority. It therefore covers source identification of counter various 
polls through source apportionment and health effects of the resultant pollutants underlining the significance of 
effective antipollution measures. From policy and regulation impact analysis, a number of suggestions would 
need to be made regarding fairly balanced policy effort distribution between the policy and compliance, the 
effectiveness of the interventions, and the number of times the general public is to be made aware. These 
findings contribute to increasing the available knowledge on environmental monitoring activities and offer 
delicate recommendations for policymakers and other stakeholders regarding the improvement of the quality of 
the environment and the population’s health. 
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1   Introduction 
The introduction brings enlightenment to the area of 
concern; that is UAQM in view of rising trends in 
urbanization as well as technological advancement. 
From the 4IR, it underscores the existing methods 
that occur in UAQM, they are regulation monitor, 
data from satellites, IoTs, and AI are embraced. 
Based on data derived from scientific databases and 
‘grey literature’ encompassing governmental and 
international sources the paper stresses the role of 
urban computing for radical innovations in UAQM 
approaches. The current positive model directly 
supports integrated technologies in the observed and 
actual governance actions and in empowering 
citizens with decision-making tools and information. 
The proposed MultiTechnology offers the ground to 
align the services of UAQM against the constantly 
evolving smart city setting to achieve highly 
operational solutions for addressing air quality as 
may be needed, [1]. 

Why it is impossible not to have dynamic traffic 
management (DTM) systems to minimize the 
negative effects of traffic congestion in the urban 
areas concerning pollution of the air mainly. It 
exposes the aspect that such systems rely on traffic 
and environmental monitoring strategies and 
approaches. This paper provides a new solution to 
the above challenge through recommending a low-
cost IoT system capable of achieving both, traffic 
movement and AQI. An estimation of traffic flows 
in real-time is performed and the motion vectors are 

applied to the video processing at the compressed 
domain on embedded architectures. Further, it does 
not require calibration of AQI and the embedded 
device measurement challenges inherent to AQI 
estimation for pollutant gases using machine 
learning regression techniques to predict the AQI. 
When implementing the planning in various 
experimental scenarios in different environments of 
a city environment where different climate systems 
and Traffic conditions are incorporated the above-
mentioned formation imposed works as the 
effectiveness of the designed architecture proposed. 
This work evaluates the performances of several 
regressors adapted from machine learning 
techniques namely Linear Regression (LR), 
Gaussian Process Regression (GPR), and Random 
Forest (RF) through comparatives on average 
performances of ballparking AQI in terms of Mean 
Absolute Error (MAE), Root Mean Square Error 
(RMSE) together with coefficient of determination 
(R-squared) measurements, [2]. 

In combination with population growth other 
human activities within the environment especially 
in the areas of rapid urbanization have greatly 
influenced the air quality of the regions. AQI or the 
Air Quality Index is very vital in providing a 
barometric of how healthy a certain extent of air 
pollination is. Citizens are to be informed by public 
authorities about the state of air quality, however 
large amount of pollutant information is ambiguous 
and challenging to act upon. Most of the countries 
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have adopted daily indices which indicate, for 
minutes, The Air Quality in several large city areas 
of use to the public. As for the entire Mediterranean, 
the goal of developing a single indicator for public 
communication has not been achieved fully. The 
AQI is used in this study as a basic and real-time 
method of informing the public on the quality of air 
being breathed. Based on this, the study evaluates 
the trends in AQI for the years 2013, 2014 and 2015 
in order to forecast the air quality with objectives of 
preserving human health and ecology. The evidence 
for this research framework should extend to other 
countries of the world including municipal regions 
to enhance the understanding of the populace and 
enhance the quality of the environment, [3]. 

The paper begins with a description of the 
problems occurring when applying the maximum of 
sub-indexes that represent pollutants; it does not 
take into account the accumulative effect of several 
pollutants on human health. The better AQI 
technique that we proposed in this paper 
incorporates these additive effects to present a more 
comprehensive view of air quality and its effects on 
health. This paper fills the gap in previous literature 
by developing an enhanced model of the air quality 
index with PM10, SO2, NO2, and O3, where daily 
cardiovascular and respiratory admissions in Hong 
Kong from 2001 to 2012 are used as a dependent 
variable. This is an index that employs the multiple 
pollutants expressed in the power function of root-
mean-power concentrations to achieve the least of 
the prediction errors and these have been developed. 
Comparisons made between the states reveal the 
new AQI pollution bands align with health 
consequences and had a constant dose-response 
relationship as evidenced in this study. Comparison 
with AQIs from China, the UK, and the US can 
justify the application of the proposed method. This 
work presents a proper background for enhancing 
the computation of AQI to do the needful and 
enhance the defense of the populations’ health and 
air quality of numerous cities, [4]. 

Scientific analysis also suggests that IAP has a 
negative impact on public health and is a cause of 
factor of thousands of deaths annually. Drawing 
from the current literature, this paper provides a 
synthesis of the main sources and indoor pollutants, 
health consequences, and conditions; SBS and BRI. 
This effort is applied to determine the diversity of 
the sources in an attempt to address the strategies 
toward the reduction of IAPs and an enhancement of 
the IAQ. The review of pollutants emissions 
evaluates the several effects of the pollutants on the 
health of the people and the controversy concerning 
the relation of illness to IAP. Further, the techniques 

involved in the control and reduction of each of the 
different types of pollutants as developed in recent 
years are explained. In detail, the development of 
advanced materials for sensors, IAQ control 
systems, and smart homes is identified as the fourth 
strategy for controlling IAQ in the future. This 
paper proves that embracing such new technologies 
could improve better indoor environment for the 
wellbeing of humans as such new technologies 
should be adopted, [5]. 

Since it defines control strategies, knowledge of 
the source of pollution is essential in the regulation 
of air pollution. The current paper can be best 
described as a literature review of the most 
commonly utilized source apportionment methods 
employed in air quality analyses. The study 
therefore is able to juxtapose theoretical statements 
with experience findings and thus illustrate how 
different approaches to a problem lead to different 
conclusions concurrently the study enhances 
appreciation of the underlying assumptions of 
methodologies. These assumptions are crucial in the 
generality and credibility of the method, hence a 
threat if applied in other fields. From the review 
scenario, the incremental approach, which is the 
least complex, does not afford satisfactory provision 
of sound air quality planning. However, receptor 
models and tagging methods within air quality 
models particularly for specific pollutants are 
appropriate but limited in this way. The first class of 
models that can make a direct estimate of the effects 
of pollution is considered more suitable achieve for 
achieving integrated air quality planning. However, 
the efficiency is based on the evaluation in order to 
check if such trends, for example, correspondingly 
reflect modern tendencies in chemistry. Therefore, 
this analysis brings a plea for appropriate selection 
and application of source-apportionment techniques 
to improve ultimately air-quality management, [6]. 

Therefore, the identification of sources of VOCs 
has an enormous value in confirming the emissions 
and the impacts of VOCs on the quality of the urban 
air. In this paper, possible VOC sources in Seoul 
have involved the use of receptor models, such as 
PMF and CMB together with the chemical transport 
model. For this purpose, the data obtained from four 
sites in Seoul, South Korea between 2013-2015 
were adopted to compare the potentials of varying 
emission sources of VOCs on ambient O3 and 
PM2.5 and their associated health effects during a 
photochemically active sampling campaign in June 
2015. The CMAQ and BenMAP modeling on the 
rate of pollution of the selected VOCs reveals that 
solvent use, and on-road mobile emissions are the 
major sources of VOCs in Seoul. Therefore, 35% of 
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VOCs are contributed by other factors apart from 
Seoul, supporting the idea that regional sources 
occupy a significant fraction of the VOCs. Solvent 
use accounted for 3.4% of the increment in daytime 
O3 formation while the contribution of solvent use 
for PM2.5 formation was negligible. BVOCs made 
minimal impacts on the formation of O3 and 
reasonable impacts on PM2.5. This research paper 
computes the Recurring high health costs due to 
VOC-induced O3 and PM2.5 identified major 
deaths associated with solvent use emissions. This 
comprehensive review supports the need for 
designing appropriate strategies to control VOC 
emissions to mitigate the effects that are brought by 
air quality and health in enormous cities like Seoul, 
[7]. 

In the recent past, severe pollution incidents 
have been more rampant in India, especially in New 
Delhi thus the need to identify the sources of the 
pollutants for parade in their emission. This study 
uses source-oriented versions of the CMAQ model 
linked to the EGDAR inventory to apportion eight 
important source categories: energy, industry, 
residential, on-road, off-road, agriculture, open 
burning, dust emissions for PM2.5 and their 
constituents PPM and SIA with sulfate, nitrate, and 
ammonium ions. The analysis focuses on Delhi and 
three surrounding cities: Had for Chandigarh, 
Lucknow, and Jaipur cities for the year 2015. Based 
on this analysis, industrial and residential sectors are 
found to regulate PPM mass meeting more than 
60% of the total proportions. That has influenced 
PPM levels of energy and industry below south 
Delhi reaching 200 μg/m³ in winter seasons. SIA 
densities are much less diverse and southern Delhi 
and central Uttar Pradesh show high density of SIA 
mainly from energy and industrial and residences 
other than aviation. The agriculture sector has made 
very exhaustive contributions to SIA as compared to 
PPM and on-road and open burning sources have 
influenced SIA more than PPM. Out of all the 
sectors, the residential sector has the highest 
percentage of PM2.5 emissions in North India 
followed by industry, energy, and agriculture. 
Delhi’s 80 % of PM2.5 was from industry and 
residential activities and hence needs to be 
addressed in these two sectors to improve air 
quality, [8]. 

In this work, the case of PM2.5 pollution is 
examined in 25 provincial capitals and 
municipalities in China, and the main emission 
sources are identified using the source-oriented 
CMAQ model. By identifying the briefly observed 
yearly PM2.5 levels, the nine clusters were created 
through hierarchical clustering analysis, the northern 

cities had the highest average of annual PM2.5 
(range: 81-154), and the southern and the east 
coastal cities had the minimum annual PM2.5 
(range: 27- 57). This was while the seasonal 
differences indicated moderate to high-levellevels of 
PM2.5 during the winter season. The highest BC 
values were recorded in the industrial zones of the 
cities in groups C, B, and A, whereas the highest 
OC values were observed in the same groups in an 
inverse order to the values in Industrial and 
residential emission sources where the main source 
of PM2.5 in all the city groups contributing annually 
between 25.0 and 38.6% and 9.6 to 27%, 
respectively. Other significant sources inter alia 
included power plants, agricultural ammonia (NH3), 
windblown dust, and secondary organics aerosol 
SOA. More specifically, secondarily generated 
PM2.5 accounted for 47 – 63% of the yearly PM2.5 
emissions and 50 – 70% on high emission days. 
Even less than 8 % yearly PM2.5 portions 
originated from transportation, sea salt 2 %, and 
Open burning 6 %, the open burning, SOA, and 
wind-blown dust perhaps may play relatively larger 
roles on high pollution days or during the spring 
season. The further works built important 
prerequisite for applying certain steps to reduce the 
annual concentration of PM2.5 and the number of 
pollution days taking into consideration features of 
pollution in every area of China, [9], [10]. 

Managing the pollution of air in and around 
structures becomes virtually impossible with 
increased rates of deaths resulting from diseases 
caused by outdoor air pollution standing at millions 
per year. The contributions made by local emissions 
to direct years of life lost from the damages have 
been measured by prior studies, but pollution 
transport and international trade are no longer small 
additions to impacts that directly affect local 
people’s air quality and health. Exports are also a 
contributor to emission externalization in that 
production of products in one country brings about 
emissions as well as resultant health effects in 
another country. While there are such regional 
reviews of these dynamics, a global comparative 
assessment of the impacts on health resulting from 
globalization through trade and transboundary 
transport of air pollution has not been done. 
Drawing on four global models embedded in this 
paper, years of life lost due to premature mortality 
caused by atmospheric transport and production and 
consumption-based emissions of PM2.5 are 
evaluated. The observations made in this research 
indicate that out of the total global premature 
mortality of 3,450,000 from PM2.5 pollution in 
2007, approximately 12 % resulted from pollutants 
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from other zones and 22% from trade. In particular, 
cross-border PM2.5 pollution decreased the health 
amps in other regions, including western Europe and 
the USA, and conversely. These findings describe 
the main impacts of PM2.5 emission concerning 
int’l trade across borders compared to atmospheric 
pollutants’ long transport. This is an illustration of 
the fact that there is a need for international 
collaboration on air management with a view to 
abating the numerous health impacts arising from 
air pollution, [11], [12]. 
 

 

2    Literature Survey 
Work on the present time period  topay more 
emphasis on global air pollution and where new 
monitoring systems are needed. Current approach's 
drawbacks include low accuracy, and poor 
sensitivity with the ability to deliver real-time 
information which needs to be enhanced. In reply, it 
provided a three-phase air pollution monitoring 
system on the Internet of Things (IoT) basis as 
follows: In our proposed design we have used gas 
sensors, Arduino Integrated Development 
Environment, and Wi-Fi modules in an IoT plant 
and travel kit. Gas sensors feed data on the real-time 
concentration of gases in the atmosphere; these 
details are transmitted on the Arduino IDE and 
forwarded to the cloud via Wi-Fi. Moreover, it 
presents the IoT-Mobair which is an Android 
application thatlets the users control the air quality 
remotely. That is why, intending and working like 
Google’s traffic predictive model, IoT-Mobair 
predicts pollution levels en route and triggers high-
level alerts. Besides, the elaborated system allows 
producing the forecast of future AQI levels for using 
in environmental and health policy. On this basis, 
this research work will make a contribution towards 
a reduction of existing gaps in monitoring of air 
pollution for improved decision-making and 
activity, [13]. 

The paper of Air pollution remains a problem in 
China with hefty effects on the people of this 
country and the climate too. Nonetheless, current 
literature lacks elaborate investigations of regional 
and temporal distributions of the major air 
pollutants in the country. Based on the over 300 
ground observation stations of air quality across 
more than 300 cities in China from May 2014 to 
December 2018, this study attempts to provide 
systematic and quantitative descriptions of the basic 
characteristics and temporal variations of the air 
pollution level in each of the seven regions in China. 
For example, overall results are marked by 
reduction of air pollutants from 2014 to 2018 due to 

emission control and alterations in climate. 
However, the present work focuses on an ever-
increasing trend in O3, which suggests new 
challenges in the context of air quality control. 
Spatially even though some pollution is relatively 
homogenous other of its parts are spread through the 
different regions in different varieties of hot spots 
depending on the amount of emissions. Thus, the 
North China Plain and the central and western 
Xinjiang Province are outlined as the areas of more 
pollutive attention. The given research is of great 
significance to society since the paper offers a broad 
spectrum of data and findings concerning the actual 
state of the problem of air pollution in China and 
helps develop the strategies and policies for the 
preservation of the environment in the country, [14], 
[15]. 

In the case of affordable sensors, focus on the 
prospects associated with enhancing the spatial 
resolution of air quality sensing in city 
environments. However, data measured from such 
sensors is usually deemed imprecise due to internal 
constraints and the fact that the sensors are seldom 
deployed at a steady rate in terms of time or spread 
across space. In response to this challenge, this 
study recommends a data fusion method grounded 
in geostatistics that would incorporate data from a 
network of cheap sensors with spatial data gained 
from an urban air quality model. Employing 
Gaussian nitrogen dioxide dispersion data with 
mean values obtained in January for the city of 
Oslo, Norway indicates the ability to depict precise 
hourly concentration fields through aggregating 
model-generated spatial distribution data with data 
gathered by the sensor. In the case of the adopted 
fusion method, the degree of achieved accuracy is a 
function of an observation quantity, its distribution, 
as well as the type and magnitude of uncertainty 
involved along with the capacity or potentiality of 
representing urban pollution. Regarding the 
performance of the present system in recreating city 
averages and daily cycles of nitrogen dioxide, it has 
been positively compared with data from the 
certified monitoring stations. When used together 
with the complete information of various sensors 
and the static model of the dataset this approach 
offers a valid method with which information can be 
mined from unreliable sensor measurements, [16]. 

Rising consciousness of the deterioration of 
environments in the global environment and the 
worsening of ill health through exposure to polluted 
air within urban centers has challenged innovation, 
policies, and the people, and researchers. Accurate 
identification of air quality at the same or near real-
time in a relatively smaller area is crucial to 
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minimize the effect of air pollution on health. 
Conventional methodology for monitoring ambient 
air quality for instance gaseous pollutants has 
entailed the use of few fixed air quality stations 
which are often scarce in the urban setting. 
However, major advances in micro-scale sensing 
technology over the last decade had dramatically 
altered this field by enabling the utilization of 
transportable sensing equipment on carriage 
platforms, particularly for traffic-related pollution 
identification. Therefore, this paper will seek to 
offer a review of the exposure models that employ 
data collected from the FMSs but at the same time 
make a point that the mobile sensing for air 
pollution lacks evaluation. However, there is a lack 
of such a recent outlook of air pollution monitoring 
methods covering both data acquisition and 
evaluation strategies This article seeks to address 
this gap. However, the present paper differs from 
the other papers in the literature since it will apply 
the traditional models on data obtained from both 
stationary as well as mobile sensors. Furthermore, it 
describes the further development of the study 
concerning the integration of data from static and 
mobile sensing to enhance pollution area and 
assessment. Therefore, this paper will seek to 
elaborate more on the current and probably the 
progressive course in air pollution monitoring in an 
effort to extend to the future, [17]. 

When reviewing the challenges of air quality, 
water pollution, and radiation pollution it is clear 
that there is a need to have a relevant monitoring 
system to enable the provision of a unitary growth 
of the society. Most environment monitoring has in 
the last couple of years moved to smart environment 
monitoring (SEM) due to improvements in IoT and 
advanced sensors. This manuscript is a review of 
first-generation studies and contributions in SEM 
specialty mostly on air quality, water quality, 
radiation pollution, and agricultural systems. For 
each of the uses, the review explains the kinds of 
sensors used, the ML, and the classification 
techniques used as well. Examining these segments 
in detail, the authors provide major 
recommendations and impacts of the points 
addressed by the focus on the discussion of the 
research trends and findings. Particular emphasis is 
given to the evolution that SEM has undergone 
because of the incorporation of sensor technology, 
IoT, and ML. Similarly, the manuscript articulates 
for designing of sound machine learning algorithms, 
and observed data filtering of WSN accompanied 
with policies for improving environmental 
assessment outcomes, [18]. 

In controlling resource consumption and 
enhancing the quality of the services offered by 
smart cities to the citizens, the environmental 
characteristics such as temperature, humidity, and 
CO2 have to be observed. This paper thus proposes 
a new IoT-based environment monitoring system 
more appropriate for this purpose. The system 
architecture consists of a transmitter node that sends 
data to the receiver node and data is stored and 
observed in a Graphical User Interface programmed 
in LabVIEW. Importantly, data is also transmitted 
along with a personal computer (PC) and an 
Android application for remote monitoring through 
smart phones. Based on a description of the 
proposed system, this paper assesses the design, 
implementation, and performance analysis of the 
proposed system. Therefore, the research that 
connects IoT technologies with LabVIEW-based 
GUI and mobile applications provides a good 
solution for real-time environmental monitoring in 
smart cities. This work enriches the understanding 
of the existing state of knowledge concerning IoT 
technologies for smart city support and offers 
direction on how to design and develop today’s 
monitoring systems to enhance post-sustainable 
characteristics of urban areas and the quality of life 
of the inhabitants of these cities, [19]. 

The continuous fight against pollution to argue 
that the effectiveness of the air quality monitoring 
systems remains a key to the health and wellbeing 
of the people as well as the environment. This 
research aims to react to the issues of greatest 
concern concerning the accuracy of air quality data 
and identification of sources of pollution. This paper 
presents a new approach that is expected to 
significantly improve the air quality monitoring 
device placement process and ultimately distribution 
effectiveness. Its inclusion of spatial distribution 
patterns reduces the capital costs of monitoring 
initiatives as well as their operational costs. The 
algorithm presented in the proposed paper uses a 
database of 300 days, while the study area covers 80 
km² of Durgapur city; the algorithm achieves a 
90%+ level of accuracy. Careful choices of the spots 
to install that algorithm guarantee that it captures as 
much data as possible but costs an arm and a leg. 
This advancement has potential for enhancing 
economically sustainable efficient pollution 
prevention measures and decisions on the 
distribution of resources within the affected areas 
experiencing environmental decay, towards shaping 
a healthier and sustainable population’s future, [20]. 
To meet the vulnerabilities characterized that arose 
from the current and emerging challenges of urban 
air pollution, this paper looks at the shortcomings of 
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the traditional monitoring systems and looks for 
new opportunities offered by the low-cost portable 
air pollution sensors. As mentioned with the 
conventional systems, despite the good accuracy 
they provide, particular lack of extensive spatial 
density and lower resolutions fail to provide 
accurate volume of pollutants. Building upon recent 
developments in low-cost sensor technology, this 
paper emphasizes the need for sensor calibration to 
reduce errors incurred by these sensors especially 
when operating under hostile conditions. Describing 
major error sources and reviewing the present 
calibration models and network recalibration 
approaches specific to various sensor distributions, 
the paper is based on the literature analysis. The 
paper provides a review and analysis of the current 
literature in order to present what has been done 
with the methods used and what has not been done 
as well as directions for future research involving 
the calibration of sensors. The goal of this work is to 
help improve outcomes for accurate and efficient 
mechanisms for air pollution monitoring, which are 
crucial for the protection of the public and cities 
against the negative impacts of pollution, [21], [22]. 

They analyzed the outdoor IoT-based air quality 
monitoring testbed developed in Uppsala, Sweden. 
Taking advantage of low-cost hardware components 
and free software, the IoT sensing unit presents a 
scalable and inexpensive approach for real-time 
measurements that could be used to supplement the 
existing tools and increase the extent of monitored 
settings. The system incorporates specified low-
power wireless standards, including IEEE 802.15.4, 
RPL, and MQTT, to have a very high end-to-end 
packet delivery rate (above 98%) when tested 
outdoors. Furthermore, it assesses the continuously 
network connectivity of the testbed in real time and 
gives an appropriate overall measurement of testbed 
characteristics. Toward this end, this research 
provided the proof of concept of the IoT-based 
monitoring approach and helped to expand the base 
of knowledge of the scalable and cost-effective 
solutions in air quality monitoring that are important 
to the spheres of environmental management and 
public health, [23]. 

The features of available low-cost sensor 
technology, for IAQ monitoring indoors as they 
identified this technology as a tool capable of 
contributing immensely to the understanding of the 
type of pollutants that may be present in our indoor 
environment and health risks that are being posed by 
the pollutants. Although they are portable and offer 
near real-time measurement, their data has been 
criticized for reliability because of some design 
compromises. Besides, the available literature and 

the increasing number of studies on this subject 
have contributed to isolated information. To 
counteract these problems, this research follows a 
post-positivist framework to comprehensively 
critically review and synthesize scientifically peer-
reviewed articles on IAQmTDs employing low-cost 
sensors. In the scientific databases, 891 titles were 
found, published in the period after 2012, 41 of 
which were research articles. There was a focus on 
device development factors such as calibration and 
efficiency of sensory instruments, computational 
capacity, storage and transmission of information as 
well as real-time telecommunication access to 
acquired data from the sensors. Of particular 
interest, the authors have highlighted that there is 
quite limited primary research that directly discusses 
SS PERFORMANCE CALIBRATION & 
VALIDATION which suggests that such aspects 
should be of focus for future research efforts to 
further standardize the way assessment of data from 
such sensors take place in order to increase 
reliability and comparability of results, [24]. 

Who primarily concentrated on air quality 
analysis with an emphasis on particulate matter, this 
paper employs a novel approach based on low-cost 
sensing approaches. However, the authors knew 
such sensors had drawbacks such as sensitivity to 
aging and environmental conditions, challenging the 
research to overcome by proposing low-cost 
particulate matter monitoring. Used in both fixed 
and rotating sensor platforms the system is 
scrutinized with delicate precision to determine 
different parameters such as calibration methods, 
concentration range precision, and use of backup 
sensors. During the winter season roughly about 
50GB of data is gathered and analyzed from sensors 
over six months. The performance of the system is 
supported by comparative measurements with 
standard β-radiation sensors and mobile station 
measurements for assessing the system response to 
various environmental changes. More significantly, 
the methods or the approach is well acclaimed for 
the ease of calibration, high sampling rates, and 
most importantly the use of more open-source 
software architecture to make it easier and quite 
probable to be adopted at large for air quality 
measurements. The accessibility of the database and 
the software used in this study as open sources puts 
the study in a more special place of propelling the 
area of low-cost sensing in air quality monitoring 
forward, [25]. 

The aspects in the evaluation of the indoor 
environment that cannot be overemphasized if he 
wants to enhance public health sustainability 
through the indoor environment monitoring systems. 
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By observing and analyzing different levels of 
indoor environments like schools, workplaces, and 
residences, authorities obtain data that can help 
them to take action towards improving occupant’s 
indoor environment. Furthermore, such systems also 
provide the generalized public with information on 
the quality of indoor air. In an effort to fill this gap, 
this paper presents the development of an Intelligent 
Indoor Environment Monitoring System (iDEMS) 
that utilizes Information Technology, Big data, and 
Cloud computing. The system uses wireless sensor 
network technology based on ZigBee for 
information acquisition and relies on environmental 
sensors to collect indoor gas information. Lastly, 
information about the environment is stored and 
resolved in HBase as the Big Data analysis requires. 
The proposed intelligent-control socket allows 
giving alerts when air quality is above the legal 
standards. Also, the implementation of a web-based 
Monitoring Platform provides individuals with 
convenient access to remote monitoring and 
management of the environment. This paper has 
presented iDEMS as a systemic integration of these 
technologies for monitoring the indoor environment 
with significance for improving population health 
and quality of life. 

In the global study conducted on air pollution, 
this paper presents a standalone and real-time air 
quality monitoring system implemented to mitigate 
the effects of air pollution on human health, climate 
and systems. Accepting particulate matter as one of 
the major components of air pollution, the system 
includes parameters such as PM 2.5, CO, CO 2, T, 
RH and AP. The system uses IoT in combining 
cloud computing to enhance the processing of data 
captured by various sensors. Implemented through a 
low power, low-cost ARM based minicomputer 
Raspberry Pi the system provides real-time air 
quality monitoring at a reasonably low cost. 
Implementations of the system measured in Delhi 
are validated against data from environment control 
agencies in the area, and presented in tabular form. 
Of special importance, the values of the measured 
parameters are disclosed on IBM Bluemix Cloud, 
which illustrates the efficiency of the proposed 
system as an easily accessible and actionable source 
of air quality information. As this study advanced 
the understanding of IoT-driven EMS as an 
applicable framework in air quality management 
amidst pandemic disease, the study plays a notable 
role in the emerging literature in this area. 

Air pollution was among the researched 
domains where S. of Engg letter’s proposed the 
WSN-EPA system based on the wireless sensor 
network to intervene. Socially, the study identifies 

the effects of air pollution on health and 
developmental aspect which in turn identifies the 
ability of WSNs to monitor the levels of pollution 
more effectively. WSN nodes are spread throughout 
the city and the main roads and the system is 
constantly measuring pollution levels, and it follows 
the movement of public transport. Information on 
air pollution particles is obtained by using sensors 
installed on vehicles and on stationary nodes, which 
transmit data to the pollution monitoring system. 
The study proves how the proposed system is 
efficient for monitoring environmental pollution for 
designing WSN technology in smart city air quality 
management. This work contributes to the existing 
knowledge of environmental monitoring systems 
and offers a solution to key negative effects of air 
pollution in cities. 

The effectiveness of China’s Air Pollution 
Prevention and Control Action Plan, especially in 
the decrease of PM2.5 emissions in the Greater 
Beijing-Tianjin-Hebei (Jing-Jin-Ji) region which is 
one of the most polluted areas. Based on emission 
inventories for the years 2012, 2017, and 2020, the 
WRF-CMAQ model system is used to quantify the 
effects of phased emission control measures for 
PM2.5 concentration reduction. Projected emission 
reductions of SO2, NOX, PM2.5, NMVOC, and 
NH3 by 2017 and 2020 as compared to the base 
year of 2012 signify a reduction in elevated ambient 
PM2.5 concentrations. In particular, the Action Plan 
is effective in tackling PM2. 5 pollution, but the 
study finds that stricter emission controls are needed 
to reduce NMVOC and NH3 concentrations in the 
future. Furthermore, it highlights the rationale of 
vertically integrated strategies for emission control 
focused on multiple pollutants at once because they 
produce nonlinear effects on PM2.5 and O3 levels. 
This work aims to add to the existing literature on 
the impact of policy measures in dealing with air 
pollution and also highlights the necessity for the 
integration of policy measures in the campaign 
against air pollution. 
 
 
3    Research Gap 
The current scientific focus on air pollution is 
reflected as a complex investigation of various 
aspects of monitoring, technologies, and policies. 
Nevertheless, it is also important to mention that 
certain rather significant gaps in the current range of 
scholarly studies have continued to exist within this 
abundance of research focus areas and require a 
precise, systematic study. Surprisingly, there  
toappear to be limited studies focusing on the 
comprehensive assessment of integrated stationary 
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and mobile sensing data for air pollution. 
Specifically, a literature review highlighted that 
multiple previous works exist that focus only on the 
stationary or mobile sensing modality, but rarely, an 
evaluation that combines the two is performed. 
Nonetheless, problems associated with sensor 
reliability, calibration, and validation persist hence 
the limited application of low-cost sensor 
technologies. To fill this gap, this research work 
examines the prospect of merging data from 
stationary and mobile sensing to understand the 
working of the two and the constraints of each 
strategy. To that end, by examining different 
approaches to sensor calibration, field validation, as 
well as the integration of stationary and portable 
monitoring streams, this research aims to bring a 
step forward to the development of future effective 
solutions in air pollution monitoring, crucial for 
decision-making and preventative strategies. 
 
3.1  The Objective of the Work 
 To generate comprehensive synthetic data sets 

for air quality, environmental conditions, site 
selection, and infrastructure to simulate real-
world scenarios, enhancing environmental 
assessment reliability. 

 To develop advanced AQI calculation and 
visualization techniques for insightful 
representation of air quality conditions and 
trends. 

 To integrate environmental, sensor, 
infrastructure, scalability, and data quality 
factors to optimize monitoring systems. 

 To analyze health impacts and policy 
effectiveness through synthetic data and to 
provide evidence-based visions for regulatory 
interventions. 

 To conduct temporal and spatial pollution 
analysis to identify variations and develop 
targeted air quality management strategies. 

 
 
4    Research Methodology 
The flowchart presented in Figure 1 from the data 
presented above expounds a clear approach to the 
methodological framework amid the faceted 
approach to air quality including data acquisition, 
AQI computation, categorization, and other analysis 
viewpoints. Starting with the generation of artificial 
air quality data, the process is followed by the 
calculation of AQI values and plotting them, thus 
providing the grounding context for data generation. 
The next nodes include the creation of synthetic 
environmental data and its visualization that 

precedes site selection factors and sensor placement 
data as critical inputs to provide best-suited 
monitoring strategies. The workflow also aggregates 
the data related to the infrastructure and scalability 
assessment; the comments emerging, as a result, 
consider the ability of the system under construction 
to handle distinct workloads and sizes of space 
occupied. Analytical factors related to data 
acquisition, transmitting mechanisms, and 
subsequent storage, management, and quality are 
examined and assessed for the overall assurance of 
the strength and reliability of data processing 
systems. The formation of the AQI and the 
subsequent categorization of the AQI into different 
air quality categories improves the readability of 
pollution levels. This data when represented feeds 
into temporal analysis – this shows short-term 
fluctuations and long-term time trends, which are 
crucial in analysis for understanding the temporal 
fluctuations of pollution. Analysis of spatial 
pollution is encountered which provides pollution 
data for various locations and graphs it in order to 
set out the spatial trends. Hence, the percentage, 
with the help of pie charts, measures indication of 
major pollution sources originating from mobile and 
stationary sources in addition to the natural sources. 
Next is the health impact data generation followed 
by the visualization of the impacts and risks 
resulting from exposure that helps to inform the 
epidemiological consequences and exposure risks in 
making decisions for public health. The last area is 
concerned with the evaluation of the effects of 
policy and regulation, these will be mapped to 
illustrate the performance of compliance control, the 
success of the intervention, and work with the 
public. Interactions between nodes add challenge, as 
in reality, most processes are interconnected and 
illustrate the cyclical methodology of examining 
environmental information. This methodological 
consistency leads to a total synthesis of the change 
in air quality and helps to formulate efficient 
policies and strategies for environmental 
management. 

The method of data collection for this research 
incorporates aspects of systematic collection that 
help in collecting accurate datasets required for air 
quality assessment. The techniques of synthetic data 
generation were used to mimic realistic conditions 
along multiple dimensions of air quality, 
environment, site, and sensors. For these kinds of 
data sets synthetic data sets were produced through 
random sampling algorithms by simulating 
variability and trends as might exist in real data. For 
example, air quality data were synthesized by 
producing plausible pollution values that mimic 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.33

R. Sivakumar, Kalpana Singh, V. S. Nishok, 
Shweta Babarao Barshe, Kiran Sree Pokkuluri, 

T. Srihari, Venkatesan Hariram, 
Manas Ranjan Mohapatra

E-ISSN: 2224-3496 382 Volume 21, 2025



usual urban and rural deterioration. Environmental 
data included parameters like temperature, 
Humidity, and wind speed which were synthesized, 
and altered to generate more test conditions. The 
selection data for the sites involved geographical 
and topographical factors and thus ensured that the 
sites that had been selected for the emplacement of 
sensors were different. Data for sensors was 
assumed to represent placement strategies in both 
high-risk levels of exposure and low risk of 
exposure, thus, covering a broad range. Scalability 
data considers the capability of the infrastructure to 
respond to a high volume and number of data in the 
system by measuring the solidity of the system 
under different operating conditions.  
 

 
Fig. 1: Flow chart of Research work 

 
Data collection and transmission factors 

incorporated proxy specifications of data transfer 
speed, duration, and accuracy necessary for 
occasioned operational surveillance. Data storage 
and management factors were examined by 
constructing datasets with redundancies, Error 
Detection, and Correction features that would mean 
that the data was correct and easily retrievable. 

Data quality and integrity factors assessed the 
methods of validation and error correction 
percentages. The synthesized data used for AQI 

calculations included PM2.5, PM10, CO, NO2, 
SO2, and O3, and all of them were captured in their 
normal range of concentration and fluctuations. 
Specifically, temporal data collected short-term 
changes in pollution and experimentally long-term 
alternations; spatial analysis data offered pollutant 
concentrations at different territories. The mobile, 
stationary, and natural type of pollution distribution 
source apportionment information was used in this 
study to indicate the relative proportion of pollution-
causing factors in Bostan Lake. PREMIS exemplar 
types of data included health impacts that 
approximated epidemiologic studies, levels of 
exposure factors, and risk assessment to get an 
understanding of health risks caused by air 
pollution. Finally, the policy or regulation-related 
factors were analyzed to assess the 
comprehensiveness of the monitoring of 
compliance, the effectiveness of the intervention, 
and the level of awareness of the public with regards 
to the externally set rules and regulations. Due to the 
highly detailed synthetic generation of data and a 
strict validation process, this data collection process 
serves as the basis for the analytical framework to 
allow for accurate and application-based insights 
into air quality as well as other related issues. 
 
 
5   Result and Discussion 
 

5.1  Current Air Quality Monitoring Systems 
Existing air quality indexes tend to be based on 
static monitoring stations through independent 
monitoring of PM2.5, PM10, NO2, SO2, CO, and 
O3. These station costs are high and they are few in 
number meaning that the data collected is often 
inadequate in terms of density. The introduced 
program provides a synthetic dataset containing six 
types of air quality measurements (PM2.5, PM10, 
NO2, SO2, CO, O3) at ten-time steps. With numpy 
and pandas libraries, the data is arranged under the 
pollutants as columns and its corresponding time 
stamps when the pollutants were measured as 
indices. The data obtained is next ordered in the 
time dimension in order to achieve the correct 
temporal ordering for plotting. The end product of 
this mode of data visualization creates a profile that 
shows how the concentration of pollutants changes 
over the given period of time. Each pollutant is 
plotted as a separate line graph to ease comparison 
and identification of trends as observed in the line 
plot below. The former is labeled as time with units 
of hours while the latter represents Pollutant 
concentrations in micrograms per cubic meter 
(µg/m³) or parts per million (ppm). With respect to 
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the plot, lurking, variations, and feasible cycles of 
pollutant intensities are discernible. Concentrations 
differ from one pollutant to the other and this is 
likely due to various emission sources, atmospheric 
processes, and the lifetime of the pollutants. Further, 
temporal variations can be diurnal or periodic 
indicating the level of air quality in different periods 
of the day or week, episodic suggesting short-term 
events, or secular to describe an increase in air 
quality over a very long period. In total, the 
generated plot offers insights into the temporal 
distribution of air pollutant concentrations that 
remains critical to assess variations in air quality 
and develop appropriate measures and policies 
accordingly. 

AQIi =  
(Ihi − Ilo) 

(chi − clo)
  (Ci  −  Clo)  +  Ilo        (1) 

 
Ci  =  𝑃i                                 (2) 

 

 
Fig. 2: Air Quality Monitoring Data 
 

From equation 1, where C_iis concentration of 
pollutant I, c_(hi is upper breakpoint concentration 
for pollutant I, c is lower breakpoint concentrated) 
for pollutant I, I_hi is upper breakpoint AQI value 
(normally the multiple of ten that is least greater 
than the breakpoint concentration).I_lo is the lower 
breakpoint AQI value (often 50, 100, and so on) and 
P_i represents the concentration of the different 
pollutant 𝑖i such as PM2·5, PM10, NO2, SO2, CO 
or O3.on for pollutant I, I_hi is upper breakpoint 
AQI value (typically 100, 200, etc.), I_lo is lower 
breakpoint AQI value (typically 50, 100, etc.) and 
P_i   is the measured concentration of pollutant 𝑖i 
(e.g., PM2.5, PM10, NO2, SO2, CO, O3). From 
Figure 2 it is evident that over a ten-day period, 
there is a variation of pollutant quality in the air. 
They were highest on May 23 at 138.66 µg/m³ and 
the lowest on May 21 at 12.87 µg/m³. PM10 
although followed the same pattern with the highest 
concentration at 185.31 µg/m³ on May 21 and the 

lowest concentration at 30.33 µg/m³ on May 23. The 
minimum NO2 concentration was recorded on 18th 
May at 22.72 µg/m³ while the maximum NO2 
concentration was recorded on 23rd May at 83.51 
µg/m³. Average SO2 was found to be 37.11µg/m³ 
on average with the maximum level recorded on 
May 25 at 72.77µg/m³ and the minimum on May 20 
at 16.96µg/m³. Hence, the CO concentration was 
highly fluctuating, with the 24-hour average ranging 
between 8.61 mg/m³ as recorded on May 24 and 
0.91 mg/m³ on May 22. The level of ozone varied 
with the highest of 100.70µg/m³ registered on 
22/05/2015 while the lowest 19.75µg/m³ recorded 
on 25/05/2015. Such data imply that there could be 
frequent daily fluctuations in air quality due to 
perhaps climate characteristics, the extent and 
intensity of industrial activities, and vehicle 
pollution. These variations clearly point towards the 
need to constantly survey and control in order to 
minimize unhealthy effects. 

The provided program generates synthetic air 
quality data and computes the Air Quality Index 
(AQI) for six major pollutants: This is because the 
information presented in the model is related to Air 
pollutants: PM2.5, PM10, NO2, SO2, CO, and O3. 
When applying breakpoints for AQI, every 
concentration of a pollutant is assigned an AQI 
value. The data set obtained exhibits temporal 
variability of AQI at the selected time points. The 
obtained plot shows the time dependence of AQI 
values for the analyzed pollutants.. Every pollution 
constituent’s AQI appears in the form of a line plot 
over some period of time to understand the 
fluctuation and the trend in air quality. It suggests 
changes in AQI value represent changes in the 
concentration of pollutants and possible effects on 
the health of the people and the quality of the 
environment. The horizontal axis defines time while 
the vertical axis shows AQI, a quantitative 
indication of air quality. Some changes spotted in 
the graph may suggest a tendency of pollutant 
emission, dispersion of pollutants in the atmosphere, 
or climatological factors that affect the 
concentration of pollutants. In summary, the AQI 
variations plotted in this work can be used to 
analyze spatial and temporal differences in air 
quality for source identification, assessment of the 
effectiveness of regulatory mechanisms, and health 
and policy management. As seen in Figure 3, from 
the generated air quality data of ten days, there were 
fluctuations of various types of pollutants. The 
maximum AQI on May 18, 2024, for PM2.5 was 
reported and was 198.40 for unhealthy air quality 
and PM10 at a moderate level of 80.91. Likewise, 
NO2, SO2, CO, and O3 showed values of 57.56, 
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25.23, 84.65, 122.38 respectively which revealed a 
considerably wide range of pollutants. On May 22, 
both the AQI for PM2.5, 133.27, and for PM10, 
36.24 were improved as compared to the previous 
day. On the other hand, O3 escalated to a dangerous 
ratio of 215.31. The AQI for SO2 increased to its 
highest at 95.72 on May 23, with PM2.5 stood at 
194.42 and CO at 36.96. On May 26, the amount of 
PM2.5 was 188.15 with PM10 at 115.69, and SO2 
was 99.72 with O3 at 155.88, a critically high level. 
PM2.5, though slightly declining on the last 
recorded day, was 171.81 while O3 escalated to 
201.72 on May 27. These data highlight a high 
temporal variation in the levels of the pollutants 
under consideration; specifically, PM2.5, SO2, and 
O3 concentrations were of concern and regularly 
surpassed recommended limits, establishing the 
need to continue examining their spatial and 
temporal trends and their potential effects on health. 

 

 
Fig. 3: AQI Values for Different Pollutants 
 

The Air Quality Index (AQI) is adopted as a 
uniform scale for measuring air pollution 
contamination levels in relation to existing pollutant 
concentrations. In our study, we investigate the AQI 
ranges for six key pollutants: Of all particulate 
matters, PM2.5, PM10, nitrogen dioxide (NO2), 
sulfur dioxide (SO2), carbon monoxide (CO), and 
ozone (O3). Every pollutant has its own AQI 
breakpoints that divide the concentration of each 
pollutant and AQI into different levels. These AQI 
ranges are as important when it comes to explaining 
the health implications involved with varying 
degrees of air pollution. For PM2.5 the AQI scale is 
from 0 to 500 with breakpoints respective to the 
concent Lionel 0.0-12.0 µg/m ³ for the first range 0-
50 AQI and 55.5-150.4 µg/m³ for the last range 151-
200 AQI. It shows that even with low 
concentrations of PM2.5, the air quality is somehow 
wanting and with high concentrations, people are 
put at great health risk. Likewise, PM10 has 

breakpoints within the AQI ranging from 0 to 500 
with breakpoints showing concentrations from 0-
54µg/m³ to, 505- 604µg /m³. PM10 is more coarse 
particles and can reach deeper into the lungs 
therefore, its effects differ by concentration levels. 
NO2 is an air pollutant generated from combustion 
activities, and AQI is an index extending between 
zero and 500 with breakpoints corresponding to 
concentration levels of 0-53, 54-100…, and 1650-
2049 parts per billion (ppb). For NO2, whether 
permanent or temporary AQI higher reflects the 
severity of exposure to this pollutant since its 
exposure causes respiratory problems and worsens 
conditions of pre-existing health complications. SO2 
is a gas emitted from industrial processes and also 
through the burning of fossil fuels, has AQI ranges 
from 0 to 500 with breakpoints for SO2 
concentration of 0-35(ppb), 805-1004(ppb) covering 
a broad concentration range. The primary effects 
include respiratory illnesses and secondary effects 
involving other pollutants such as particulate matter, 
CO, and ozone. CO, a colorless and odorless gas 
which expelled from vehicle exhaust and some 
industries, has AQI from 0 to 500, breakpoints of 
which cover concentration range from 0.0-4.4 ppm 
to 40.5-50.4 ppm. Though it is an odorless gas, 
exposure to CO may have adverse health effects, 
particularly at elevated concentrations; the effects 
include cardiovascular disorders as well as the 
effects on the neurological system. O3 showing 
ranges turned out to be from 0 to 300 representing 
AQI, breakpoints provided concentration range from 
0-54 ppb to 106-200 ppb. Ozone may cause 
respiratory inflammation and aggravate respiratory 
diseases in particular during high sunlight and high 
temperature. Such AQI ranges are important in 
order that policymakers, health and welfare workers, 
and the public in general can evaluate and minimize 
health risks from polluted air. Closely observing the 
concentrations of pollutants and the AQI, it is 
possible to make reasonable decisions concerning 
the protection of public health and the enhancement 
of the air quality in the world's large cities. 

 
5.2  IoT in Environmental Monitoring 
IoT technology presents a number of important 
benefits in environmental monitoring: low cost of 
sensors, wireless data transmission, and high density 
of sensing points. As seen from the below code, it 
creates random environmental data regarding 
temperature, humidity, and AQI of time duration. In 
order to identify temporal changes and fluctuations 
of each environmental parameter, it is graphed 
against time. The graph derived from analyzing the 
records showcases how these parameters are 
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reciprocally dynamic at the sampled time points. On 
the x-axis, there is the differentiation of time and on 
the y-axis, there is the differentiation of values of 
the respective environmental parameters. 
Temperature and humidity are drawn on graphs with 
a continuous line since such values change 
continuously. On the other hand, the AQI, which is 
a discrete index, is illustrated by discrete data points 
showing the irregularity of the index. Analysis of 
the data represented on the graph reveals 
possibilities of the associations or inequalities 
concerning the environmental factors. That is why, 
changes in the level of temperature and humidity 
can affect the AQI by changing air quality. On the 
same account, fluctuations in AQI could be due to 
pollution source heterogeneity, weather conditions, 
or policy changes. The representation assists in 
identifying trends and variations within the 
environment making it easier to monitor and 
manage an entire environment. Techniques used in 
such analyses are useful in evaluating the quality of 
the environment, risk evaluation, and in planning 
ways of dealing with bad effects on human and 
animal health and safety of ecosystems. 
 

 
Fig. 4: Environmental Monitoring Data 
 

ⅆ[O3] 

ⅆt
= kO1

[O1]  −  kO3
[O3]              (3) 

 
From equation 3, [O 3] = [O 1] k (O 1) / k (O 3) 

On the basis of the same principles as described in 
gross rate constant determinations, we can 
determine the net rate constants for the formation of 
ozone as well as the rate constant for the destruction 
of ozone. Ground environmental data for the same 
ten-day period presented in Figure 4 provides 
information about the concurrent meteorological 
conditions that may have an effect on air quality. 
The temperature variation was recorded between 
11.93°C on May 26 to 29.79°C on May 22 meaning 
there were oscillations within the observation time. 
The same case can apply to the humidity content 

where fluctuation was great registering the lowest 
RH of 42.89% on May 25 and the highest of 77.55% 
on May 18. The AQI varied as overall air quality 
varied getting as low as 53 on May 18, 2017, to as 
high as 196 on May 24, 2017. Slightly, hotter mean 
with low relative humidity like May 22 have 
signaled high AQI values This rationale indicates 
that there is a probable relationship between mean 
climate conditions and quality of air. However, days 
with low temperatures and high humidity, for 
example; May 25, had comparatively lower AQI 
values. These results illustrate the possibility of a 
climate/air quality interaction and suggest that, in 
order to adequately address environmental health 
issues, interdisciplinary approaches are necessary. It 
is important to have such knowledge to formulate 
policies in order to prevent risks threatening public 
health and the environment. 
 
5.3  Deployment Factors 
Site Selection: 

The generated graph provides a comprehensive 
visualization of the environmental monitoring data 
across several critical site selection factors: people 
density to determine population areas; traffic 
intensity, locations close to highways and crossing; 
industrial scale, close to factories and plants and 
green spaces that are; parks, and urban forests for 
the reference data set. Data is presented over a time 
of ten days bringing out striking differences in 
trends and fluctuations of these factors essential in 
defining the impacts on the environment in various 
urban regions. The population density and traffic 
volume both indicate fluctuation, which has been 
expected due to the differences in the landscape of 
cities and ongoing changes. The results also showed 
that traffic volumes are higher with population 
density, which suggests that there might be a higher 
level of pollutants in population-density areas, more 
particularly in areas with higher volumes of traffic. 
The industrial activity index between 50 to 100 
presents whether the industry is active but the 
degree of activity is in consideration. The specific 
separation of this index from the green space area 
plot of range 5% - 50% shows that industrial zones 
differ significantly from green spaces in terms of 
environmental aspects. This differentiation is an 
important one because it requires a comparison of 
the negative influence that industrial emission 
brings to the social setting to the positive impacts 
that green areas bring to the same society to absorb 
the pollution. In conclusion, using the data that has 
been obtained from the IoT-enabled sensors, the 
graph shows environmental data analysis in the best 
way. The divergent and complex nature of the 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.33

R. Sivakumar, Kalpana Singh, V. S. Nishok, 
Shweta Babarao Barshe, Kiran Sree Pokkuluri, 

T. Srihari, Venkatesan Hariram, 
Manas Ranjan Mohapatra

E-ISSN: 2224-3496 386 Volume 21, 2025



observed trends for each of the selected factors 
enrich our understanding of the state of the urban 
environment and assist in designing interventions 
and policies that would help enhance the quality of 
air in cities as well as the overall quality of living 
for urban inhabitants. For this reason, this analysis 
has underlined the need to apply careful site 
selection in the installation of EMS for the purpose 
of achieving good granularity and spatial coverage 
of the data that is being collected. 
 
Linear Regression Model 

AQI = β0 + β1 ⋅ PD + β2 ⋅ TV + β3 ⋅ IA − β4 ⋅
GS +  ε                              (4) 

 

 
Fig. 5: Environmental Monitoring Data by Site 
Selection Factors 
 

Here where, AQI is the Air Quality Index, PD is 
the population density (people/km²), TV is the 
traffic volume (vehicles/day), IA is the industrial 
activity index, GS is the green space area percentage 
(%), ϵ is the error term that accounts for the variance 
that has not been explained by the model; β0 is the 
intercept; and β1, β2, β3, β4 are the coefficient that 
measures the In Figure 5, the outcome of the 
population density, traffic flow, industrial intensity, 
and green space size over ten days to the quality of 
the environment can also be seen. Population 
density fluctuations were as follows: 1042 people 
per square kilometer on May 22 and 9275 people 
per square kilometer on May 19, indicating different 
patterns of urbanization. Daily average traffic grew 
to a high of 18,326 vehicles per day on the 19th and 
low of 4131vehicles per day on the 20th in regard to 
traffic flow and therefore vehicular pollution 
emissions. The industrial activity index fell to a low 
of 54.67 on May 26 and spiked to a high of 95.49 on 
May 18 in response to changes in industrial 
production and emissions. The green space area also 
differed, with the highest percentage being recorded 
on May 27 at 44.49% and the lowest on May 26 at 

6.14%. An increase in population and traffic also 
affected the AQI values as compared to the days of 
May 19 and May 24. On the other hand, the 
percentage of green space had a negative 
relationship with the AQI levels with the lower AQI 
values recorded on May 27in areas with a higher 
green space ratio to the total land area. These results 
stress the significance of planning cities where 
population density and traffic can be controlled, and 
green areas can be rationally distributed for better 
air quality and health in megacities. These are 
important aspects that must be taken into 
consideration for formulation or implementation of 
necessary policy options for the future sustainable 
development of most towns and cities across the 
world with a quality environment. 
 
Sensor Placement: 

The presented program provides artificial data as an 
example of how it is possible to consider factors 
affecting the location of sensors for environmental 
control. Three key factors are considered: the height 
of the sensor above ground which is the appropriate 
height of the aerological sensor used to sample air 
quality, its relative position to primary sources of 
pollution that is how close it is to the immediate 
sources of emissions, distribution density that is 
how evenly spaced the sensors should be depending 
on the area of coverage within the urban city. Each 
factor is expressed as quantitative measures and 
then averaged over a set of sample points to address 
recommendations regarding the best placement of 
the sensors. The following bar plot shows the 
averages of these factors as a result. The height of 
sensors ranging between 10 and 50 meters refers to 
the level at which the sensors are placed. Distance to 
emission sources ranging from 10 to 500 meters 
exemplify the measures of distance of the sensors to 
the possible sources of pollution. Spatial distribution 
in the range of 100 - 500 stands for the distribution 
of the number of sensors in the monitoring region. 
From the plot, the following are the findings 
concerning the relevance of each factor in the 
placement of sensors … Bigger average values 
indicate higher consideration of such factors as 
distance to sources of emissions or spatial density. 
Knowledge of these factors helps to enhance, first of 
all, approaches to deploying sensors for obtaining 
maximal, comprehensive information on the state of 
the environment. The graphical representation 
proposed helped in the decision-making processes in 
the analysis of the sensor's placement since it 
determines areas where sensors should be placed 
best for better and right data. Such knowledge is 
important in undertaking environmental surveillance 
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and management for purposes of preventing 
pollution and protecting the populace and the 
environment. 
 

 
Fig. 6: Average Sensor Placement Factors 
 

x̅ =
1

n
∑ xi

n
i=1                            (5)                          

 
From equation 5, where x̅ 𝑖𝑠 𝑡he mean value of 

the sensor placement factor, n is the total number of 
samples, ∑ xi

n
i=1  the summation of all individual 

sample values for the factor. From Figure 6, the 
placement of sensors for environmental monitoring 
is crucial for accurately capturing pollutant 
concentrations and assessing air quality. The height 
of the sensor is ten meters to three hundred and fifty 
meter The variability in the sensor height is crucial 
to analyzing the representativeness of the data and 
the dispersion and diffusion of pollutants in the 
atmosphere. Distance to emission sources ranges 
from 143.05 to 446.66 meters, which determines the 
degree of the sensor’s contamination by emissions 
from industrial enterprises, transport, and other 
sources. A relatively short traveled distance is met 
with higher pollutants concentration detected by the 
sensor, due to proximity to the emission sources. 
The spatial index of the sensors’ dispersion ranges 
from 113.95 to 491.84 and represents the quantity of 
monitoring area space. A lower index always means 
that sensors are clustered and may lead to spatial 
bias while the higher index means the sensors are 
distributed evenly over the area of interest. 
Choosing the positions of sensors requires striking a 
trade-off between these considerations in order to 
obtain good coverage of the monitored area, 
eliminate spatial preferences, and improve the 
accuracy of the collected data. Where possible, easy 
access to the emission sources and at different 
heights will enable us to understand dispersion and 
areas of high concentration so that interference can 
be affected. Furthermore, a widely installed sensor 
network improves the capacity to provide accurate 
and reliable air quality estimates and provides 

valuable input for effective decision-making in 
environmental protection and health care. 
 
Infrastructure Requirements: 

The program generates synthetic data to assess 
infrastructure requirements for environmental 
monitoring systems, focusing on three critical 
factors: a reliable source of power, external physical 
access for UPS systems, quality signals for 
networks, and last but not least physical access 
protection against vandals or adverse weather 
conditions. Since ten samples are collected for each 
factor, the data enables a calculation of mean values 
to thereby give a broad viewpoint of average 
infrastructure conditions. The bar plot generated 
below presents these mean values making it easier 
to compare the three factors. The power supply 
reliability index is from 90 to 100, which may be 
characterized as high reliability for the constant 
functioning of the sensor. Network connectivity 
therefore presents signal strengths within the 70 – 
100 % range which is an indication of the security 
of communication channels that are essential while 
passing real-time data. Physical security, which 
ranges from 50 to 100, means that there is a need to 
protect the sensor equipment from physical threats. 
Meaning, that though, power supply and network 
connectivity show an acceptable picture with more 
than 4.5 on 7 as the mean value, physical security is 
fluctuating around them with 3.8 on 7 as the median 
value. This implies that only if security measures 
could be improved the overall performance of the 
monitoring could be considered rather critical. 
These insights are rather valuable for strategic 
planning and fine-tuning of the further deployment 
of environmental monitoring systems. Accurate 
assessment of any threats or vulnerabilities 
concerning the infrastructure’s requirements may 
lead to efficiency improvement of the monitoring 
operation and boost the quality of the environmental 
data for the overall efficiency in the environmental 
management policies and decisions. 
 

 
Fig. 7: Average Infrastructure Requirements 
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Power Supply Reliability Index (RI) 
RI =

1−Pf

1+(
MTTR

MTBF
)
                               (6) 

 
Network Connectivity Signal Strength (SS) 

SS(d) = Pt + Gt + Gr  −  20 log10(d)  −

 20 log10(f)  −  20 log10 (
4π

c
)  

(7) 
Physical Security Index (SI) 

𝑆𝐼 =
1

N
∑ (

Ei

vi
+

Di

Ti
)

𝑁

𝑖=1
                   (8) 

 
From equation 6, P_f represents the probability 

of failure, MTTR is the mean time to repair and 
MTBF is the mean time between failures. From 
above equation 7, Pt is the transmitted power in 
dBm, Gt is the transmitter antenna gain in dBi, Gr is 
the receiver antenna gain in dBi, d is the distance 
between the transmitter and the receiver in metre, f 
is the frequency of the signal in Hertz and c is the 
speed of light in meter per second. From the above 
equation 8 where N is a number of security factors, 
Ei is the encryption strength of the i-th factor, Vi is 
the vulnerability score of threats for the i-th factor, 
Di is the detection effectiveness of threats for the i-
th factor, Ti is the time duration to respond for 
threats of the ith factor. As given in Figure 7, the 
infrastructure data analysis provides insights into the 
operation environment of the monitoring system. 
The power supply reliability index ranges between a 
low of 90.09 and a high of 99.24, with a mean of 
94.47, which pointed to wholsomely steady and 
reliable sources of power at the monitoring stations. 
The possible range for network connectivity, 
extending signal strength from 76.65 to 93.76 with 
the average of 83.89 affirms that the network 
connection necessary for real-time data transfer and 
low data loss rate has solid connectivity. Physical 
security measured as a security index, varies from 
52.03 to 96.87 with a mean of 67.70 indicating 
variability in protection of monitoring equipment 
from vandalism and theft. Values far above 90 like 
96.87 show that the network has very strong 
protective mechanisms in place while values below 
point to areas of improving security to enhance the 
integrity of the monitoring system. Functional 
power reliability along with powerful network 
connections may therefore be required to enable 
environmental sensors to run continually and deliver 
punctual readings without a hitch. This variation in 
the physical security of the infrastructure needs 
some level of planning person to make sure that the 
security of facilities in the respective areas of low-
security indices is enhanced. Sustained and stable 

development of support structures within the context 
of evaluation of the environmental status is 
important to facilitate the use of evidence for 
decision-making with regard to public health and 
environmental management interventions. 
 
Scalability: 

The program provides synthetic data to assess 
scalability factors relating to modules of the EMS 
with particular emphasis on modularity and cost. 
Variations of each of the ten samples are displayed 
corresponding to the sample index such that 
temporal trends and relative evaluations could be 
performed easily. The algorithm generated above 
shows the period and scope of variability of the two 
scalability factors. Integrated sensors, which can 
range from fifty to one hundred, indicate how 
devised the monitoring system is to add/supplement 
more sensors. At the same time, cost efficiency 
percentages that is, cost factors for large-scale 
implementation, between 70 to 100 percent indicate 
the economic feasibility of the system, considering 
results alongside budget constraints. Looking at the 
plot, one can see certain trends in time and possible 
relationships between the two types of scalability. 
Fluctuations in integer points for the modular design 
could be due to changes in system layout or 
enhancements, and trends to either cost efficiency 
percent could be due to changes in purchasing 
strategies, technological improvements, and other 
factors. The graphical representation, therefore 
allows stakeholders to evaluate the manner in which 
future scalability of environmental monitoring 
systems will be addressed when it comes to system 
enhancement, resource allocation, and future 
planning. With these parameters of scalability 
within focus, organizations are able to overhaul and 
alter their monitoring frameworks to suit new trends 
and improvements in technology to check on their 
capacity to go on delivering service while staying 
within their cost benchmark. 
 

 
Fig. 8: Scalability Factors over Time 
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Modular Design (score) 

MDS =
N ∗ C

∑ Ei
N
i=1

                          (9) 

 
Cost Efficiency (percentage) 

CEP =
Net present value of benefits−Total cost of ownership

Total cost of ownership
 ∗

 100  
(10) 

 
As reflected in equation 9, N represents the 

number of the modules aimed at developing the 
system, C represents the complexity of the system; 
Ei represents the effectiveness of each module. 
From equation 10, the net present value of benefits 
is a sum total of all benefits that will be accrued 
from the system. Total cost is thus the first cost, all 
operating cost, and such other costs as may be 
necessary. As seen in Figure 8, from the basic 
scalability data analysis of the monitoring system, 
one is able to compare the operation and expansion 
costs of the system’s design. This score evaluates 
the capability of the system to extend in a single 
shot through assembling modular units the overall 
score ranges from 53.71 to 96.63 and the average 
score is 73.33. A higher Higgs score implies less 
architectural fragility; thus, it is easily expandable or 
alterable to meet specific demands for the new 
system. Lower results may show that it has less 
potential for expansion because of its less versatile 
structure. Measuring cost efficiency in percent scale 
the range is 72.53% to 99.52% having an average of 
88.97%. It aims at measuring the capacity of the 
system in achieving its goals and objectives locally, 
regionally and internationally more efficiently with 
lesser resources and expenses. Hearing higher 
percentages means that is more cost-efficient, 
meaning that the system provides value while at the 
same time, controlling spending well. On the other 
hand, frequencies below the established percentages 
could imply that resources are poorly utilized, or 
even that more funds are expended than are 
desirable. The balance between applying modular 
design in the monitoring and cost efficiency 
percentage considered shows a system that could 
cost-effectively expand or modify in order to meet 
the requirements of scale. Such scalability is 
important in order to handle future growth or 
introduce new environmental issues without 
chancing for extremely high costs. The flexibility in 
the modularity level and cost-effectiveness allows 
the monitoring system to remain efficient in 
responding to changes in requirements for future 

endeavors in environmental monitoring and 
management. 
 
 
6   Data Collection Factors 
 

6.1  Sensor Specifications 
Here, the program creates synthetic data for 
evaluating factors associated with data collection 
regarding the sensor characteristics for the EMSs, 
including types of pollutants being detected, 
sensitivity and accuracy, and calibration frequency. 
For convenience in comparing the values and in 
making decisions, each of them is depicted in a 
graphical form. The bar plot used in this article 
represents changes in the sensitivity/accuracy ratios 
and the number of calibration operations concerning 
various kinds of pollutants. Sensitivity and accuracy 
scores change from 70 to 100, representing the 
sensors SAS capability of detecting the presence of 
pollutants and accurately measuring the 
concentration of pollutants. Calibration frequencies 
expressed in days from 7 to 30 describe how often a 
sensor needs to be recalibrated to remain accurate. 
There are points of trade-off analysis from the plot 
which help the stakeholders to differentiate between 
factors requiring monitoring. This means that high 
sensitivity and accuracy mean more effective data 
collection while low calibration frequencies mean 
low levels of maintenance. The selected pollutants 
also determine the layout and efficiency of the 
system under consideration. A basic understanding 
of this graphical representation helps in improving 
sensor specifications when it comes to the provision 
of credible data that has been designed for the 
purpose of monitoring the environment. Thus, 
reflecting on these data collection factors, 
organizations can improve actual environmental 
monitoring systems, as well as provide substantial 
support for decision-making on environmental 
issues and the subsequent development of 
corresponding policies. 
 

 
Fig. 9: Sensor Specification 
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Sensitivity and Accuracy 
SAS =

S ∗ SNR ∗ CA

TV
                       (11) 

 
Calibration Frequency 

CF =
St ∗ EF

RC
                            (12) 

 
From equation 11, the resolution of the sensor is 

presented by S, signal-to-noise ratio by SNR, 
calibration accuracy by CA, and total variability by 
TV. From equation 12, where St is the stability of 
the sensor, EF is the environmental factors and RC 
is the regulatory compliance. The analysis of data 
collection factors from Figure 9 reveals some 
distinguishing features that relate to the sensitivity, 
precision and calibration rates of the environmental 
sensors as well as the kinds of pollutants to be 
monitored. These sensitivity and accuracy scores 
from 75.64 to 92.49 show the ability of sensors to 
measure specific pollutants in their closeness to real 
values. Higher values of the parameters represent 
better sensitivity and selectivity which are essential 
for measurements of pollutants. The scale of 
frequency from 17 to 29 represents how often a 
sensor must be calibrated so that it will still possess 
high accuracy and reliability even in the future. 
Fewer calibration cycles imply longer periods 
between calibration and therefore impact on the 
quality and accuracy of the data collected. The kinds 
of pollutants highlighted include airborne particles 
such as PM2.5, PM10, CO, NO2, SO2, and O3 as 
well as VOCs reflecting the completeness of the 
monitoring system in covering key pollutants of 
environmental interest. Different types of pollutants 
may need sensors and calibration processes arranged 
in the particular manner in order to work correctly. 
For example, while the particulate matter (PM) 
sensors can be prone to fouling or drifting, these can 
require frequent calibration; conversely, the gas 
sensors require calibration to maintain accuracy in 
tracing the levels of trace gases. The use of 
sensitivity and accuracy scores, calibration 
frequency, and range of pollutants measured show 
that data acquisition in environmental monitoring is 
complex. All these means that through enhancing 
the sensitivity of the sensors, calibration techniques 
adopted, and the expansion of the coverage of 
pollutants, the monitoring system can capture 
essential environmental data that enable cause-effect 
relationships or environment and public health and 
institute remedial measures. 
 
6.2  Data Transmission 
To assess data transmission factors it is necessary 
for the program to produce synthetic data to test, the 

application is based on LoRa, NB-IoT, and Zigbee 
protocol. Three aspects – real-time data acquisition 
percentage, bandwidth and latency are depicted 
visually in order to facilitate the comparison of 
results depending on the used protocol. The bar plot 
given above shows the relative differences in these 
transmission factors for the chosen communication 
protocols. The percentage of real-time data 
acquisition is between 70 percent and 100 percent 
thus referring to the protocol's ability to deliver data 
in real-time. Bandwidth, expressed in megabits per 
second (Mbps) and from 1 to 100, defines the 
traffic-carrying capability per protocol. Delay 
referred to in milliseconds (ms) as well as ranging in 
numbers between 1 and 100, is the time it takes for 
an item of data to be transferred. This paper reveals 
from the plot that different monitoring occasions 
require different communication protocols where 
stakeholders can use the identified trade-offs to 
choose the appropriate communication protocols for 
a certain monitoring occasion. Higher real-time data 
acquisition percentages and bandwidth values 
translate to swifter and more secure data transfer 
while low latencies point to less delay. This 
graphical representation assists in achieving the best 
results in the communication of data to enhance the 
timely and effective delivery of environmental data. 
It is therefore through taking into account these 
transmission factors that organizations can equally 
improve and ensure the stability in the 
environmental monitoring system to help in 
decision-making and efficient environmental 
management. 
 
Real-time Data Acquisition (Percentage) 

𝑅 =
∫ 𝑆(𝑡) ⅆ𝑡

𝑡

0

𝑇
× 100                       (13) 

 
Bandwidth (Mbps) 

B =
max0≤ t < 𝑇 D(t)

Δt
×

8

106                (14) 
 

Latency (ms) 

𝐿 =
∫ 𝛥𝑡(𝑡) ⅆ𝑡

𝑡

0

𝑁
× 103                (15) 

 
From the assessment in, equation 13 where R 

signifies the percentage real-time data acquisition. It 
can be expressed in terms of the success rate of data 
transmission (S) and the total time duration (T in 
hourly values). In equation 14 Bandwidth B can be 
defined as the maximum rate of data transfer Dmax 
over the entire time interval T in Mbps. From 
equation 15 we get, Latency L = average of time 
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delay (Δt) per data transfer (N) over the entire time 
interval (T) in milliseconds. 

 

 
Fig. 10: Data Transmission Factors 
 

Specifically from Figure 10 the data 
transmission factors explained under different 
communication protocols will reveal significant 
information on their applicability in real-time data 
collection in IoT systems. Comparing all the 
protocols, LoLo achieved a real-time data collection 
efficacy of 92.43% and is the least time-consuming 
to collect data from the IoT devices. Additionally, 
LoRa was able to handle an acceptable bandwidth of 
78 Mbps which enables it to transfer large amounts 
of data in a shorter amount of time. Also, The low 
latency of 37 ms shows that its response time is 
fairly efficient for the delivery of data. Again, NB-
IoT and Zigbee offer slightly lower real-time data 
acquisition percentages of 87.97% and 71.37% 
respectively. However both protocols still displayed 
good efficiency in collecting real-time data from 
IoT devices. NB-IoT had a specified bandwidth of 
95 Mbps which is much higher than that of LoRa, 
which indicates the capacity of NB-IoT to handle 
big data loads effectively. Nevertheless, its latency 
of 56 ‘ms proves that it takes a bit longer to transmit 
data compared to LoRa. On the other hand, Zigbee 
had a lower bandwidth of only 91 Mbps and a 
higher latency of about 88mS which means that the 
data transmission and the response times of Zigbee 
are quite slow. However, the real-time data 
acquisition percentage of Zigbee is still high, 
although not as high as LoRa and NB-IoT. In 
conclusion, the information presented in this paper 
is quite useful for evaluating the fitness of various 
communication protocols for real-time data 
acquisition in IoT systems with an aim to enhance 
the performance or make informed decisions on the 
protocol to be used according to the system 
specifications in terms of defined performance 
indicators. 
 
 

6.3  Data Storage and Management 
It uses synthetic datasets to evaluate aspects critical 
for storing and handling data in environmental 
remote sensing applications. The assessed 
parameters are: cloud storage growth rates, data 
protection, and data compatibility based on ten 
objects to assess time series and comparative 
characteristics. The graph obtained reveals the 
fluctuation and effectiveness of such factors in time. 
The cloud storage is proposed to have an index, 
known as the storage scalability index, normalized 
between 70 and 100 to measure the capacity of a 
system to scale up storage capacity to cater to 
growing storage demands. Data security indices 
ranging from 80 to 100 are predictors conveying the 
level of implementation of protective measures for 
data data security and privacy. Data integration 
scores are in the range of 60-100 and provide the 
systems ability to easily integrate various data 
sources for analysis. Hence from the plot, it can be 
seen that all three factors have high mean indicating 
their importance in making sure that the 
management of data is efficient. Nonetheless, this 
investigation indicates a relatively higher variability 
when it comes to data integration than when data 
storage, security in the cloud, and security are 
considered. Indeed, this graph serves as one of the 
valuable tools to the stakeholders in a bid to 
enhance the data storage and management solutions. 
Due to these factors, organizations can improve the 
values of scalability, security, and integration of 
data management systems so as to facilitate good 
handling of environmental data. This optimization 
enhances the effective and efficient collection of 
data, and SMEs can gather pertinent environmental 
data and apply the knowledge to improve their 
efficiency. 
 
System Efficiency 

SE =∝ (
Clouⅆ Storage (Scalability inⅆex)

1+e−β(Data security (Security Index) − γ ))  +

 δ . Data Integration (integration score)2    (16) 
 

From equation 16, where α, β, γ, and δ are 
constants that need to be determined based on the 
specific system and requirements, the term 
(

Clouⅆ Storage (Scalability inⅆex)

1+e−β(Data security (Security Index) − γ )) represents a 
sigmoid function that models the effect of data 
security on the utilization of cloud storage 
scalability and the term 
Data Integration (integration score)2 represents 
the quadratic influence of data integration on the 
overall system efficiency. 
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Fig. 11: Data Storage and Management Factors over 
Time 
 

From Figure 11, the evaluation of cloud storage 
solutions shows significant difference in scalability, 
security and data integration. The values of 
scalability indices vary from 79.34 up to 98.84, and 
the greatest level of scalability was identified for the 
second solution (98.84) while the least level is in the 
seventh solution offering 79.34. This means that 
these solutions have a different ability to scale for 
increasing amounts of data and users. The fourth 
solution has the lowest scalability index of 80.53; 
however, it owns the highest security index, scoring 
93.58 among all the components. This makes 
security indices vary from wide-ranging, that is 
between 80.48 and 94.28. The ninth solution has the 
highest security score of 94.28 proving that all 
solutions address information security and 
confidentiality thoroughly. The first solution also 
scores highly on the security index with a score of 
87.83 besides scoring a high scalability index of 
81.92. Similar to the positive outcomes identified in 
objective seven, the assessment of data integration 
scores produces an additionally differentiated range 
of 64.15 to 95.08 revealing the broad versatility of 
these cloud solutions. The second procedure is 
considered to be maximally compatible as the 
integration value that has been estimated equals 
95,08. However, the third solution thatsubmit to one 
of the lower integration scores (64.15) provides a 
high security score (93.58) of its rising question of 
the tendency of improving flexibility of integration 
with the potential cost of security. Thus, the 
evaluation of the cloud storage based on concrete 
parameters, to which the organization puts 
emphasis, such as scalability, increased security, 
and integration options, is crucial for the 
enhancement of the application performance and 
data management. 
 
6.4  Data Quality and Integrity 
To assess factors considered critical in maintaining 
data quality and integrity in environmental 

monitoring systems, the program produces synthetic 
data. Some of these are validation techniques’ 
accuracy score, redundancy score, and the efficiency 
of error detecting and correcting score. To enable 
easy comparison, the variation of each factor in ten 
samples is illustrated graphically as barplots. The 
graph that follows helps to compare and show how 
these factors are performing and varying in different 
samples. Numbers assigned to ‘‘validation 
techniques’’ represent the percentage, pegged at 80-
100 percent, of methods used in validation of data 
accuracy and believability. Redundancy scores 
range from 70 to 100, which represent the extent, to 
which redundancy has been applied to minimize 
data loss or corruption. The error detection and 
correction utilises efficiency scores ranging from 60 
to 100 to measure the speed and accuracy inwhich 
the system identifies and fixes errors. Assumptions 
from the plot help stakeholders to determine 
adequacy of measures performed towards ensuring 
high data quality and data integrity in environmental 
monitoring systems. In other words, higher scores 
mean that validation, redundancy, and error 
detection and correction provision are stronger or 
more efficient so that users have greater confidence 
in data on the environment. Figure 12 representation 
helps in the selection of data quality and its strategy 
to work in a much better way for improving the 
reliability and accuracy of the environmental 
monitoring systems. Through managing some of 
these factors organizations can be confident in the 
accuracy of the information that they are collecting 
to measure environmental quality as well as make 
sound decisions and formulate policies. 
 

 
Fig. 12: Data Quality and Integrity Factors 
 

Eefficiency =
Edetected_corrected

Etotal
× 100       (17) 

 
From equation 17, where, E_total is the total 

number of errors present in the data and 
E_(detected_corrected) is the number of errors 
successfully detected and corrected. To assess 
factors considered critical in maintaining data 
quality and integrity in environmental monitoring 
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systems, the program produces synthetic data. Some 
of these are validation techniques’ accuracy score, 
redundancy score, the efficiency of error detecting 
and correcting score. To enable easy comparison, 
the variation of each factor in ten samples is 
illustrated graphically as barplots. The graph that 
follows helps to compare and show how these 
factors are performing and varying in different 
samples. Numbers assigned to ‘‘validation 
techniques’’ represent the percentage, pegged at 80-
100 percent, of methods used in the validation of 
data accuracy and believability. Redundancy scores 
range from 70 to 100, which represent the extent, to 
which redundancy has been applied to minimize 
data loss or corruption. The error detection and 
correction utilizes efficiency scores ranging from 60 
to 100 to measure the speed and accuracy in which 
the system identifies and fixes errors. Assumptions 
from the plot help stakeholders to determine the 
adequacy of measures performed towards ensuring 
high data quality and data integrity in environmental 
monitoring systems. In other words, higher scores 
mean that validation, redundancy, and error 
detection and correction provision are stronger or 
more efficient so that users have greater confidence 
in data on the environment. This graphical 
representation helps in the selection of data quality 
and its strategy to work in a much better way for 
improving the reliability and accuracy of the 
environmental monitoring systems. Through 
managing some of these factors organizations can 
be confident in the accuracy of the information that 
they are collecting to measure environmental quality 
as well as make sound decisions and formulate 
policies. 
 
 
7 Environmental Impact Analysis 

 Factors 
 

7.1  Air Quality Index (AQI) 
Thus, trends and correlations between the generated 
synthetic data for AQI parameters, including PM2.5, 
PM10, CO, NO2, SO2, and O3, are displayed. In 
this case, accounted AQI values obtained from the 
simplified approach illustrate the Airliner source 
potential with regard to contributing pollutants 
towards general air quality degradation. The 
maximum AQI values among the pollutants are 
plotted with pulsating thresholds, which makes the 
analysis more realistically exclude fixed lineaments 
to emphasize fluctuation. This is as a result of 
including noise in ten samples of AQI in the graph 
below in order to show the real situation in regards 

to sample inaccuracy and natural variations. Labels 
for separate types of AQI, representing Good, 
Moderate, Unhealthy for Sensitive Groups, 
Unhealthy, and Very categories are shown With 
slight changes in the threshold boundaries owing to 
environmental and observational errors. Using the 
plotted AQI values, this means there is a change of 
the category of air quality lifting the focus of 
polluted air risk at various times. These variations 
afford information on the influences of the ambient 
air quality thereby facilitating the assessment of the 
pollinating consequences on the population's health. 
The graph helps in the indicators of special times 
when the pollution situation is worse and helps in 
policy-making to minimize negative impacts on 
special groups of people. This analysis therefore 
serves to highlight the need for strong AQI 
monitoring and the use of synthetic data in 
analysing air quality trends and results. These 
studies have highlighted the fact that in a given 
environment, several pollutants are often present 
simultaneously and therefore their interaction with 
other pollutants can reveal a lot about pollution 
trends and policy making in improving air quality 
management. 
 

 
Fig. 13: Air Quality Index over Samples 

 
AQIpollutant =

Cpollutant

Cmax
× 500           (18) 

 
AQI =

max(AQIpM2.5, AQIpM10, AQICO,AQINO2, AQISO2, AQIO3)  
(19) 

 
For the hazardous category, 

AQI >  300                         (20) 
 
The level of air pollution obtained and presented 

in the obtained Figure 13 by obtaining AQI from 
raw concentrations of pollutants using standardized 
methods strongly indicates a persistently high level 
of air pollution across all the parameters measured. 
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The pollution level varies from 43.26 µg/m³ to 
398.63 µg/m³ of PM2.5 with an AQI value which 
defines the hazardous level of pollution. In the same 
manner, the concentration of the PM10 ranges 
between 85.34 µg/m³ and 514.56 µg/m³ and has also 
contributed to the AQI calculation. The results 
indicate that concentrations of Carbon monoxide 
(CO) are as low as 0.11 ppm whilst at other times as 
high as 49.98 ppm these higher values contribute to 
air quality complications. NO2 percentage was 
recorded to be between 11.84 ppb and 267.51 ppb 
while the SO2 percentage recorded was between 
26.06 ppb and 859.06 ppb which also confirms the 
air pollution levels. For the same stations and days, 
Ozone (O3) concentrations rage from 7.65 ppb to 
290.46 ppb also contributes to high AQI readings. 
From these concentrations, the AQI calculated are in 
the hazardous range surpassing 300 at every 
instance. The maximum AQI was 501.42, which 
showed an extremely hazardous standard while the 
minimum AQI was 302.51 which also illustrated a 
hazardous standard. These values conform to the 
official health-related AQI ranges that subclassify 
air quality as dangerous if AQI is over 300, 
indicating health risks for all population groups. It is 
for this reason that there must be a call for an urgent 
need to address issues of air pollution and enhance 
the health standards across the nation since the 
scores arrived at through AQI were all high due to 
high concentrations of pollutants. 
 
7.2  Temporal Analysis 
The generated temporal patterns represent variable 
oscillations characteristic of short-term and long-
term variability in understanding environmental 
change. Short-term variability refers to daily 
fluctuations where all the variability observed is 
random and is approximated by a normal 
distribution with standard error=5. On the other 
hand, yearly trends show the general trend over 
days-as-years and are represented by a linear 
increasing or decreasing pattern with slight 
fluctuations created by applying a linear 
interpolation of 50 to 100 and adding Gaussian 
noise. The graph illustrates daily oscillations as well 
as overall changes during one year of observation. 
This is shown by the up and down pattern of the 
blue line, which represents daily changes in 
intensity of the disease, or short-term variability. By 
comparison, the red curve displays general yearly 
trends and provides the overall, flattened arc 
showing gradual growths and sharp sudden 
fluctuations. In evaluation of this aspect, this 
analysis helps in distinguishing patterns and trends 
in environmental information very crucial in 

environmental monitoring and management. This 
way any deviation from the norm proves easy to 
point out, as does any anomaly and any periodic 
features such as trends within specific seasons, 
helping in timely interventions or strategic resource 
direction. Further, it helps design models and 
strategies with predictable patterns and responses 
regarding environmental risks and resource usage. 
 

y(t) = ∑ An sin(2πfnt + ϕn)N
n=1 + C     (21) 

 

 
Fig. 14: Temporal Analysis of Short-term and Long 
term Variability 
 

From equation 21, where A_n represents the 
amplitude of the n-th harmonic, for the n th 
harmonic is n f, ϕn is the phase shift of the n-th 
harmonic and C is a constant offset. As evidenced 
by Figure 14, a simple analysis of temporal data is 
useful to highlight that the observed quantities 
behave with high variance during a day and 
demonstrate certain yearly patterns. The deviations 
found with an average of 0 yield daily variations 
ranging from -5.74 to 3.62. These oscillations are 
generally attributed to short-term changes in the 
measured parameter suggestive of prevailing and 
transient environmental conditions at the time of 
sampling. I also use the terms negative fluctuation 
to mean times the response value has been below 
the mean values and positive fluctuation to mean the 
times when the response value has been above the 
mean values. On the other hand, yearly trends, 
which depict values invariant over a one-year 
horizon, have average ratios of between 27.82 and 
101.58 only. Such trends show the gen or cyclical 
behaviour of the trends noticed in the given data set. 
The bar at the right side of the equation shows the 
units of this stock and a higher number indicates an 
upward increase over the year while a lower number 
shows a downward trend. It includes trends which 
may be influenced by factors like changes in 
seasons, human activities or the like, or natural 
processes. Both daily variation and annual changes 
serve as important sources of information about the 
temporal patterns in the observed phenomena. Such 
temporal patterns are important for prediction, 
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resource allocation and decision-making within 
fields pertinent to temporal distribution such as 
ecology and environmental science, climatology, or 
economics. Further, the use of temporal data helps 
in detecting non-stationarities, in monitoring the 
impact of interventions, and in shaping related 
policies, whether in the scope of dealing with 
permanently emerging trends or in order to avoid or 
adequately cope with short-term fluctuations. 
 
7.3  Spatial Analysis 
The research on pollution levels in twenty 
geographical locations shows a great variance in 
environmental quality. The artificial data produced 
here are pollutant densities ranging from 0 to 100 
and each location is numbered from 1 to 20. These 
variations can be clearly seen in the bar chart 
provided below, where we compare the level of 
pollution in different areas. This spatial distribution 
is very important in tracing areas suspected to be 
affected by pollution among others. Several points 
go far above the other points on the entire chart 
which signifies that concentrated places might be 
emitting a lot of pollutants or the control measures 
are not well implemented. On the other hand, there 
are other areas that experience less pollution mainly 
due to successful environmental standards, 
geographical characteristics, or reduced emission 
activities. Knowledge of such spatial heterogeneity 
is critical in environmental assessment and 
management. In this manner, it helps policymakers 
direct resources to various areas, which can mean 
emission control regulation enforcement, or 
community health. In addition, the use of this 
analysis will help the government and policymakers 
make adequate decisions on issues regarding urban 
planning of industrial areas and zoning. It is 
therefore logical that variability as seen in the data 
necessitates localized environmental strategies.  
 

 
Fig. 15: Pollution Levels Across Different Locations 

 
This indicates that the average rate for a country 

or even a region may differ from average rates 
found for localities, and therefore, local conditions 
require treatment individually. Such a spatial 

analysis framework can thus offer a fundamental 
starting point in identifying and designing policy- 
and intervention- based environmental measures 
based on existing information. 
Pollution Level P(x) 

P(x) =

∑
Pi

d
i
p

n

i=1

∑
1

d
i
p

n

i=1

                              (22) 

 
From equation 22 post above, Pi is the pollution 

level at location Li, di is the distance from point x to 
location Li, ‘p’ is a power parameter that determines 
the weighting of this measure, where usually p=2. 
From Figure 15 it is clearly seen that pollution data 
analysis by 20 sites shows varying spatial 
distribution of pollution. The highest pollution score 
is observed the Location 11 with the value 97.73, 
which shows very bad air quality that requires an 
urgent intervention. On the other hand, minimum 
pollution or better ambient air quality was recorded 
at Location 7 having the pollution index of 7: 97. 
Similarly, there were relatively high pollution scores 
in Location 1, Location 9, and Location 14, which 
were equal to 83,78, 82,51, and 91,80, respectively. 
These high readings show the areas of interest 
where the concentration of pollutants is very high in 
critical levels. On the other hand, a few sitting spots, 
including Location 6 which is 20.86, Location 10 
with 22.50, and Location 19 with 14.70, experience 
low pollution levels, which corresponds to good air 
quality. Low-level pollution was recorded at spot 
five (50.08) and the lowest level was noted at spot 
21 (50.03); moderate pollution level which may 
contain a health hazard was noted in location 
8(64.51) and location 20 (63.46). This clearly 
indicates the variability which exists as far as the 
pollution levels are concerned where they range 
from 7.97 to 97.73. It is apparent that this spatial 
inequality can be explained by factors such as 
closeness to emission sources, population density, 
traffic density, and industrial strength. According to 
the findings, it is now clear that special measures 
aimed at local conditions must be taken to change 
the adverse situation and decrease the level of air 
pollution to prevent future adverse health effects in 
the population. 

 
7.4  Source Apportionment 
The pie charts illustrating the source apportionment 
display the contribution of mobile, stationary and 
natural pollutants for six samples in detail. Mobile 
sources account for between 20 and 50 percent 
while stationary sources are between 30 and 60 
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percent; natural sources are adjusted to give a total 
of 100 percent. This visualization explains how 
various types of pollution have different effects 
depending on different situations. This is evident in 
the source contributions for different samples as 
mobile and stationary sources dominate the 
pollution, but their contributions vary. Natural 
sources are always there, though they are a 
diminished and steady part of the pollution. That 
much of a breakdown is necessary for designing 
specific individual measures. For example, regions 
with high contributions from mobile sources may 
require better standards of emission from vehicles 
and sound public transport options. On the other 
hand, relative contributions of stationary sources 
may call for more stringent industrial measures and 
cleaner energy production. Identification of 
distribution in pollution sources helps in 
prioritization in addition to the use of available 
resources in addressing the problem. It is in this way 
that policymakers can utilize this data to bring in 
appropriate approaches that target the most 
unmistakable wellspring of air tainting in certain 
conditions. Thus, this approach helps to minimize 
the possibilities of pollution control measures and 
improve the consequent impact of the environment 
and health. Also, the source information required to 
value and prioritize the impacts of air pollution 
needs updated continuously because pollution 
changes due to the city expansion, industries, and 
updating environmental policies. Therefore, this 
analysis offers a rich synthesis to proceed with the 
evaluation as well as the development of strategies 
in environmental management. 
 

 
Fig. 16: Source Appointment 
 

From Figure 16 the bar chart shows the source 
apportionment, the distribution of pollutants due to 
mobile emission sources, stationary emission 
sources, and the natural emission sources. 
Transportation which includes vehicles and other 
means of transport contributes to up to 46.83% of 
emissions to up to 21.18%. The mobile sources have 

the highest percentage in the second dataset with an 
overall 46.83 % and the lowest in the first dataset 
with 21.18%. While transportation sources have 
lower variations: ranging from 43.22% to 67.14%, 
the stationary sources including industries and 
power stations have much greater variations of 
between 32.86% and 56.78%. From the fourth data 
set, the stationary source contribution is the highest 
at 56.78-prescribing to industrial impact on 
emissions. On the other hand, the second dataset 
indicates the minimum contribution of stationary 
sources at 32.86%. Natural sources which include 
those arising from natural processes like wildfire 
and vegetation stand between 8.19% and 31.97%. 
The second set of data shows the highest 
contribution of natural source at 31.97 % indicating 
strong natural process bias. However, the fifth set of 
results reveals the smallest likelihood of natural 
source exposure at 8.19%. This approach forms a 
basis for allocating emissions among various 
sources in a way that reflects their overall 
contribution to air quality degrade. Very high 
contribution from stationary sources in some 
datasets underscore the importance of maximum 
control on industrial emissions. Likewise, high 
emissions originating from mobile sources suggest 
the possible gains of improving automobile exhaust 
emissions and improving environmentally-friendly 
transportation systems. It is also important when 
quantifying contributions from natural sources so as 
to come up with comprehensive air quality 
management measures that factor anthropogenic and 
natural factors. 
 
7.5  Health Impact Assessment 
Using the three subplots of health impact 
assessment, the current paper shows the changes in 
health impact and exposure and risk levels in ten 
samples. Every subplot reflects a different aspect of 
the overall assessment offering different 
perspectives regarding the impact of environmental 
factors on people’s health. To visually depict the 
first subplot the health outcome in terms of 
percentage over samples has been plotted and the 
figure highlights varying trends observed in health 
impacts across samples. The changes in health 
outcomes shed light on how conditions of the 
environment can affect the health of people and 
identify periods of increased and reduced risks. The 
second subplot is associated with the changes in 
exposure levels for the population (µg/m³ on 
samples) and shows the fluctuations in the level of 
pollutants. This graph demonstrates why there is a 
need to consider exposure patterns in order to 
proportion the possible health hazards of pollutants 
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in the environment. Last but not least, the third拔, 
lower pane shows the common risk levels (%) based 
on samples, which gives the risk derived from the 
defined exposure levels. Integrating exposure data 
with published risk assessment protocols, this 
analysis affords a numerical assessment of the 
potential health risks posed by polluting agents in 
the environment. Both of these subplots provide a 
thorough immersion in various aspects of HIA and 
allow the viewer to more fully appreciate how 
environmental stressors combine – and interact – to 
affect health. Such analyses are quite helpful in 
informing policymakers and public health 
practitioners on the best strategies for addressing the 
negative impact of environmental pollution on 
human health. 
 

 
Fig. 17:  Health Outcomes Over Samples 
 
Pollutant Exposure and Health Impact 

ⅆH (t)

ⅆt
= β ⋅ E (t) − α ⋅ H(t)             (23) 

 
Risk Assessment Model using Logistic Regression 

𝑃(𝑌 =  1|𝑋) =
1

1+e−(𝛽0 + 𝛽1𝑋1+𝛽2𝑋2+.......+𝛽𝑛𝑋𝑛)  
(24) 

 
Exposure Response Function 

ER = ∫ E(t) . R(E(t)) dt
∞

0
             (25) 

 
Combined Model with Time-Dependent Risk 
Factors 

H(t) = ∫ (
t

0
β1E1(τ) +  β2E2(τ)+. . . . . + βnEn(τ) ⋅

e−α(t−τ) dτ  
(26) 

 
From eqn 23, H(t) = incidence of a particular 

disease at time t, E(t) = exposure level to a pollutant 
at time t, β is the rate at which exposure affects 
health impact and α is the decay rate representing 
healing/other related factors. In equation 24, 
P(Y=1∣X) represents the probability that an adverse 
health outcome Y occurs given predictor variables 
X, X1,X2, …., Xn; where X1,X2,.,Xn is the level of 

pollutants to which the subject could have been 
exposed, his demographic data and other relevant 
variables: whilst Y is 1 if the subject has an adverse 
health outcome, otherwise Y = 0; β From equation 
25, =ER = E(t) response Since, R(E(t)) quantifies 
the health impact faced given a level of exposure at 
time t, can be used to measure the impact of 
exposure on health. The health impact at time t will 
be given as: H(t) = E1(τ) β1 + E2(τ) β2 + … + En(τ) 
βn where τ < t αE1(τ) β1 + αE2(τ))/ β2 ++ αEn(τ) 
βn/ βn 

From Figure 17, a clear understanding of Health 
Impact Assessment showcases the actual and 
potential effects of exposure levels of the various 
pollutants on health as well as the probable risk 
factors. Showing the degree of health impact due to 
pollutant exposure as health outcomes in percentage 
the diverse is between 7.53 % – 98.98%. The figures 
farther indicate that the extent of adverse health 
influence remains higher within the population 
group under investigation. Concentrations of 
pollutants are in µg/m³, ranging from 22.38µg/m³ to 
164.42µg/m³, which gives the idea the widest 
possible data and maximum variety of pollution 
levels people come across. High exposure levels 
increase the health risks explained by the risk 
ranking, which lie between 3.79% and 88.87%. 
When individuals operate at higher risk levels then 
it means that they are prone to health adversities as a 
result of pollutant exposure. The results presented in 
the paper support the need to reduce levels of 
polluters to address adverse effects on population 
health as well as promote the improvement of health 
and wellbeing. The relationships between exposure 
levels, health effects, and risk levels are important to 
assess the effects that exposure to pollution has on 
the health of the population and in the development 
of measures to protect the population from adverse 
health effects that are associated with pollution 
exposure. 
 
7.6  Policy and Regulation Impact 
The stacked bar chart presents a comprehensive 
analysis of the impact of policy and regulation on 
three key areas over a twelve-month period: such as; 
compliance monitoring, effectiveness of 
interventions, and awareness/education. Each 
category is painted in separate colors for 
comprehensible differentiation in cases of 
cumulatively evaluating many students. Percent 
compliance monitoring depicted in sky blue always 
shows high percentages ranging from 70 % to 100 
% across the months. This implies a good 
compliance to legal requirements and this is 
accompanied by good oversight tools. The high 
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values here show that continuous compliance 
measures are still essential in supporting regulatory 
requirements. Shown in light green, the outcome of 
implemented interventions varies to a moderate 
degree, with effective scores ranging from 50% to 
90%. The observed variations could be due inter alia 
to the fact that interventions featured in the study 
are heterogeneous and may be studied at different 
phases of implementation. Notably, further, the 
fluctuations may relate to the adoption of new 
strategies or seasonal impacts on interference 
effectiveness. The results call for subsequent 
assessment and modification of the interventions in 
order to maintain and enhance their application. The 
awareness and education as personified by salmon 
in this study are slightly higher and range from 30 
percent to 80 percent. The lower initial values also 
point to initial difficulties of public outreach and 
awareness in the early years of programmers. 
However the rise in the case identification through 
the months can be attributed to sustained efforts in 
cases of social marketing and health promotion. The 
fact that it moves upward indicates that long-term 
commitment to the improvement and management 
of public education is key to obtaining lasting 
behavioral and attitudinal change. In general, the 
stacked bar chart sums up the effects associated with 
policy and regulation efforts. These findings 
underscore the need for and logistically integrated 
approaches to compliance, intervention efficacy, 
and public awareness in order to meet broad-ranging 
environmental and public health objectives. The use 
of the map makes it easier to gain an integrated view 
of the policy implications, for purposes of effective 
planning, and policy development. 
 

 
Fig. 18: Policy and Regulation Impact Over Time 
 

Impact (t) = ∑ (α ⋅ Ci + β . Ei +  γ . Pi )
t
i=1    (27) 

 
Drawing from equation 27 above with t 

signifying number of time periods (months in this 
case),Ci, which is the compliance monitoring 
percentage at time I, Ei which is the effectiveness of 
interventions percentage at time I, Pi which is the 

public awareness and education percentage at time I 
and α ,β ,γ which are weighting factors signifying 
the relative importance towards each component. 
From Figure 18, the policy and regulation impact 
data gives information on the success of the various 
policies that are laid down by the government, 
through the level of compliance, the outcome of 
various interventions, and the measure of awareness 
or sensitization of the public. The compliance 
monitoring percentages therefore vary between 
70.22% and 96.11% which reveals that the 
organizations have different levels of compliance 
with the set standard in the regions/sectors. This is 
pegged on a 96.11% compliance monitoring score 
which clearly points towards the sound legal 
enforcement of policies to do with the environment. 
On the other hand, the lowest percentage of 70.22% 
is in some of these areas which reveals that the 
current regulatory enforcement may not be very 
strict. The extent of application of interventions is 
calculated in terms of the efficiency of policy 
measures to mitigate pollution, which varies 
between 55.04% and 88.46%. While the coach is as 
high as 88.46 % this shows that reduction of 
pollution has been achievable through specific 
approaches, whereas the low cost of 55.04 % shows 
the need for re-strategizing by improving on 
implemented measures. Education and awareness 
results range from 33.84 percent to 75.18 percent 
which shows the level of community literacy and 
participation on environmental concerns. The first 
average of 75.18% shows that the public has 
adequate understanding and practice on 
environmental conservation while 33.84% indicate 
that the public has a poor understanding of the 
environment and that more effort especially in 
sensitization should be made. The outcome of this 
research underlines the need for good compliance 
monitoring and efficiency of interventions as sound 
approaches to environmental goals. Lastly, raising 
public consciousness and cultivating an 
environment-conscious population is the key to 
maintaining improvement of pollution rates and 
increased community participation in pollution 
cessation. Following a comprehensive assessment, it 
provides lawmakers with information on the 
strengths and limitations of existing approaches in 
order to design and effectively execute policy that 
seeks to improve environmental quality and 
population health. 
 
 
8   Conclusion 
Therefore, this study highlights the importance of 
further development of air quality monitoring 
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systems that use synthetic data generation and IoT. 
Cleaned daily time series for ambient concentrations 
of PM2.5, PM10, NO2, SO2, CO, and O3 exhibit 
strong diurnal patterns dependent on meteorological 
factors and anthropogenic emissions . A temporal 
variation in AQI-calculated trends is necessary to 
track and monitor consistently to assist in effective 
health and policy-making decisions. When the IoT-
based sensors are inserted strategically taking into 
account factors such as the population and the flow 
of traffic then the granularity as well as the coverage 
that is offered is enhanced. The key insights 
identified focus on the height of sensors, their 
distance to the sources of emissions, and concerns 
related to structural aspects such as power supply, 
communication network, and physical protection. 
This paper provides a rationale that the idea of 
scalability factors can contribute to the architectural 
design of modular, economic, and effective 
environmental monitoring systems. In light of the 
options of data collection, transmission, storage, 
management, quality, discretion, precision, 
frequency, real-time, bandwidth, latency, scalability, 
security, and data replication, improvements are 
pinpointed. In this way, the balance is achieved to 
have strong data collection and data management. 
Investigation of the EIFF and, particularly, AQI, 
temporal variability and spatial distribution of 
pollutants, source apportionment, effects on human 
health, and policy/regulation implications all point 
to the need for preventive measures against 
pollution. Knowing which areas are most affected 
and from what or whom remedial measures can be 
taken affects pollution control processes. The 
conclusion stresses the importance of pollution 
prevention and control, as well as the role of 
compliance enforcement and public awareness 
programs in goal achievement where the 
concentration of pollutants is clearly related to 
adverse health effects. 
 
 
References: 

[1] Kaginalkar, A., Kumar, S., Gargava, P., & 
Niyogi, D. (2021). Review of urban 
computing in air quality management as smart 
city service: An integrated IoT, AI, and cloud 
technology perspective. Urban Climate, 39, 
100972. 
https://doi.org/10.1016/j.uclim.2021.100972.  

[2] Mihăiţă, A. S., Dupont, L., Chery, O., 
Camargo, M., & Cai, C. (2019). Evaluating 
air quality by combining stationary, smart 
mobile pollution monitoring and data-driven 
modeling. Journal of cleaner production, 221, 

398-418. 
https://doi.org/10.1016/j.jclepro.2019.02.179.  

[3] Monforte, P., & Ragusa, M. A. (2018). 
Evaluation of the air pollution in a 
Mediterranean region by the air quality index. 
Environmental monitoring and assessment, 

190(11), 625. https://doi.org/10.1007/s10661-
018-7006-7.  

[4] Thach, T. Q., Tsang, H., Cao, P., & Ho, L. M. 
(2018). A novel method to construct an air 
quality index based on air pollution profiles. 
International Journal of Hygiene and 

Environmental Health, 221(1), 17-26. 
https://doi.org/10.1016/j.ijheh.2017.09.012.  

[5] Tran, V. V., Park, D., & Lee, Y. C. (2020). 
Indoor air pollution, related human diseases, 
and recent trends in the control and 
improvement of indoor air quality. 
International Journal of Environmental 

Research and Public Health, 17(8), 2927. 
https://doi.org/10.3390/ijerph17082927.  

[6] Thunis, P., Clappier, A., Tarrasón, L., 
Cuvelier, C., Monteiro, A., Pisoni, E., & 
Peduzzi, E. (2019). Source apportionment to 
support air quality planning: Strengths and 
weaknesses of existing approaches. 
Environment International, 130, 104825. 
https://doi.org/10.1016/j.envint.2019.05.019.  

[7] Song, S. K., Shon, Z. H., Kang, Y. H., Kim, 
K. H., Han, S. B., Kang, M., ... & Oh, I. 
(2019). Source apportionment of VOCs and 
their impact on air quality and health in the 
megacity of Seoul. Environmental Pollution, 
247, 763-774. 
https://doi.org/10.1016/j.envpol.2019.01.102.  

[8] Guo, H., Kota, S. H., Sahu, S. K., Hu, J., 
Ying, Q., Gao, A., & Zhang, H. (2017). 
Source apportionment of PM2. 5 in North 
India using source-oriented air quality models. 
Environmental Pollution, 231, 426-436. 
https://doi.org/10.1016/j.envpol.2017.08.016.  

[9] Qiao, X., Ying, Q., Li, X., Zhang, H., Hu, J., 
Tang, Y., & Chen, X. (2018). Source 
apportionment of PM2. 5 for 25 Chinese 
provincial capitals and municipalities using a 
source-oriented Community Multiscale Air 
Quality model. Science of the Total 

Environment, 612, 462-471. 
https://doi.org/10.1016/j.scitotenv.2017.08.27
2.  

[10] Zhang, Q., Jiang, X., Tong, D., Davis, S. J., 
Zhao, H., Geng, G., & Guan, D. (2017). 
Transboundary health impacts of transported 
global air pollution and international trade. 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.33

R. Sivakumar, Kalpana Singh, V. S. Nishok, 
Shweta Babarao Barshe, Kiran Sree Pokkuluri, 

T. Srihari, Venkatesan Hariram, 
Manas Ranjan Mohapatra

E-ISSN: 2224-3496 400 Volume 21, 2025

https://doi.org/10.1016/j.uclim.2021.100972
https://doi.org/10.1016/j.jclepro.2019.02.179
https://doi.org/10.1007/s10661-018-7006-7
https://doi.org/10.1007/s10661-018-7006-7
https://doi.org/10.1016/j.ijheh.2017.09.012
https://doi.org/10.3390/ijerph17082927
https://doi.org/10.1016/j.envint.2019.05.019
https://doi.org/10.1016/j.envpol.2019.01.102
https://doi.org/10.1016/j.envpol.2017.08.016
https://doi.org/10.1016/j.scitotenv.2017.08.272
https://doi.org/10.1016/j.scitotenv.2017.08.272


Nature, 543(7647), 705-709. 
https://doi.org/10.1038/nature21712.  

[11] Dhingra, S., Madda, R. B., Gandomi, A. H., 
Patan, R., & Daneshmand, M. (2019). Internet 
of Things mobile–air pollution monitoring 
system (IoT-Mobair). IEEE Internet of Things 

Journal, 6(3), 5577-5584. 
https://doi.org/10.1109/JIOT.2019.2903821.  

[12] Fan, H., Zhao, C., & Yang, Y. (2020). A 
comprehensive analysis of the spatio-temporal 
variation of urban air pollution in China 
during 2014–2018. Atmospheric Environment, 
220, 117066. 
https://doi.org/10.1016/j.atmosenv.2019.1170
66.  

[13] Schneider, P., Castell, N., Vogt, M., Dauge, F. 
R., Lahoz, W. A., & Bartonova, A. (2017). 
Mapping urban air quality in near real-time 
using observations from low-cost sensors and 
model information. Environment 

International, 106, 234-247. 
https://doi.org/10.1016/j.envint.2017.05.005.  

[14] Xie, X., Semanjski, I., Gautama, S., 
Tsiligianni, E., Deligiannis, N., Rajan, R. T., 
& Philips, W. (2017). A review of urban air 
pollution monitoring and exposure assessment 
methods. ISPRS International Journal of Geo-

Information, 6(12), 389. 
https://doi.org/10.3390/ijgi6120389.  

[15] Ullo, S. L., & Sinha, G. R. (2020). Advances 
in smart environment monitoring systems 
using IoT and sensors. Sensors, 20(11), 3113. 

[16] Shah, J., & Mishra, B. (2016, January). IoT 

enabled environmental monitoring system for 

smart cities. In 2016 international conference 

on internet of things and applications (IOTA) 

(pp. 383-388). IEEE. 
https://doi.org/10.3390/s20113113.  

[17] Sarkar, P., & Saha, M. (2024). Optimizing air 
quality monitoring device deployment: a 
strategy to enhance distribution efficiency. 
International Journal of Information 

Technology, 1-5. 
https://doi.org/10.1007/s41870-024-01893-z.  

[18] Maag, B., Zhou, Z., & Thiele, L. (2018). A 
survey on sensor calibration in air pollution 
monitoring deployments. IEEE Internet of 

Things Journal, 5(6), 4857-4870. 
https://doi.org/10.1109/JIOT.2018.2853660.  

[19] Tanyingyong, V., Olsson, R., Hidell, M., 
Sjödin, P., & Ahlgren, B. (2018, December). 
Implementation and deployment of an outdoor 
IoT-based air quality monitoring testbed. In 

2018 IEEE Global Communications 

Conference (GLOBECOM) (pp. 206-212). 

IEEE. 
https://doi.org/10.1109/GLOCOM.2018.8647
287.  

[20] Chojer, H., Branco, P. T. B. S., Martins, F. G., 
Alvim-Ferraz, M. C. M., & Sousa, S. I. V. 
(2020). Development of low-cost indoor air 
quality monitoring devices: Recent 
advancements. Science of The Total 

Environment, 727, 138385. 
https://doi.org/10.1016/j.scitotenv.2020.13838
5.  

[21] Montrucchio, B., Giusto, E., Vakili, M. G., 
Quer, S., Ferrero, R., & Fornaro, C. (2020). A 
densely-deployed, high sampling rate, open-
source air pollution monitoring WSN. IEEE 

Transactions on Vehicular Technology, 

69(12), 15786-15799. 
https://doi.org/10.1109/TVT.2020.3035554.  

[22] Yang, C. T., Chen, S. T., Den, W., Wang, Y. 
T., & Kristiani, E. (2019). Implementation of 
an intelligent indoor environmental 
monitoring and management system in cloud. 
Future Generation Computer Systems, 96, 
731-749. 
https://doi.org/10.1016/j.future.2018.02.041.  

[23] Kumar, S., & Jasuja, A. (2017, May). Air 
quality monitoring system based on IoT using 
Raspberry Pi. In 2017 International 

conference on computing, communication and 

automation (ICCCA) (pp. 1341-1346). IEEE. 
https://doi.org/10.1109/CCAA.2017.8230005.  

[24] Zhang, Q. S. (2023). Environment pollution 
analysis on smart cities using wireless sensor 
networks. Strategic Planning for Energy and 

the Environment, 239-262. 
https://doi.org/10.13052/spee1048-
5236.42112.  

[25] Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, 
X., & Hao, J. (2017). The impact of the “air 
pollution prevention and control action plan” 
on PM2. 5 concentrations in Jing-Jin-Ji region 
during 2012–2020. Science of the Total 

Environment, 580, 197-209. 
https://doi.org/10.1016/j.scitotenv.2016.11.18
8.  

 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.33

R. Sivakumar, Kalpana Singh, V. S. Nishok, 
Shweta Babarao Barshe, Kiran Sree Pokkuluri, 

T. Srihari, Venkatesan Hariram, 
Manas Ranjan Mohapatra

E-ISSN: 2224-3496 401 Volume 21, 2025

https://doi.org/10.1038/nature21712
https://doi.org/10.1109/JIOT.2019.2903821
https://doi.org/10.1016/j.atmosenv.2019.117066
https://doi.org/10.1016/j.atmosenv.2019.117066
https://doi.org/10.1016/j.envint.2017.05.005
https://doi.org/10.3390/ijgi6120389
https://doi.org/10.3390/s20113113
https://doi.org/10.1007/s41870-024-01893-z
https://doi.org/10.1109/JIOT.2018.2853660
https://doi.org/10.1109/GLOCOM.2018.8647287
https://doi.org/10.1109/GLOCOM.2018.8647287
https://doi.org/10.1016/j.scitotenv.2020.138385
https://doi.org/10.1016/j.scitotenv.2020.138385
https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.1016/j.future.2018.02.041
https://doi.org/10.1109/CCAA.2017.8230005
https://doi.org/10.13052/spee1048-5236.42112
https://doi.org/10.13052/spee1048-5236.42112
https://doi.org/10.1016/j.scitotenv.2016.11.188
https://doi.org/10.1016/j.scitotenv.2016.11.188


Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 

 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.33

R. Sivakumar, Kalpana Singh, V. S. Nishok, 
Shweta Babarao Barshe, Kiran Sree Pokkuluri, 

T. Srihari, Venkatesan Hariram, 
Manas Ranjan Mohapatra

E-ISSN: 2224-3496 402 Volume 21, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



